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Coupled electron–heat transport in nonuniform thin film semiconductor structures

V. G. Karpov
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A theory of transverse electron transport coupled with heat transfer in semiconductor thin films is
developed conceptually modeling structures of modern electronics. The transverse currents generate
Joule heat with positive feedback through thermally activated conductivity. This can lead to insta-
bility known as thermal runaway, or hot spot, or reversible thermal breakdown. A theory here is
based on the optimum fluctuation method modified to describe saddle stationary points determining
the rate of such instabilities and conditions under which they evolve. Depending on the material
and system parameters, the instabilities appear in a manner of phase transitions, similar to either
nucleation or spinodal decomposition.

PACS numbers: 72.60.+g, 72.80.Ng, 64.60.Q-, 73.50.Fq

I. INTRODUCTION

Various treatments of electronic transport in disor-
dered systems typically concentrate on systems at a given
fixed temperature. However, observations (see references
below) often point at the coupled electron-heat trans-
port where local fluctuations in electric current generate
temperature fluctuations. When the latter have positive
feedback, as e. g. in the case of thermally activated con-
ductivity, an instability arises leading to the current fil-
amentation. ‘Weak spots’ corresponding to suitable dis-
order configurations promote such instabilities. While
this mechanism has long been known qualitatively,1 its
quantitative understanding remains insufficient leaving
open questions about the role of material and structure
parameters, and effects of static vs. thermodynamic fluc-
tuations.

This work attempts a theory of coupled electron-heat
transport concentrating on a rather representative case
of transverse conduction through thin-film structures. A
model structure consists of an active (heat generating)
conducting layer between two identical electrically inac-
tive thermally insulating layers representing encapsula-
tion always found with electronic devices. The top half of
the structure is depicted in Fig. 1; the second half is sym-
metric with respect to the bottom line of the diagram.
The active layer can be a single or multi-layered semicon-
ductor sandwiched between thin metal electrodes. The
electric potential along each of the electrodes is constant;
the potential difference V between them is maintained
by an external power source. The boundary conditions
are that the temperature T is fixed, T = T0 at the top
and the bottom (not shown in in Fig. 1) surfaces of the
structure where fluctuations are suppressed by thermal
exchange with ambient.

The disorder is introduced through the activated
transversal electric conduction with random Gaussian ac-
tivation barriers varying in the lateral (along the film) di-
rections. The role of insulating layers is that they affect
the temperature distribution and make the entire model
more realistic. For simplicity, we assume one of them to-
tally insulating while another one having a finite thermal
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FIG. 1: Sketch of the top half of the system of total thickness
2h with a nonuniform power generation in the active layer of
thickness 2h0 (reddish columns). The top thermally insulat-
ing layer is shown in gray.

conductivity. Also, for simplicity, thermal conductivities
and specific heats of the active and insulating layers are
assumed the same.

The analysis below is aimed at finding the probability
of local temperature fluctuations and their radii associ-
ated with locally increased current density vs. the sys-
tem dimensions, material parameters, and ambient tem-
perature. It is based on the premise of localized rare
lateral fluctuations that do not overlap. These local-
ized entities are similar to other types of localized states
in disordered systems, for which theoretical description
known as the optimum fluctuation method (OFM) has
been developed long ago. OFM was originally created
to describe electronic states in band tails of disordered
semiconductors;2–6 it was applied later to localized sound
excitations in glasses,7, resonance electronic states in
disordered metals,8,9 fluctuation tail states in magnetic
semiconductors,10 random lasing in disordered dielec-
tric films,11, local fluctuations in thermal expansion of
glasses,12 and nucleation in disordered media.13

The essence of OFM is in the optimization of con-
figurational probability of fluctuations under the addi-
tional condition that the dynamical characteristic of a
fluctuation satisfies the appropriate differential equation
(Schrödinger equation for electronic state, elastic wave
equation for sound excitations, electromagnetic wave
equation for optic modes, etc.). This is achieved through
the variational approach, in which the dynamical charac-
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teristic is kept fixed (yet arbitrary) in the course of op-
timization of the configurational probability, after which
it is optimized to additionally minimize that probabil-
ity. The details of OFM vary between different systems.
Here developed OFM is tailored to describe the temper-
ature fluctuations coupled with the electric current, so
that the dynamical characteristic (temperature) of fluc-
tuations satisfies the heat transfer equation.

The analysis below shows that hot spot instabilities
evolve in a manner of phase transformations, either by
nucleation or similar to spinodal decomposition affecting
the entire area. The nucleation scenario of such instabil-
ities in uniform systems was established earlier based on
general phenomenological analysis.1

One aspect of the hot spot phenomenon is that it is
related to the underlying cylinder shaped filament re-
gions of increased temperature and conductivity across
the structure. The possibility of current filamentation in
semiconductors has been long known; here we mention
the seminal work in Refs. 14 and 15, and comprehen-
sive modern analysis in Ref. 16 containing references to
many other publications. A number of straightforward
dynamical models are based on the coupled differential
equations of heat transfer and electronic transport, the
latter possessing certain features conducive of instabili-
ties, such as, e. g. nonlinear electron transport related to
electron system overheating, impact ionization or electro
acoustic effects. While these models do not explicitly de-
scribe nonuniform systems, some of their results will be
compared here to that of the present consideration in the
limiting case of very weak disorder.

This paper is limited to a general theoretical anal-
ysis; possible applications of the coupled electron-heat
transport will be presented in more appropriate jour-
nals. We refer to a recent monograph 17 for many
practically important cases. The relevant observa-
tions are found with bipolar transistors17–21, other
metal-insulator-semiconductor structures,22–27 nanoscale
transistors,28 graphene transistors,29 and thin-film
photovoltaics.30–32,35 In these applications, the phe-
nomenon under consideration was labeled as thermal run-
away, or hot spot, or (reversible) thermal breakdown.
It can be detrimental to the corresponding device op-
erations leading to their irreversible degradation in hot
spots via local shunting, burning, or melting; hence, sig-
nificance for device reliability.

The paper is organized as follows. Sec. II introduces
the basic equations describing the coupled electron-heat
transport in a non-uniform system. To better explain the
essence of OFM and subsequent results, two toy mod-
els are considered in Sec. IV. Relation to the theory
of heat explosions is discussed in Sec. V. Sec. VI,
presents a modification of OFM describing saddle points
through which the system evolves into thermally nonuni-
form state. The OFM functional is optimized in Sec. VII
through direct variational procedure. The steady state
rate of hot spot nucleation is estimated in Sec. VIII.
Finally, Sec. IX presents general discussion and conclu-

sions.

II. COUPLED ELECTRON AND HEAT

TRANSPORT IN A DISORDERED SYSTEM

The Joule power density is given by

P = P0 exp(−E/kT ), P0 = E2σ0 exp

(

− E

kT

)

. (1)

Here E = V/h0 is the electric field strength where h0 is
the distance between the electrodes (see Fig. 1). σ0 is
the pre-exponential of conductivity,

σ = σ0 exp[−(E + E)/kT ]

with E being the average activation energy, k is the
Boltzmann’s constant, and T is the local temperature.
The random part of activation energy, E has zero aver-
age, 〈E〉 = 0 and a finite dispersion 〈E2〉 = B. It is
characterized by the correlation function

〈E(r, z)E(r′, z′)〉 = Bvδ(r − r
′)δ(z − z′). (2)

Here the radius vector r lies in the film plane, z is the
transversal (across the film) coordinate, δ(r) is the two-
dimensional delta function implying zero correlation ra-
dius disorder. The minimum volume v is determined
by the physical nature of fluctuations. For example, its
characteristic linear scale a0 ∼ v1/3 (likely in sub-micron
range) can be given by the screening radius or the grain
size, or other length, below which the system parameters
do not vary significantly. v is introduced to give B the
dimensionality of the square of energy and the meaning
of the dispersion of random energies E.
Local elements of the system interact through heat

transfer described by the standard equation

χ∇2T + P (r) = 0 (3)

where χ is the thermal conductivity and the Laplacian
∇2 is three dimensional, and χ is coordinate independent.
The power generation density is a sum of average and
random contributions,

P = 〈P 〉+ P (1), 〈P 〉 ≡ P0

〈

exp

(

− E

kT

)〉

.

where

P (1) = P0 exp

(

− E

kT

)

− 〈P 〉. (4)

Eq. (3) assumes the steady state heat transfer. The
assumption of stationary states is common to all known
cases of OFM. The problem under consideration, how-
ever, is different with respect to the notion of stationary
fluctuations. Since the instability evolves in a fashion of
phase transitions, the stationary solutions of Eq. (3) can
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only describe saddle points in the parameter space. The
temperature fluctuation δT becomes time dependent in
the proximity of each of such point, described by

−CδT/τ = χ∇2T + P (r) (5)

in the relaxation time approximation, where C is the spe-
cific heat. The fluctuation decay will correspond to pos-
itive, while fluctuation growth (instability) to negative
values of τ ; this criterion is used in Sec. VII below.

III. LINEAR APPROXIMATION:

NO-BREAKDOWN REGIME

For completeness, consider briefly a trivial situation
where the disorder B and temperature fluctuations δT
are small enough to allow the linearization

P = P0

[

1− E(r, z)

kT0
+

E

kT 2
0

δT (r, z)

]

, z < h0, (6)

where T0 is the average temperature. For simplicity, con-
sider the probabilistic distribution of temperature fluctu-
ations averaged over the film thickness,

δT̃ =
1

h

∫ h

0

δT (r, z)dz. (7)

that turns out to be almost identical to that of δT .
Substituting the linear approximation of Eq. (6) and

performing averaging in Eq. (3) yields

∇2
rδT̃ − 1

r20
δT̃ = u(r). (8)

Here ∇2
r is the two-dimensional Laplacian,

1

r20
≡ P0Eh0

χkT 2
0 h

, u(r) ≡ P0

χkT0h

∫ h0

0

E(r, z)dz. (9)

The solution to Eq. (8) has the form

δT̃ (r) = (−1/4)

∫

d2ru(r
′

)H
(1)
0 (i|r− r

′ |/r0) (10)

where H
(1)
0 is the Hankel function.

The quantity in Eq. (10) represents a sum of large
number of random contributions and, according to the
central limit theorem, is a random quantity itself with the
Gaussian probability distribution. Its dispersion 〈(δT̃ )2〉
is given by

1

16

∫

∞

0

d2r
′

d2r
′′

H
(1)
0

(

ir
′

r0

)

H
(1)
0

(

ir
′′

r0

)

〈u(r′

)u(r
′′

)〉

=
πP0Bv

4χEkh
. (11)

Here we have taken into account Eq. (2) and the value47

of the integral
∫

∞

0
[H1

0 (x)]
2xdx = 2.

We conclude that the temperature fluctuations are
characterized by the radii of r0 and the Gaussian dis-
tribution,

ρ(δT ) ∝ exp

(

−δT
2

δT 2
0

)

with δT 2
0 =

πP0Bv

4χEkh
. (12)

A similar result can be obtained for the true (not z-
averaged) temperature fluctuations δT . The only dif-

ference is that the Green function −H
(1)
0 (i|r− r

′ |/r0)/4
must be replaced by a rather cumbersome series (see e. g.
Refs. 33, p. 144 and 34) including z-dependent trigonom-
etry functions in combination with Bessel functions of
r/r0. As a result, δT 2

0 remains the same parametrically
with a numerical coefficient approximately equal to 0.7
instead of 1/4 in Eq.(12).
The important point is that the above linear approx-

imation does not account for positive feedback of tem-
perature fluctuations on transversal conduction and thus
the disorder remains fixed and temperature independent.
While this restriction eliminates the possibility of ther-
mal breakdown (which is the main topic here), the results
of this section can still be applicable to the case of very
small currents and fluctuations used e. g. in thermogra-
phy diagnostics.35,49

IV. TOY MODELS

Because the regular OFM below is mathematically
cumbersome, it is illustrated here with simplified (toy)
models. One of them concentrates on the case when there
is no positive feedback on conductivity by local heating.
Another one deals with a homogeneous system and con-
centrates on the positive feedback.

A. Conductive filaments through an insulating film

Consider a two phase structure where transversal cur-
rent flows through conductive filaments in an insulating
host of thickness h0 sandwiched between two equipoten-
tial electrodes. The structure is characterized by the av-
erage transversal conductivity σ due to filaments of av-
erage concentration n per area. Local fluctuations δn
in their concentration result in the corresponding con-
ductivity fluctuations δσ = σδn/n. Since the filaments
generate Joule heat, they create fluctuations δT in tem-
perature; the tail of probabilistic distribution of δT is
found below.
Consider a cylinder shaped region of radius a perpen-

dicular to the electrodes where the characteristic fluc-
tuation in filament concentration is δn. The Gaussian
probability of such a fluctuation is estimated as

exp

[

− (δn)2a2

n

]

= exp

[

−na2
(

δσ

σ

)2
]

≡ exp(−S)

(13)
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S can be optimized with respect to a after δσ is expressed
via δT and a..
The heat flux through the cylinder base and side sur-

faces is estimated as χ[(δT/h0)a
2+(δT/a)h0a] to within

the accuracy of numerical multipliers of the order of unity
in front of each of the terms. Equating it to the fluctu-
ation of power V 2a2δσ/h0 inside the cylinder yields the
temperature fluctuation

δT =
V 2δσ

χ

a2

a2 + h2
0

. (14)

Expressing δσ from Eq. (14) and substituting it into Eq.
(13) yields

S = na2
(

δTχ

V 2σ

)2(

1 +
h2
0

a2

)2

. (15)

Following the OFM approach, we optimize the expo-
nent S with respect to the fluctuation radius a, i. e.
dS/da = 0, which gives a = h0. Substituting a = h0

back into Eq. (15) yields the optimum exponent of prob-
ability,

Sopt =

(

δT

δT0

)2

where δT0 ≡ V 2σ

χh0

√
n

(16)

again to the accuracy of numerical multipliers.
The preexponential is roughly estimated by dividing

the entire area into elemental domains of area h2
0 each

and noticing that exp(−Sopt) describes the probability
of a desired fluctuation with temperature excess δT in
a given domain. Therefore, the concentration of such
fluctuations is estimated as h−2

0 exp(−Sopt).
Two features should be noted. First, OFM concen-

trates on the exponent of probability, largely neglect-
ing the pre-exponential factors (although they can be
estimated as well). Secondly, it optimizes that expo-
nent in order to find the most likely disorder configu-
ration providing the desired fluctuation characteristic of
interest. Its applicability is limited to the region of non-
overlapping fluctuations.
A possible application of this toy model might be a sys-

tem of multiple shunting metal chains formed in dielec-
tric or solid electrolyte films considered for nonvolatile
memory; see e.g. Refs. 48 and references therein.

B. Homogeneous films

Consider, in the linear approximation, a relatively
small temperature fluctuation δT in a cylinder region of
radius a and height h0, setting

1

T
≈ 1

T0
− δT

T 2
0

. (17)

Neglecting (for simplicity) heat transfer through the
cylinder bases and using

δσ = σ exp

(

δTE

kT 2
0

)

,
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FIG. 2: Effective barrier for nucleation of hot spots corre-
sponding to the numerical value α = EkT0 = 10. Arrows
show a pathway of hot spot nucleation.

Eq. (14) reduces to the form

δT =
V 2σ

χ

a2

h2
0

exp

(

δTE

kT 2
0

)

. (18)

For a system in equilibrium, the probability of temper-
ature fluctuation δT in volume δV = πa2h0 is given by
the expression36

exp[−C(v)δV (δT )2/kT 2]

where C(v) is the specific heat per volume. Expressing a2

from Eq. (18) gives the equilibrium distribution function

f(δT ) ∝ exp[−S(δT )] with

S(δT ) = −πC(v)h3
0χ

2kT 2
0V

2σ
δT 3 exp

(

−δTE

kT 2
0

)

. (19)

It follows from Eq. (19) that the equilibrium distri-
bution is a minimum at δTc = kT 2/3E where the prod-
uct δT 3 exp(−δTE/kT 2) is a maximum. On intuitive
grounds, that minimum can be interpreted as the result
of increase free energy at δT = δTc. This is tantamount
to a barrier in the system free energy at δT = δTc: the
probability of fluctuations first exponentially decreases as
δT grows below δT0 and then decreases when δT exceeds
δTc. Such a behavior is obviously similar to that known in
nucleation phenomena36,44,45 (where the barrier is a func-
tion of the nuclear radius) and small polaron collapse46

(where the barrier is a function of dilation). The instabil-
ity point corresponds to a relatively very small temper-
ature increase δTc = (kT0/3E)T0 ≪ T0 in systems with
high enough activation energies, say, δTc

<∼ 0.01T0 ∼ 3
centigrade.
Based on that analogy, the exponent of probability of

the thermal breakdown is given by S(δTc), that is, to the
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accuracy of numerical multipliers,

S(δTc) =
k2T 3

0C
(v)h3

0χ

E
3
V 2σ

. (20)

This approach will be made more consistent in Sec. VIII.
Note that the probability exponent optimization here

results not in a minimum, but rather a maximum; it may
turn into a saddle point in a parameter space of higher
dimensionality as will be explicitly shown next. Another
conclusion is that a positive feedback alone makes the
instability possible regardless of the degree of disorder in
the system.

V. DYNAMICAL MODELS AND HEAT

EXPLOSIONS

In dynamical models15,16 the filament is described by
the system of coupled differential equations for heat
transfer and electronic transport. For the case under con-
sideration and assuming uniform systems, they reduce to
a single equation

−C∂δT/∂t = χ∇2T + P0 exp(γδT ), γ = E/kT 2
0 (21)

where t is time and we have used the linearization (17).
While this equation has not been often considered with
semiconductors, it has a long history describing thermal
explosions in combustion. Comprehensive reviews of ear-
lier work is given in Refs. 37,38; a short description in-
cluded in a canonical text 39 (p. 199), and a review of
modern applications40 is available.
With combustion, the instability takes place when the

rate of heat generation is faster than the rate of heat re-
moval by the cooling system, thus leading to a continuous
rise in the reactor temperature with a consequent accel-
eration of the reactions, leading eventually to explosion.
A concept of hot spots as local regions quickly raised to
high temperatures was developed41 (the production of
such regions has been attributed to various causes) that
has some similarity with the present work. These spots
are characterized by the dimensionless local overheat

Θ0 =
δTE

kT 2
0

(22)

and the criticality parameter

δc =
h2P0E

χkT 2
0

(23)

where h is the linear size of the spot. We note that teh
criticality parameter δc appears with all known treat-
ments of thermal explosions.37,38,40

For the case of hot spots, δc was derived as a func-
tion of Θ0, such that the hot spot with a given overheat
Θ0 will grow when δc exceeds the value of that function.
The latter has different shapes41,42 for different geome-
tries (slab, cylinder, sphere – not limited to the electric

connectivity condition specific to the current analysis).
For example, the slab geometry is characterized by

lnΘ0 =
δc
4

+
1

2
ln

4π

δc
. (24)

It was found that the hot spot instability occurs starting
from large enough Θ0 ≈ 4 − 5; this translates into cor-
responding inequality on δc. We will see that our results
below (see Sec. VIIC) are consistent with these finding
of the heat explosion theory.

VI. OPTIMUM FLUCTUATION METHOD

The subtlety of the optimum fluctuation method is in
how it treats the disorder induced distribution of tem-
perature T (r) (or wave function for the standard case of
energy spectra in systems with random potential energy).
Namely, T (r) is considered a smooth ’optimum’ function
approximating the temperature distribution for the most
likely disorder configuration responsible for any desired
temperature fluctuation. It remains arbitrary (yet fixed)
in the course of the analysis and is determined later by
the condition of the maximum of the probability. Such
optimization benefits from the known property of varia-
tional techniques that any inaccuracy in the trial function
translates into a higher order inaccuracy in the corre-
sponding functional.
In what follows we take into account only exponen-

tially strong activation factor ignoring all possible pre-
exponentials found with temperature dependent conduc-
tivity in semiconductors. This simplification simultane-
ously determines the accuracy of our analysis where all
the pre-exponential factors are replaced with their aver-
ages. In particular, this analysis is limited to the case of
strong enough fluctuations beyond the linear approxima-
tion for P [δT (r)].

A. OFM equations

The heat transport equation (3) can be treated as an
extremum of the functional

F =

∫

d3r

[

ξ

2
(∇T )2 − P (r)

]

(25)

where the pre-exponential factor (E +E)/T 2 [generated
by variation of P in Eq. (1)] is approximated by its
average,

ξ ≡ χ〈(E + E)/kT 2〉. (26)

The latter functional can be presented as

F =

∫

d3r

[

ξ

2
(∇T )2 − 〈P 〉

]

− Z (27)
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where T depends on coordinates and random variable Z
is defined by

Z =

∫

d3rP (1)(r) (28)

We note that the approximation of averaged preex-
ponential in Eq. (25) is justified when the exponent in
P ∝ exp[(E +E)/kT ] is large enough, (E +E)/kT ≫ 1.
This takes place indeed for large activation energies as-
sumed here. In addition, we will see that E/kT ∼ S ≫ 1
in significant range where S is the exponent of probabil-
ity of filamentation exp(−S) [see the remark after Eq.
(60)].
OFM suggests that the dispersion of random variable

Z can be found as

D = 〈Z2〉 =
∫ ∫

d3rd3r′〈P (1)(r)P (1)(r′)〉 (29)

where the average in the integrand is evaluated under the
condition of a fixed (yet arbitrary) function T (r). The
integral in Eq. (28) contains a large number of random
contributions. Therefore, according to the central limit
theorem, Z is described by Gaussian statistics, i. e. its
probabilistic distribution

g(Z) ∝ exp[−S(Z)], S =
Z2

2D
. (30)

A comment is in order regarding the latter statement
of Gaussian statistics for random quantity Z. According
to the definition in Eq. (28), the kernel of Z is expo-
nential in Gaussian random variable E. That exponent
exp[−E(r)/kT ] is by no means a Gaussian variable. Yet,
the values of that variable at different points r are statis-
tically independent due to the property in Eq. (2). Also,
it has a finite average,36

〈exp(E/kT )〉 = exp[〈(E/kT )2〉/2] (31)

and a finite dispersion exp[2〈(E/kT )2〉]−exp[〈(E/kT )2〉].
These properties are sufficient to state that a sum
of large number of such non Gaussian random terms
exp(E/kT ) representing the functional Z will obey Gaus-
sian statistics.43

The maximum probability fluctuation corresponds a
stationary point of S(Z) under the additional condition
of Eq. (27). Finding such a conditional extremum is
tantamount to finding an unconditional extremum of a
functional

Φ =
Z2

2D
− λF (32)

where λ is the undetermined Lagrange multiplier. λ is
then found from the additional condition of a certain pre-
determined maximum temperature in the the optimum
fluctuation region.
The functional Φ must be optimized with respect to

the disorder configuration E(r) and the field T (r). Be-
cause the former appears only with the integral Z, the

optimization can be more conveniently conducted with
respect to Z and T (r). The corresponding equations are

Z

D
+ λ = 0 (33)

and

− Z2

2D2

δD

δT
+ λξ∇2T +

λP0

(

E

kT 2
− 〈E2〉

k2T 3

)

exp

( 〈E2〉
2k2T 2

)

= 0. (34)

Here we have again taken into account the property in
Eq. (31) for a Gaussian random variable E/kT . Using
Gaussian statistics in combination with the concept of
thermally activated current assumes the inequality

E

kT
≫ 〈E2〉

k2T 2
. (35)

Allowing the opposite inequality would lead to the phys-
ically unacceptable feature that the typical fluctuation
current exponentially decreases with temperature.
Substituting Eq. (33) into Eqs. (30) and (34) yields

the equations determining the optimum fluctuation tem-
perature field T (r) and its corresponding probability ex-
ponent,

−λD

2

δD

δT
+ ξ∇2T +

P0

(

E

kT 2
− 〈E2〉

k2T 3

)

exp

( 〈E2〉
2k2T 2

)

= 0, (36)

S =
Dλ2

2
. (37)

To evaluate δD/δT that is the variational derivative
of the integrand in Eq. (29) we use again the property
of averaging of a Gaussian random variable E(r). The
integrand in Eq. (29) becomes

P 2
0 exp

[ 〈E2〉
(kT )2

]
∫

d3r′
{

exp

[ 〈E(r)E(r′)〉
k2T (r)T (r′)

]

− 1

}

.

For the case of delta correlated disorder in Eq. (2), the
latter expression can be approximated as

P 2
0 sh0 exp

[

2B

(kT )2

]

. (38)

Substituting the result of differentiation [together with
Eq. (33)] into Eq. (34) leads to a closed form single equa-
tion for the optimum fluctuation T (r). That equation is
not very useful practically because of its rather complex
form . The problem becomes easier when presented in
the form of functional subject to direct optimization with
respect to T (r). That functional is given by

J =

∫

d3rF [T (r)] (39)
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where

F =
ξ

2
(∇T )2 − P0 exp

[

B

2(kT )2

]

− λP 2
0 v exp

[

2B

(kT )2

]

.(40)

Note that, to the accuracy of the factor of −λ, the third
term in the functional J [corresponding to the third term
in Eq. (40)] is twice the probability exponent S.

B. OFM saddle points

While optimization of functional J remains to be im-
plemented, the nature of its stationary points can be
determined already here. Assuming a trial function
T = T (r/a) and changing variable r → r/a, J can be
presented in the form

J = J1 + a2J2

where J1 and J2 do not depend on a. Treating a2 as
a variational parameter, leads to the conclusion that
d2J/d(a2)2 = 0 at the stationary points where J2 = 0.
Hence, they represent inflection points rather than min-
ima. In a higher dimension parameter space including
the temperature fluctuation amplitude, these points can
only be saddles.
The saddle point solutions require a different interpre-

tation of OFM results. From the physical standpoint,
some (but not all) of their related configurations should
appear with certainty, i. e. with S = 0, since they are
not steady state, and thus are to be passed inevitably
sooner or later. From that perspective, they are simi-
lar to the barriers of classical nucleation theory36,44,45 or
small radius acoustic polaron formation.46 For example,
the OFM saddle points in the surface J(a, T ) can phys-
ically describe critical radii a(T ) separating the regions
of spontaneous decay from that of spontaneous growth
of fluctuations. This similarity to the nucleation theory
will be made explicit in Sec. VII.
Note that the fact of probability exponent S vanishing

at the OFM saddle points, does not compromise OFM as
long as the corresponding fluctuations remain strongly
localized and do not overlap. The latter conditions do
not necessarily invoke S ≫ 1 (unlike the conclusion of
Sec. IV where all the fluctuations simultaneously coex-
ist), since the saddle point events are not steady state
taking place at different time instances.
Consider the configurational probability exponent S

in a certain proximity of a saddle point S = 0. We de-
note δT0(r) the temperature distribution in the optimum
fluctuation corresponding to S = 0. If the optimum fluc-
tuation δT (r) is different from δT0(r), one can extend

S =

∫

d3r

(

δ2S

2δT 2

)

0

[δT (r)− δTβ(r)]
2, (41)

where the integrand is positive. The equilibrium distri-
bution function of such fluctuations is given by

f(δT ) = f0 exp

{

− C(v)

2kT 2
0

∫

d3r[δT (r)]2 − S

}

(42)

Here f0 is the preexponential factor and we have taken
into account the expression for the probability of equi-
librium temperature fluctuation δT in volume δV men-
tioned in Sec. IVB.
It is seen from Eq. (42) that f is a minimum at some

δT different from δT0. Following the Fokker-Planck ap-
proach to nucleation (Zeldovich’ theory; see e. g. Chap-
ter XII in Ref. 44) and in agreement with the quali-
tative analysis in Sec. IVB, that minimum determines
the nucleation barrier and rate. This approach will be
implemented in Sec. VIII below upon determining the
parameters of OFM solutions δT (r).

VII. DIRECT VARIATIONAL PROCEDURE

A. Trial function and functional

Here we implement a direct variational procedure of
optimization of the functional J using the simplest trial
function

δT

T0
= θ

(

1− r

ãh

)(

1− z

h

)

when δT > 0 (43)

that is zero outside of the domain r < ãh, z < h. Here r
and z are the radial and transversal (across the film) co-
ordinates. θ and ã are the two variational parameters, de-
fined as being dimensionless to make the resulting equa-
tions more compact. In particular, θ is the amplitude
excess temperature in fluctuation measured in the units
of the average temperature T0, and ã has the meaning of
the fluctuation radius measured in the units of structure
thickness h.
Note that integration over the transversal (z) coordi-

nate extends over the entire structure thickness (2h) for
the first term in Eq. (40), while the second and third
terms must be integrated only over the active layer thick-
ness (2h0 ≪ h) where the power is generated. The con-
straint t = 0 at z = h correctly reflects the boundary
condition of a constant temperature at the interface (see
Fig. 1). Furthermore, we assume fluctuation to be rela-
tively small, allowing the linearization in Eq. (17). Also,
we note that it would be more natural to use a trial func-
tion quadratic in z, so dδT/dz = 0 at z = 0 reflecting
the system symmetry. We have checked however that
such a modification does not have any significant effect
on the functional and final results; for example, (ã2 + 2)
in Eq. (44) changes to [(2/3)ã2+1.6]. Such insensitivity
is well known in variational problems, leading e.g. to only
∼ 10% error in the energy of harmonic oscillator evalu-
ated with the trial wave function linear in coordinate (see
e.g. Ref. 50, p.95).
Substituting Eq. (43) and carrying out the integration

reduces J to the form

12α2J

ξT 2
0 πh

=
(

ã2 + 2
)

x2−βã2Φ(x)−λβ
′

βã2Φ

(

x
α

′

α

)

(44)
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where

x = αθ and Φ(x) =
exp(x)− x− 1

x2
. (45)

Here we have introduced the parameters defined as

α =
E

kT0
− B

(kT0)2
, α

′

= 2

[

α− B

(kT0)2

]

≈ 2α,

β =
24hh0P0α

2

ξT 2
0

exp

[

B

2(kT0)2

]

, β
′

= P0v exp

[

3B

2(kT0)2

]

.

The inequality in Eq. (35) limits them to α ≫ 1. In
integrating over z in Eq. (44), we have assumed a prac-
tically important case when the semiconductor layer is
very thin, αθh0/h ≪ 1, and calculations are simpler.
Because eventually we consider θ = x/α an in-

dependent given variable, the optimization conditions
∂J/∂ã2 = 0 and ∂J/∂x = 0 must be used to solve for ã2

and λ. In agreement with the conclusion of Sec. VI, the
stationary points found from the optimization are saddle
points. This is seen from the sign of the determinant

∂2J

(∂ã2)2
∂2J

(∂θ)2
−
[

∂2J

(∂ã2)∂θ

]2

< 0

identifying the stationary points as saddles.51

B. Regional approximations

Consider the results of optimization of the functional
J for three complimentary regions.

1. Weak fluctuations, x ≪ 1

Assuming x ≪ 1 reduces Φ(x) in Eq. (44) to Φ(x) ≈
1/2 + x/6 + x2/24, which significantly simplifies the op-
timization. This leads to the physically unacceptable so-
lution with ã2 = −32/(8 + β) < 0.

2. Moderate fluctuations, x ∼ 1

It is straightforward to verify that the interpolation
Φ(x) = 1/2 + x2/6 holds to the accuracy of several per-
cent for intermediate x ≤ 4. Using that interpolation,
the optimization of J results in the physically inconsis-
tent solution as well, ã2 = −[12 + 16(αθ)2]/(6 + 3β).

3. Strong fluctuations, x ≫ 1

Acceptable solutions with a2 > 0 exist in the case of
αθ ≫ 1 (and yet αθh0/h ≪ 1) where one can approxi-

m
et
as

ta
bl
e unstablestable

O

FIG. 3: Phase diagram for a thin film structure with transver-
sal current vs. power density (parameter β) and local tem-
perature increase (parameter αθ). Region to the left of the
line αθ = 4 represents the stable phase where local temper-
ature fluctuations decay making thermal breakdown impossi-
ble. The gray colored region below the line of solution of Eq.
(50), represents metastable state corresponding to the saddle
points, through which thermal breakdown nucleates locally.
The solid curve in that region is a solution of Eq. (51); it
corresponds to the most likely nucleation events, for which
S = 0 in Eq. (46). The region above the line of solution of
Eq. (50) represents the globally unstable state of the system.

mate Φ(x) = exp(x2)/x2. This yields

λ =
(αθ)4 − β exp(αθ)

ββ′ exp(2αθ)
,

ã2 =
4(αθ)3

2(αθ)4 − β exp(αθ)
, (46)

S = S0
θ[(αθ)4 − β exp(αθ)]2 exp(−2αθ)

2(αθ)4 − β exp(αθ)

(47)

where

S0 ≡ π(ξT 2
0 )

2 exp[−2B/(kT0)
2]

288P 2
0 vh0

(48)

and

θc1 < θ < θc2, (49)

with tc1 and tc2 being the two solutions of the transcen-
dental equation

2(αθ)4 − β exp(αθ) = 0. (50)

The condition

(αθ)4 − β exp(αθ) = 0 (51)

describes the points where S = 0 and thus nucleation
of hot spots takes place, according to the discussion in



9

Sec. VIB. These points all fall within the domain of
physically acceptable solutions in Eq. (49). Also, it fol-
lows from comparison of Eqs. (50) and (51) that the radii
of the corresponding stationary fluctuation states remain
finite as required by OFM.
Because (αθ)4 exp(−αθ) is a maximum at αθ = 4, Eq.

(51) has solutions when

β ≤ βc =

(

4

[e]

)4

≈ 4.7 (52)

where [e] stands for the base of natural logarithms. Close
to that threshold value, the dependence t(β) takes the
form

αθ ≈ αθ0 = 4 +
√

βc − β when βc − β ≪ 1. (53)

Another branch of αθ with the minus sign before the
square root is ignored as belonging to the moderate fluc-
tuation regime.
Alternatively, one gets from Eq. (51),

αθ ≈ αθ0 = ln(1/β) ≫ 1 when β ≪ βc. (54)

This behavior corresponding to the far right part of the
solid curve in Fig. 3 describes the low power regime.

C. Phase diagram

The complementary region to the left of the line αθ = 4
in Fig. 3 was characterized by the physically unaccept-
able solutions with ã2 < 0 (see Sec. VII B 1 and VII B2).
Here, we argue that that region represents the state
where the system remains stable with respect to ther-
mal fluctuations. A proof is achieved by including in the
above analysis the term −CδT/τ from Eq. (5) describ-
ing the temporal behavior of fluctuation. It is straight-
forward to see that the unacceptable negative ã2 turn
positive when τ > 0, i. e. the corresponding fluctuations
decay.
Alternatively, for the region above the curve β =

2(αθ)4 exp(−x), adding the term with negative relax-
ation time τ < 0 allows for positive ã2. Therefore, the
states in that region are globally unstable, i. e. they
evolve into highly conductive high temperature states
without any barrier. This is qualitatively similar to the
phase transition scenario of spinodal decomposition,52

which is not described in the OFM framework.
Note the triple point O at (β = 2βc, αθ = 4) in Fig.

3 where all three phases coexist. It is straightforward to
show that fluctuations δθ become increasingly strong in
its proximity where

S = −S0β
2α

(αθ0)5
(αθ0 − 4)2(δθ)2 (55)

and |δθ| = |θ − θ0| ≪ θ0. That property is similar
as well to that of the standard phase transition phase
equilibria.36

We are now in a position to compare some of our re-
sults with the findings of heat explosion theory (Sec. V)
based on the dynamical equation approach. The compar-
ison is obviously limited to the assumption of uniform
systems (B = 0 in all the above equations) underlying
the heat explosion theory. Also, we should take into ac-
count the above used technical approximation h0 ≪ h
not immediately consistent with a single scale theory of
heat explosion. In order to make the comparison possible
we shall set in the above equations h0 = h hoping that
they remain valid in the order of magnitude.
With the above in mind, we find the following corre-

spondences. Our parameter β becomes, to the accuracy
of numerical multipliers equal the criticality parameter
in Eq. (23),

β =
h2P0α

2

ξT 2
0

= δc,

where we have taken into account the definition of xi
in Eq. (26). Our prediction that β needs to be higher
than certain value in order to create instability is then
consistent with that of thermal explosion theory.

Next, the product αθ shown in Fig. 3 is related to the
parameter Θ0 in Eq. 22,

αθ = Θ0;

hence, our condition αθ > 4 becomes similar to the in-
equality on Θ0 mentioned in Sec. V.
The latter relations make the coordinates (αθ, β) in

Fig. 3 identical to (Θ0, δc) of the hot spot description41

in thermal explosion theory, although the shapes of the
corresponding phase diagrams do not coincide. Note in
this connection that the thermal explosion theory is not
concerned at all with filament-like instabilities (since the
requirement of electric current flow is of no significance
there), and that the shape of diagram in Fig. 3 is strongly
determined by its underlying limitations, such as e.g.
h0 ≪ h.

D. Approximation of classical nucleation theory

The approximation of classical nucleation theory im-
plies a narrow boundary region between the two phases
and its related concept of surface energy. It can be at-
tempted in the current framework by choosing a trial
function

δT

T0
= θ







1 when r < a,
(a+ d− r)/d when a < r < a+ d,
0 when r > a+ d

(56)

with d ≪ a. As a result, the gradient term in Eq. (40)
is determined by the contribution from a narrow layer of
width d analogous to nucleus interfacial energy in func-
tional J of Eq. (39). The procedure of optimization
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becomes even simpler than that based on the trial func-
tion of Eq. (43). Omitting the details, the result is that
the functional J has no stationary points when d ≪ a.
Hence, the approximation of interfacial energy does not
apply to the case under consideration; the function in Eq.
(43) remans more adequate.

VIII. STEADY STATE TRANSITION RATE

Consider the probability of thermal breakdown at a
given power density P0 described in terms of the parame-
ter β < βc. Using δT (r, z) from Eq. (43) and expressions
for ã and S from Eq. (46), the equilibrium distribution
function becomes

f(θ) = f0 exp

[

−πC(v)h2h0θ
2ã2(αθ)

3k
− S(αθ)

]

. (57)

S(αθ) is a maximum, S = 0, at the line shown in Fig.
3 and increases towards the boundary αθ = 4. However,
given realistic parameters (see Sec. IX) that increase is
not nearly as significant as the increase of the first term
in the exponent in Eq. (57). As a result, f(θ) has a sharp
minimum at αθ ≈ 4.
Following the known approach of nucleation theory44

(mentioned in Sec. VI B above) consider a stationary
Fokker-Planck equation

j = −B
∂f

∂θ
+Af = const (58)

for the ’kinetic’ temperature distribution function f(θ).
Here j is the flux in the temperature fluctuation (θ)
space, D is the diffusion coefficient in that space; A
is connected with D by a relationship which follows
from the fact that j = 0 for the equilibrium distribu-
tion f = f . Using the latter enables one to present
the flux as j = −Bf(∂/∂θ)(f/f), and, hence, f/f =
−s
∫

dθ/Bf+const. Finally, applying the boundary con-

ditions f → 0 when t → ∞ and f = f when θ = 0,
yields

1

j
=

∫

∞

0

dθ

Bf
. (59)

The integral is determined by a narrow proximity of the
minimum of f that gives the exponent of the transition
rate.
To roughly evaluate the preexponential factor (without

any knowledge of D) one can divide the entire area into
a set of cells of characteristic linear size of the optimum
fluctuation ãh. Then the preexponential must be of the
order of the rate of temperature variations κ/(ãh)2 in a
cell where κ is the thermal diffusivity. This yields the
steady state nucleation rate (cm−2s−1),

j ∼ 16κ

h4
exp

[

−πC(v)h2h0θ
2ã2(4)

3k
− S(4)

]

(60)

where ã2(4) ≡ ã2(αθ = 4) and S(4) ≡ S(αθ = 4) are
given in Eq. (46) The power density enters this result
through the parameter β in Eq. (48). Note that S(4) ≫
1, which inequality is consistent with the approximation
of averaged preexponential in Eq. (25).
This result becomes more explicit for the case of low

enough power when β exp(4) ≪ 4 in Eq. (46) and the
absolute value of the exponent in Eq. (60) is estimated
as

S ≈ 8
C(v)h2h0

α2k
+7 ·10−6 (ξT

2
0 )

2 exp[−2B/(kT0)
2]

αh2
0sP

2
0

. (61)

This is similar to the exponent in Eq. (20) emphasizing
the important role of specific heat and rapidly decreasing
with the power density. However it has a distinct feature
of a lower boundary beyond which it cannot be further
reduced even for very high power densities. It should be
remembered however that high enough power densities
are conducive to a different type of instability similar to
the spinodal decomposition transformations as reflected
in Fig. 3.

IX. DISCUSSION AND CONCLUSIONS

A. Numerical estimates

Assuming the typical semiconductor values,53 one gets
χ ∼ 1 W/cm-grad and E/T ∼ 10 − 100 for activation
energies E ∼ 1 eV and T ∼ 100 − 500 oK. This yields
ξ ∼ 1− 100 W/cm-grad2, α ∼ 10− 100.
For geometrical parameters, it is natural to assume

h0 ∼ 1 µm, s ∼ 1 µm2, and h ∼ 10−4−10−1 cm. The cur-
rent density in the range from 1 µA/cm2 to 1 A/cm2 and
electric fields E ∼ 103−105 V/cm are used in many device
operations. The corresponding power densities are in the
range from 1 mW/cm3 to 105 W/cm3. The fluctuation
strengths exponent exp[−2B/(kT0)

2] can be evaluated as
∼ 0.001− 1 based on the observations of transversal cur-
rents through nonuniform Schottky barriers and thin film
photovoltaics.54 Finally, we use the thermodynamic pa-
rameters C ∼ 0.1 − 1 J/sm3-oC and κ ∼ 0.1 − 1 cm2/s.
With the above parameters, the preexponential factor in
Eq. (60) is estimated as ∼ 105 − 1013 cm−2s−1. Given
that preexponential, the exponent in Eqs. (60) and (61)
can be then within the range of experimentally impor-
tant nucleation rates only for micron or sub-micron thin
devices. Assuming greater thickness, say, h >∼ 1 mm
makes the thermodynamic term proportional to C large
enough to practically rule out the possibility of thermal
breakdown mechanism under consideration.
However, semiconductor devices of modern electronics

are often 10-100 nm thick (unless intended thermal sinks
are used), and for them the thermodynamic fluctuation
term in the exponent is not too large. For such structures,
the second term in the nucleation rate exponents can
be not terminally large for powers in the range P0

>∼
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FIG. 4: Probability g(δT ) of hot spots vs. their excess tem-
perature δT . The Gaussian tail at low δT is described in Sec.
IVB. The critical overheat δTc corresponds to the condition
αΘ = 4 illustrated in Fig. 3. The high temperature peak
at δTH is determined by the processes of saturation of acti-
vated conduction and inter-spot interactions as explained in
Sec. IXB; its width is due to disorder effects.

100 W/cm3. Overall, this makes the above considered
mechanism realistic for structures in submicron region.
Finally, the minimum power density corresponding to

the critical value of β in Eq. (52), above which the nucle-
ation mechanism turns into that of global instability, can
be estimated as P0

>∼ 1011 W/cm3. This range of power
density is above practically all types of modern semicon-
ductor devices, except maybe some cases of power elec-
tronics.

B. Discussion

The above consideration is limited to a basic instability
triggered by Joule heat in combination with activated
conduction. The instability is predicted to start under
insignificant local overheats of several degrees. However,
this analysis does not address the final parameters to
which the instability can grow.
The ’stabilized’ temperature excess δTH in the devel-

oped filament (beyond the present theory framework) can
be rather substantial. As pointed in Ref. 1, it can be-
long in the temperature range where the activated con-
duction saturates. That high temperature limit should
not be mixed with the above predicted transition tem-
perature excess, δTc ≈ 4kT 2/E ≪ δTH (corresponding
to αΘ ≈ 4), starting from which the instability evolves.
This is illustrated in Fig. 4.
Furthermore, it is conceivable that the steady state

high temperature local overheat δTH cannot be deter-
mined by any extension of the present theory limited to
noninteracting hot spots, even if activated conduction is
allowed to saturate. The concentration of steady state
hot spots at δTH can significantly depend on their inter-
action. Indeed, the present theory predicts (Sec. VIII)
that even at arbitrarily however low rates, the above de-

scribed instabilities will keep developing (maybe beyond
the practically significant time intervals) to take over the
entire structure area. This contradictory prediction is not
unique of the system under consideration. It is known in
the theory of phase transition where the nucleation stage
is limited by various inter-nucleus interactions, such as
competition for material, elastic stresses, etc. Similarly
limiting interactions here will include competition of hot
spots for the electric current, thermal fields by other fil-
aments, etc. This analogy leads to the prediction of the
growth and ripening stages of thermal breakdown kinet-
ics, similar to that of the standard phase transitions;44

a theory of such later stages of hot spot transformation
remains to be developed.

While not related to structural transformations, the
predicted local temperature increase can accelerate such
transformations leading to permanent failures in the form
of conducting pathways. Therefore, this mechanism can
serve as a precursor to permanent structural failures.
From that point of view, the above results on low temper-
ature thermal breakdowns δTc ≪ T point at high sensi-
tivity of the fatal failure probability to the activation en-
ergy of conductivity and thermodynamic variables, par-
ticularly, specific heat, thickness, and thermal insulation.

The role of inactive (thermally insulating) layers ex-
ponentially reducing the thermal breakdown rates is due
to the filament diameter increase with its length. As a
result the thermal gradient in radial direction decreases
suppressing the instability rate. This is consistent with
the known practical solutions using substantial heat sinks
attached to with submicron electronic devices in order to
minimize their failure rates.

A more theoretical comment is in order regarding the
relevance of the above OFM modification aimed at ‘non-
traditional’ saddle type of stationary points. The un-
derlying motivation was to relate localized temperature
fluctuations with other known localized states in disor-
dered systems. However the same basic equations as de-
rived in Sec. VI could be obtained in the framework
of instanton approach suitable for theoretical descrip-
tion of nucleation.55–57 That approach would start with
the time dependent heat transfer equation leading to
the variational problem for the exponent of probability
exp[−R(T, t)] where t is time and R is related to the func-

tional in Eq. (25), R ∝
∫ t

F [T (t)]dt. F remains a ran-
dom functional to be additionally optimized to maximize
the probability. That reduces the conditional variational
problem for R to that of unconditional extremum in Eq.
(32) yielding final expressions of OFM in Eq. (36).

The above theory has the following limitations. (1)
The assumption of fixed voltage V across the film im-
plying that the current I through the filament must be
small enough, IRsh ≪ V where Rsh is the sheet resis-
tance of the conductive electrodes. (2) Simplification of
uniform thermal conductivity may have noticeable quan-
titative ramifications, yet can hardly change the qualita-
tive predictions. (3) The approximation of δ-correlated
disorder, according to which the transversal conductiv-
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ity must fluctuate across the distances smaller than the
filament radius. The opposite regime of strongly cor-
related disorder can be readily described by the above
results reduced to the case of homogeneous structures, in
which then consider P0 or σ as a random quantity varying
over distances greater than the filament radius. (4) The
optimum fluctuation method per se with accuracy lim-
ited to the probability exponent. (5) Inaccuracy of the
direct variational procedure with a simplistic trial func-
tion remains unknown. Based on many similar examples,
one can expect the results to be semi-quantitatively cor-
rect. (6) Limitation of small temperature fluctuations
αθh0/h ≪ 1, remains self-consistent as long as it is con-
sistent with the final results for θ as it takes place in the
above.

C. Conclusions

The following was shown.
(i) Thin film semiconductor structures with activated
transversal conduction are unstable with respect to re-
versible thermal breakdowns in the form of hot spots and
their related current filaments.
(ii) The instabilities evolve in a manner of phase transi-
tions by either nucleation (at not too high power densi-
ties) or absolute instability similar to spinodal decompo-
sition (above certain critical power density).
(iii) The optimum fluctuation method can be modified
to describe the saddle points, through which such tran-
sitions occur.
(iv) The instabilities start with finite local temperature
fluctuations that are smaller than the average tempera-
ture T0 by the factor of kT0/E with E being the average
activation energy of electric conduction. The initial fluc-
tuation radii are by the same factor smaller than the
structure thickness.
(v) The stable, metastable, and unstable phases of a ther-
mally uniform system form a diagram (in variables power
density – temperature) similar to the standard phase dia-
grams of phase equilibria, in particular, with fluctuations
diverging towards the triple point.
(vi) The steady state nucleation rate of hot spots ex-
ponentially depends on the material parameters, system
geometry, and disorder strength.
The author hopes that this consideration can form a

theoretical basis to analyze system failures in various
structures of modern thin film devices; specific examples
will be presented elsewhere.
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