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We show that the topologically nontrivial bands of Chern insulators are adiabatic cousins of the
Landau bands of Hofstadter lattices. We demonstrate adiabatic connection also between several
familiar fractional quantum Hall states on Hofstadter lattices and the fractional Chern insulator
states in partially filled Chern bands, which implies that they are in fact different manifestations
of the same phase. This adiabatic path provides a way of generating many more fractional Chern
insulator states, and helps clarify that non-uniformity in the distribution of the Berry curvature is
responsible for weakening or altogether destroying fractional topological states.

I. INTRODUCTION

The phenomena of integer and fractional quantum Hall
(FQH) effects have motivated remarkable developments.
Of particular significance in this context is the topolog-
ical interpretation of these effects. Thouless, Kohmoto,
Nightingale and den Nijs1 considered electrons in a peri-
odic lattice exposed to a magnetic field, and showed that
the Hall conductance of a filled band is related to the first
Chern number C. Specifically, the Bloch wave function
for a magnetic unit cell has the form

|Ψn(k)〉 = eik·r|un(k)〉 (1)

where k is the wave vector in the first Brillouin zone, and
n is the band index. One defines the non-Abelian Berry
connection as

Amn
µ (k) = i〈um(k)|∂µ|un(k)〉 (2)

where ∂µ is the shorthand notation for ∂/∂kµ. The Berry
curvature F is then defined as

Fµν(k) = ∂µAν − ∂νAµ + i [Aµ,Aν ] (3)

Thouless et al. showed that the Hall conductance is
given, in units of e2/h, by the Berry curvature integrated
over the Brillouin zone:

σH =
1

4π

∫

BZ

d2kǫµνTr [Fµν(k)] = C (4)

where the trace is over the occupied bands. The Chern
number is a topological index provided the sum is over
filled bands and the Fermi level lies in a gap. If there is
only one occupied band, as we will assume below in this
paper, the above expressions simplify to

Aµ(k) = i〈u(k)|∂µ|u(k)〉 (5)

F(k) = ∂1A2 − ∂2A1 (6)

C =
1

2π

∫

BZ

d2kF(k) (7)

Ref. [1] thus gave a topological interpretation of the quan-
tized Hall conductance, and also clarified that the essen-
tial property of a Landau level that distinguishes it from

an ordinary band is its non-zero Chern number. Subse-
quently, Haldane2 showed that a uniform magnetic field is
not required to produce bands with non-zero Chern num-
bers. For this purpose he constructed an explicit model
of an electron hopping on the honeycomb (graphene) lat-
tice, with complex hopping matrix elements; this model
has no net magnetic field (although it has staggered
magnetic field) but produces bands with non-zero Chern
numbers in certain regions of the parameter space. This
system has integrally quantized Hall conductance in the
absence of a uniform magnetic field. Systems with bands
of non-trivial topology (non-zero Chern number) in the
absence of a uniformmagnetic field are now called “Chern
insulators,” to distinguish them from the Landau levels
that occur in the presence of a uniform magnetic field.
A number of other models have been proposed for Chern
insulators, some of which have nearly flat bands3–5.

The next natural question is whether Chern bands
can also support FQH-like states, i.e. incompressible
states in a partially filled Chern band with a fraction-
ally quantized Hall conductance. Such states will obvi-
ously require interactions, and have been dubbed frac-
tional Chern insulator (FCI) states. Exact numerical di-
agonalizations have demonstrated FCI states at filling
factors ν = 1/36–8, 1/29, 2/5 and 3/710 for fermions, and
1/211, 112 and 2/310 for bosons. These states require
specific forms of interaction, and sometimes fine tuning
of parameters. Trial wave functions for FCIs have been
proposed13–15. Flat band models with C > 1 have also
been constructed and produce strongly-interacting topo-
logical states16–20.

While the FCI states appear similar to the FQH states
found in the lowest Landau level, no direct connection be-
tween them has yet been established. It remains unclear
why some fractions occur while others do not, and what is
the role of lattice symmetry and the type and range of the
interaction in establishing various FCI states. It also re-
mains unclear to what extent the extensive physics of the
FQH effect and composite fermions is possible in Chern
insulators. Progress in this direction has been made by
Murthy and Shankar21, who exploit the modified algebra
of the density operator projected into the lowest Chern
band to motivate composite fermion physics.
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We address below this issue by demonstrating an adi-
abatic continuity between the ordinary quantum Hall
states in a Landau level and the corresponding states
in a Chern insulator. Because the latter are defined on
a lattice, we work with a lattice model of electrons in
a uniform magnetic field. This problem of Bloch elec-
trons in a magnetic field was studied in a number of pa-
pers, including those by Peierls22, Harper23, Wannier24,
Azbel25, and Hofstadter26, with the last article present-
ing the band structure in a pictorially appealing form
that is now known as the Hofstadter butterfly. For ap-
propriately chosen flux per plaquette, the low-lying Bloch
bands of this system are essentially Landau levels; they
approximate Landau levels of the continuum very accu-
rately for a sufficiently fine lattice. We call them “Hof-
stadter bands”, and the filled band states “Hofstadter
insulators”. For a given Hofstadter lattice, not all FQH
states of the continuum will occur, and which ones sur-
vive is an interesting problem in its own right, but will
not be addressed in this article (some work along these
lines can be found in the literature27,28). However, we
can certainly construct a Hofstadter lattice that approx-
imates the continuum arbitrarily closely, by taking the
flux per plaquette to be sufficiently small, and thus pro-
duces all of the quantum Hall states seen in continuum.
(Strictly speaking, the electrons in GaAs quantum wells
are not in continuum but feel the periodic potential of
the lattice.) We will study a possible adiabatic connec-
tion between the quantum Hall states on a Hofstadter
lattice and the corresponding states in a Chern insula-
tor.

An intuitive understanding for why an adiabatic con-
nection between a Chern and a Hofstadter lattice may
exist can be gained by noting that a Hofstadter insula-
tor in a uniform magnetic field can be transformed into
a Chern insulator in zero net magnetic field by a sim-
ple gauge transformation. For a Hofstadter lattice, the
total magnetic field passing through each magnetic unit
cell is 2qπ (q is an integer). Here and below, one flux
quantum is defined as φ0 = 2π~c/e = 2π in units with
~ = c = e = 1. Let us now insert a −2qπ flux at an arbi-
trary point in each magnetic unit cell, to produce a new
problem, called Hofstadter’ (“Hofstadter prime”). The
insertion of the −2qπ flux in a tight-binding model, how-
ever, is simply a gauge choice that has no physical con-
sequence, and hence leaves all properties of the system
unchanged: the energy bands of the Hofstadter’ lattice
are identical to those of the original Hofstadter lattice,
and the eigenfunctions of the two are related by a gauge
transformation. In particular, the bands of the new lat-
tice continue to have non-zero Chern numbers. At the
same time, if we treat the (enlarged) magnetic unit cell
as our unit cell, then the total magnetic field through it
is zero. The Hofstadter’ lattice is thus a Chern insulator.
(In fact, this Chern insulator has flat bands and uniform
Berry curvature.) Every Hofstadter insulator thus has a
corresponding Chern insulator with identical properties.
This implies that all of the physics of FQH effect and

composite fermions is, in principle, possible for Chern
insulators, provided that we allow Chern insulators with
sufficiently complex unit cell.
For simple Chern lattices, not all FQH states occur. In

what follows, we consider certain previously introduced
Chern insulator models, construct for each a Hofstadter’
lattice whose magnetic unit cell coincides with the unit
cells of the Chern insulator, and show, using exact nu-
merical methods, that the familiar FQH states at filling
factors 1/3 and 1/2 of the Hofstadter’ model adiabat-
ically evolve into the corresponding FCI states in the
presence of appropriate repulsive interactions. (Because
Hofstadter’ lattice is trivially related to the Hofstadter
lattice, we will dispense with the prime below.) We show
that not only does the ground state evolve in this manner,
so do also the quasiholes and the entanglement spectra,
lending further credence to such adiabatic relationship.
This demonstrates that the origin of these states is gov-
erned by the same underlying physics. Furthermore, this
adiabatic connection also enables us to investigate the
role of the Berry curvature distribution in the momentum
space. We find that non-uniformity in the distribution of
the Berry curvature weakens, and can even destroy, FQH
states. Our results show that such non-uniformities effec-
tively translate into an enhancement of the residual inter-
action between composite fermions, and as a result can
eliminate states of the sequence p/(2p±1) with relatively
small gaps (all these fractions would occur for noninter-
acting composite fermions). Nonetheless, several FQH
states are surprisingly robust to non-uniformities of the
Berry curvature.
The paper is organized as follows. We present two

single-particle tight-binding models with topologically
non-trivial lowest bands in Sec. II. The FQH states
on these lattice models, with appropriately chosen in-
teractions, are studied in Sec. III. Sec. IV con-
cludes with a discussion of the implications of our re-
sults. Since the posting of the first version of this work
as arXiv:1207.4439v1, some new results42,44,45 have ap-
peared, which are also discussed in Sec. IV.

II. LATTICE MODELS AND INTEGER

QUANTUM HALL EFFECT

We consider two popular models for Chern insulators:
the checkerboard and the kagome lattices. In either case,
our goal is to write a more general model that extrapo-
lates between a Hofstadter lattice and a Chern insulator
lattice. For this purpose we add many more lattice cite to
the Chern insulator lattice to create a Hofstadter lattice,
and arrange the flux per plaquette so that the Hofstadter
lattice has the same magnetic unit cell as the Chern insu-
lator being considered, and also has a net zero magnetic
field passing through the magnetic unit cell. With this
arrangement both the lattices have the same symmetries
(although they have different numbers of bands, because
they have different numbers of lattice sites in a unit cell)
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FIG. 1. Lattice model and band structure for the square-
checkerboard lattice model. Panel (a) shows the lattice struc-
ture. The black dots shows the lattice sites in a Hofstadter
lattice with flux 2π/16 through each plaquette. The dashed
black square marks a magnetic unit cell containing 16 sites.
The sites marked by the dashed rectangles form a checker-
board lattice where the two different orientations of the rect-
angles represent two sublattices. The Hamiltonian Hsq−cb(R)
in Eq. (9) interpolates between the Hofstadter and Chern in-
sulator limits as R is varied from 0 to 1. Panels (b-d) shows
the band structures at three values of R (0, 0.5 and 1, respec-
tively) along the contour Γ → M → X → Γ in the momen-
tum space. In (b), flat Landau levels carry Chern number
C = 1 while the two non-flat bands at the middle have a
total C = −14. In (d), the top and bottom bands of the
checkerboard model have nontrivial Chern numbers C = ∓1.

and it is sensible to envision an adiabatic evolution from
one to the other. We first study the single-particle band
structures to demonstrate an adiabatic connection be-
tween a Landau level and a Chern band for the two lattice
models mentioned above.

A. Square-checkerboard Hybrid Lattice

The checkerboard lattice model was considered in
Refs. 4 and 6. It supports a topologically nontrivial
band in the presence of nearest-neighbor, next-nearest-
neighbor and next-next-nearest-neighbor hopping terms,
with the nearest neighbor hopping carrying a nonzero
phase. By appropriate choice of parameters, the lowest
band can be made very nearly flat, which is an important
consideration for the discussion of the FCI states, which
require that the interaction energy dominate the kinetic
energy. The checkerboard lattice is shown in Fig. 1(a)
by the encircled dots, with its two sublattices marked by
blue and red rectangles. The checkerboard Hamiltonian

0 1/16 3/40 3/80 0

0 1/16 3/40 3/80

1/16 7/40 19/80 1/5 1/16

1/16 7/40 19/80 1/5

3/40 19/80 2/5 37/80 3/40

3/40 19/80 2/5 37/80

3/80 1/5 37/80 39/40 3/80

3/80 1/5 37/80 39/40

0 1/16 3/40 3/80

FIG. 2. Phases of the square lattice Hofstadter model. The
numbers and arrows indicate the hopping phases along the
bonds in units of π, and the star marks the plaquette where
a −2π flux is inserted.

Hcb is given by

Hcb = −t
∑

〈ij〉

eiφijc†icj − t1
∑

〈〈ij〉〉

sgn c†i cj

− t2
∑

〈〈〈ij〉〉〉

c†icj + h.c. (8)

where φij is the phase acquired during hopping between
nearest neighbors 〈ij〉, the sgn is positive (negative) for
next-nearest-neighbor hoppings between sites encircled
by blue (red) rectangles, and 〈〈〈ij〉〉〉 denotes next-next-
nearest neighbors.
As shown in Fig. 1(a), we embed the checkerboard lat-

tice inside a square Hofstadter lattice (all black dots)
with only nearest neighbor hopping. It is assumed that
each square of this lattice has a magnetic flux 2π/n pass-
ing through it (n = 16 for Fig. 1(a)), with the exception
of one plaquette (indicated with a star in Fig. 2) which
has an additional 2π flux passing through it in the oppo-
site direction (so the net flux is −(15/16)2π through this
plaquette), so as to make the total flux through the mag-
netic unit cell equal to zero. (In other words, the lattice
is what we had called Hofstadter’.) The hopping matrix
elements are complex, with our choice of phases shown in
Fig. 2. The phases are chosen to be obey periodic bound-
ary conditions, but that does not fix them uniquely; we
further impose the convention that the phase coming up
to a site is the same as the phase going out of it toward
right, as shown in the figure. It is straightforward to ver-
ify that the phases correspond to a flux of 2π/16 through
each square, except for the starred one which has an ad-
ditional flux of −2π through it. The Hamiltonian of this
Hofstadter model on square lattice is denoted by Hsq.
We note that we could have taken a finer lattice with a
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FIG. 3. Square-checkerboard hybrid lattice (a) The single-
particle band gap (top curve) and bandwidth (lower curve) as
a function of R. The flatness ratio (band gap over bandwidth)
is shown as the inset. (b) The Berry curvature at different
k-points with R = 0.0, 0.5 and 1.0 (dotted, dashed and solid
lines respectively).

larger number (n) of squares per unit cell; Landau levels
are recovered in the weak lattice limit of n≫ 1. For our
purposes the current choice with 16 squares in a mag-
netic unit cell will suffice, as seen below in the explicit
numerical calculations. It is also noteworthy that if we
only had the Hofstadter lattice (no checkerboard lattice),
then we could have chosen a linear magnetic unit cell with
16 sites along a single line; this magnetic unit cell arises
naturally in the Landau gauge, and was the choice made
by Hofstadter. However, our objective of matching the
Hofstadter problem to the checkerboard problem forces
us to choose identical unit cells for both of them. We are
not able to explicitly write a real space gauge potential
that would produce the desired phases for the hopping
matrix elements, but an appropriate gauge choice is made
directly at the level of the phases of the hopping matrix
elements.
Having defined the checkerboard and the Hofstadter

Hamiltonians separately, we now define an interpolating
Hamiltonian

Hsq−cb(R) = (1 −R)Hsq +RHcb, (9)

which evolves continuously from Hofstadter to checker-
board as R increases from 0 to 1. This interpola-
tion scheme selects one specific path in the parameter
space connecting the Hofstadter and the checkerboard
Hamiltonians. We shall see that this path will suffice

for demonstrating adiabatic continuity for many situa-
tions. By Fourier transformation, the above Hamilto-
nian can be converted into its momentum-space form

Hsq−cb =
∑

k

∑

αβ c
†
kαH

αβ
sq−cb(k)ckβ and the non-zero

components of Hαβ
sq−cb are given in the Appendix, where

α, β = 0, 1, · · · , 15. Diagonalization of this 16 × 16
Hamiltonian produces the eigenstates and eigenvalues for
the 16 bands as a function of the two dimensional wave
vector k over the entire Brillouin zone.
We have considered a large number of values of R to

reach our conclusions noted below, but, for brevity, we
will show results only for R = 0, R = 1 and an inter-
mediate value R = 0.5. Fig. 1 (b), (c) and (d) show the
band structure at these R values. Explicit calculation
shows that the lowest band always remains gapped as
a function of R, which implies that the lowest “Landau
level” of the Hofstadter model adiabatically evolves into
the lowest band of the Chern insulator, carrying along
its Chern number. In Fig. 3 (a), we show the band gap
and the band width of as functions of R. The Chern
insulator band can thus be considered a renormalized
Landau level. The integer quantum Hall states in the
Chern insulator thus are adiabatically connected to their
counterparts in Landau level systems. Even though the
flatness ratio (band gap divided by band width) remains
large, the Berry curvature changes drastically as shown
in Fig. 3 (b).
One may note that as R approaches 1, 14 of the 16

bands of the Hofstadter lattice become degenerate at zero
energy, reflecting the fact that 14 of the lattice sites in
each unit cell essentially drop out of the problem, be-
ing completely disconnected from other sites. The band
structure at R = 1 thus contains two dispersive bands
and 14 degenerate bands at E = 0. This drastic rear-
rangement of higher bands underscores the non-triviality
of the adiabatic evolution of the lowest band.

B. Triangular-kagome Hybrid Lattice

The kagome lattice was introduced in Ref. [3], and has
been found to be a excellent platform of FCI states8,10.
In Fig. 4, the kagome lattice is indicated with the encir-
cled dots, with its three sublattices marked by blue, red
and green circles. In the original proposal3, with com-
plex hopping terms, nearly flat lowest band with Chern
number 1 can be obtained by tuning parameters. The
Hamiltonian of this model is

Hka = −t1
∑

〈ij〉

c†icj − t2
∑

〈〈ij〉〉

c†icj + h.c. (10)

where 〈ij〉 denotes nearest neighbors and 〈〈ij〉〉 next-
nearest neighbors and t1 and t2 are complex hopping
coefficients. We also embed the kagome lattice inside a
Hofstadter lattice, which is chosen to be a triangular lat-
tice with sixteen lattice sites in each magnetic unit cell,
as shown in Fig. 4. There is π/16 magnetic flux passing



5

(a)

G K M G

-6

-3

0

3

(b)

G K M G

-6

-3

0

3

(c)

G K M G

-6

-3

0

3

(d)

FIG. 4. Lattice model and band structure for the triangnular-
kagome lattice model. Panel (a) shows the lattice structure.
The black dots show the lattice sites in a triangular Hofstadter
lattice with flux π/16 in each triangle. The dashed lines mark
a magnetic unit cell, which contains 16 sites. The sites marked
by the dashed circles form a kagome lattice where the three
different colors represent the three sublattices. Panels (b-d)
shows the band structures at different values of R (0.0, 0.5
and 1 correspondingly) along the contour Γ → K → M → Γ
in the momentum space.

0 0 0 0

0 0 0 0

0 1/8 1/4 3/8 0
1/16 3/16 5/16 -1/16

0 0 0 1/2

0 0 0 1

0 0 0 3/2

0 0

0 0

0 0

1/8 1/4 3/8
1/16 3/16 5/16 -9/16

1/8 1/4 3/8
1/16 3/16 5/16 -17/16

1/8 1/4 3/8
1/16 3/16 5/16 -25/16

FIG. 5. Phases of the triangular lattice Hofstadter model.
With the exception of the outermost hopping bonds, the
phase factor associated with a bond, in unit of π, is indi-
cated by the arrow on it and the number either below or to
the left of it, and the star marks the triangle where a −2π
flux is inserted.

through each triangle as shown in Fig. 5 except the one
indicated with a star, where an additional 2π flux passes
through it in the opposite direction. As in the square-
checkerboard lattice case, we define the gauge through an
explicit choice of the phases as shown in Fig. 5. The tri-
angular Hofstadter lattice HamiltonianHtri with nearest-
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FIG. 6. Triangular-kagome hybrid lattice (a) The single-
particle band gap (top curve) and bandwidth (lower curve)
as a function of R. The flatness ratio (band gap over band-
width) is shown in the inset. (b) The Berry curvature at
different k-points with R = 0.0, 0.5 and 1.0 (dotted, dashed
and solid lines respectively).

neighbor hopping carrying these phases give almost flat
lowest band and nearly constant Berry curvature. An
interpolating Hamiltonian between the triangular and
kagome limits is defined as

Htri−ka(R) = (1−R)Htri +RHka (11)

The momentum-space Hamiltonian is given by Htri−ka =
∑

k

∑

αβ c
†
kαH

αβ
tri−ka(k)ckβ and the non-zero components

of Hαβ
tri−ka are given explicitly in the Appendix, where

α, β = 0, 1, · · · , 15. The gap between the lowest two
bands does not close as we change R from 0.0 to 1.0
and Fig. 4 (b), (c) and (d) show the band structures at
R = 0.0, 0.5 and 1.0 as examples. Fig. 6 shows the band
gap and band width as functions of R as well as the Berry
curvature at R = 0.0, 0.5 and 1.0. We see that, simi-
larly to the square-checkerboard lattice model, the Berry
curvature changes significantly even though the energy
dispersion remains quite flat at all R.

III. FRACTIONAL QUANTUM HALL EFFECT

Having shown that the C = 1 bands of the Chern insu-
lators are adiabatically connected to the Landau bands
of Hofstadter lattices, we proceed to FQH states in these
systems. As mentioned above, a Hofstadter lattice with



6

0 5 10 15 20

0.1

0.15

0.2

0.25

0.3

R=0.0
E

 

 

0 5 10 15 20
0.1

0.15

0.2

0.25

0.3

R=0.5

E

0 5 10 15 20

0.25

0.35

0.45

R=1.0

K
x
N

y
+K

y

E

0 5 10 15 20

0.02

0.07

0.12

R=0.0

E

0 5 10 15 20
0.05

0.1

0.15
R=1.0

K
x
N

y
+K

y

E

0 5 10 15 20
0.02

0.07

0.12

E

R=0.5
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bottom). There are 3 quasi-degenerate states at (Kx,Ky) =
(0, 0), (0, 2) and (0, 4).
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FIG. 9. Energy spectra at filling 2/5 (N = 8, Nx = 4, Ny =
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kagome (right panels) models at R = 0.0, 0.5 and 1.0. There
are 5 quasi-degenerate states in each panel at (Kx,Ky) =
(0, 0), (0, 1), (0, 2), (0, 3) and (0, 4).

a sufficiently small flux per plaquette simulates the con-
tinuum, and thus displays all the standard FQH states.
Given that a Hofstadter insulator can trivially be con-
verted into a Chern insulator, it follows, as a matter of
principle, that all the FQH physics is also possible for
Chern insulators, provided one chooses a sufficiently de-
tailed unit cell. In this section, we will ask if the FCI
states in the checkerboard and the kagome lattices can
be understood as adiabatic evolutions of the correspond-
ing states in Hofstadter lattices. Our exact diagonaliza-
tion results below show that to be the case for the 1/3
Laughlin state29 and the 1/2 Moore-Read state30 in both
models. However, the evidence for the 2/5 Jain state is
inconclusive. We stress that the FCI states at all these
fractions had been established previously; our aim here is
to show that they are adiabatic evolutions of the familiar
FQH states at these fractions, thus establishing that the
two are essentially the same.

A. Model

Our calculations are performed on lattices with peri-
odic boundary conditions in the x- and y- directions with
lengths Lx and Ly. The number of particles and the num-
ber of magnetic unit cells in the x- and y-directions are
denoted by N , Nx and Ny. The adiabatic continuity be-
tween the lowest Landau level of the Hofstadter band and
the Chern band clarifies that the filling factor is to be de-
fined as ν = N/NxNy. Following Ref. [7], we project out
all high energy bands to reduce the size of the Hilbert
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FIG. 10. Energy spectra at filling 2/5 (N = 10, Nx = 5, Ny =
5) for the square-checkerboard (left panels) and triangular-
kagome (right panels) models at R = 0.0, 0.5, 0.6, 0.8 and 1.0
(top to bottom). The 5 quasi-degenerate states all appear in
the (Kx,Ky) = (0, 0) sector and interaction causes splittings.

space, which is analogous to the lowest Landau level ap-
proximation routinely made in studies of the FQH states.
We assume that the electrons are fully spin-polarized. We
also set the width of the lowest band to zero to eliminate
the effect of the band curvature, which is a good approxi-
mation when the interaction energy is large compared to
the bandwidth of the lowest band but small compared to
the gap separating it to the first excited band.
A short range interaction is known to produce FQH

states at n/(2n ± 1) in a continuum Landau level, and,
in particular, the 1/3 Laughlin state is the exact ground
state of a short range interaction potential. For the FCI
states at 1/3 and 2/5, we use a two body interaction
Hamiltonian

H2 =
∑

[i,j]

Uij n̂in̂j (12)
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FIG. 11. Evolution of the 1/3 ground states for square-
checkerboard (left panels) and triangular-kagome (right pan-
els) models shown in Fig. 7 upon flux insertion in the y-
direction. The quasi-degenerate ground states are separated
from the excited state at each point. Note that at R = 0.0,
the states are perfectly degenerate at each flux value and there
is no obvious spectral flow.
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FIG. 12. Evolution of the 1/2 ground states for square-
checkerboard (left panels) and triangular-kagome (right pan-
els) models shown in Fig. 8 upon flux insertion in the x-
direction. The quasi-degenerate ground states are separated
from the excited state at each point. Note that at R = 0.0,
the states are perfectly degenerate at each flux value and there
is no obvious spectral flow.
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FIG. 13. Quasihole spectra at 1/3 filling (N = 7, Nx =
4, Ny = 6) for the square-checkerboard (left panels) and
triangular-kagome (right panels) models at R = 0.0, 0.5 and
1.0 (top to bottom). There are 12 states in the low energy
manifold (below the blue lines) in each momentum sector.

Here n̂i = c†ici is the particle number operator on site i.
In order to make sure that the interaction has a nontriv-
ial effect, we must make it sufficiently long ranged that
it survives in the checkerboard limit. We will arrange
it so that it becomes a nearest neighbor interaction in
that limit. Specifically, we choose Uij = 0.5/r2ij if the
distance rij between the sites i and j is smaller than or
equal to a cutoff distance rc, and Uij = 0 otherwise. For
the square-checkerboard and triangular-kagome models,
rc’s are chosen to be

√
2/2 and 1/2, respectively. All dis-

tances here and below are quoted in units of the lattice
constant of the magnetic unit cell. We have also con-
sidered a truncated 1/r interaction and found that the
results are consistent with our conclusions below; for sim-
plicity, we will only show results for the truncated 1/r2

interaction.

For the FCI states at 1/2 we use a three body interac-
tion Hamiltonian

H3 =
∑

[i,j,k]

Vijkn̂in̂jn̂k (13)

where we choose Vijk to be 0.5/(rijrjkrki)
2 if the dis-

tances rij , rjk, rki satisfy the cutoff conditions given be-
low and 0 otherwise, such that they become the near-
est neighbor three body interaction in the checkerboard
and kagome models. For the square-checkerboard lattice
model, the condition is that rij,jk,ki ≤ 1 and rijrjkrki ≤
1/2. For the triangular-kagome lattice model, the condi-
tion is that rij,jk,ki ≤ 1/8 and rijrjkrki ≤ 1/2.
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FIG. 14. Quasihole spectra at filling 1/2 (N = 10, Nx =
3, Ny = 7) for the square-checkerboard (left panels) and
triangular-kagome (right panels) models at R = 0.0, 0.5 and
1.0 (top to bottom). There are 6 states in the low energy
manifold (below the blue lines) in each momentum sector.

B. Exact Diagonalization

We first calculate the eigenstates un(k) of the single-

particle Hamiltonians Hαβ
sq−cb or Hαβ

tri−ka. Then the
Hamiltonians Hsq−cb or Htri−ka are transformed to di-
agonal form by defining ckα =

∑

n u
n
α(k)γkn, where γkn

is the creation operators for a particle of momentum k

in the n-th band. A many-body Slater basis state in the

lowest band is given by γ†
k1,0

γ†
k2,0

. . . γ†
kN ,0|0〉, which has

total momentum k1+k2+ . . .+kN . Since the Hamiltoni-
ans H2 and H3 commute with the translation operators
in the x and y directions, they are block diagonal in the
many-body basis. We decompose the Hilbert space into
different sectors indexed by momentum quantum num-
bers (Kx,Ky), which are the sum of the momentum all N
particles modulo (Nx, Ny) in units of (2π/Lx, 2π/Ly). To
calculate the many-body matrix elements of H2 and H3,
we transform the Hamiltonians to momentum space in

which they are expressed using c†
kα and ckα. The many-

body Slater basis are defined only using the operators

γ†
k,0, so the operator ckα is replaced by uα(k)γk,0 when

acting on these basis states.

C. Ground States

Fig. 7 and Fig. 8 shows the energy spectra at 1/3 (N =
8, Nx = 4 and Ny = 6) and 1/2 (N = 10, Nx = 4 and
Ny = 5) fillings at R = 0.0, 0.5 and 1.0. For 1/3 filling,
we observe 3 quasi-degenerate states at (Kx,Ky) = (0, 0),
(0, 2) and (0, 4), while 6 quasi-degenerate states are found
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FIG. 15. Quasiparticle spectra at filling 1/3 (N = 9, Nx =
4, Ny = 6) for the square-checkerboard (left panels) and
triangular-kagome (right panels) models at R = 0.0, 0.5 and
1 (top to bottom). The number of states below the blue lines
obey the FQH to FCI mapping in Eq. (14).
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FIG. 16. Quasiparticle spectra at filling 1/3 (9 particle and
24 fluxes) on torus with Coulomb interaction.

at 1/2 filling: one for (Kx,Ky) = (0, 0) or (2, 0) and two
for (1, 0) or (3, 0). The gap does not close as R is in-
creased from 0 to 1, as shown in Fig. 19, thus establishing
an adiabatic continuity.
In Fig. 9 and Fig. 10, we show the energy spectra of

H2 at filling factor 2/5 with N = 8, Nx = 4, Ny = 5 and
N = 10, Nx = 5, Ny = 5, respectively. We find that the
2/5 states only show adiabatic continuity for the square-
checkerboard model with N = 8. For the triangular-
kagome model with N = 8 and for both models with
N = 10, however, the gap closes during the evolution.
One may attribute the gap closing for the N = 10 sys-
tems in the square-checkerboard model to a combination
of the small gap and the fact that all “ground states” oc-
cur at the same momenta and therefore are susceptible
to significant mixing in finite systems; a study of larger
systems will be necessary to clarify the fate of the 2/5
state in the square-checkerboard model.
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FIG. 17. Particle entanglement spectra at 1/3 filling for
the square-checkerboard (left panels) and triangular-kagome
(right panels) models at R = 0, 0.5 and 1 (top to bottom).
The number of stats in the low entanglement energy main-
fold indicated by the blue lines are 46 states in the Ky = 0, 3
momentum sectors and 45 states in other sectors.

The earlier work on FCI states at 1/3, 1/2 and 2/5 in
the checkerboard and kagome lattices used the degener-
acy and momenta of the quasi-degenerate ground states
as criteria for identifying them with FQH-like states;
these quantities are the same as the known degeneracy
and momenta of the FQH ground states in the torus ge-
ometry for the same aspect ratio, and can be determined
using root partitions and certain folding rules given by
Bernevig and Regnault9. The folding rule relates the de-
generacyNFQH (Kx,Ky) of low energy FQH states in the
(Kx,Ky) momentum sector and the approximate degen-
eracy NFCI (Kx,Ky) for the FCI case via the following
equation

NFCI (Kx,Ky) =

N−1
∑

K′

x,K
′

y=0

δK′

xmodNx0,Kx

×δK′

ymodNy0,Ky

Nx0Ny0

N0
NFQH

(

K ′
x,K

′
y

)

(14)

where Nx0 = GCD(N,Nx), Ny0 = GCD(N,Ny) and
N0 = GCD(N,NxNy) (GCD denotes the greatest com-
mon divisor). For the 1/3 Laughlin state and the 1/2
Moore-Read state, the degeneracy of ground states and
quasihole states (discussed below) NFQH (Kx,Ky) can be
obtained using a generalized Pauli principle31 and the
many body translational symmetry32. For general com-
posite fermion states, the usage of the generalized Pauli
principle is limited, but we can still directly compare the
energy spectrum of a FQH system on torus and its coun-
terpart in a FCI to check the validity of Eq. (14). For
our considerations, however, an a priori knowledge of
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FIG. 18. Particle entanglement spectra at 1/2 filling for
the square-checkerboard (left panels) and triangular-kagome
(right panels) model at R = 0, 0.5 and 1 (top to bottom). The
number of states in the low entanglement energy mainfold in-
dicated by the bule lines are 200, 196, 201 and 196 states in
the Kx = 0, 1, 2 and 3 momentum sectors, respectively.
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FIG. 19. The plus signs, circles, squares and asterisks show
the gaps in the spectra of the 1/3 ground states, 1/3 quasi-
hole states, 1/2 ground states, and 1/2 quasihole states at
several R for the square-checkerboard model (up panel) and
triangular-kagome model (down panel). The continuous line
shows the deviation of the Berry curvature δF (normalized
by the average value F̄) as a function of R.

the counting is not necessary, as we directly establish
adiabatic continuity with the reference FQH state in the
Hofstadter limit. This becomes important when the gen-
eralized Pauli principle does not apply, e.g. for the quasi-
particle spectra (below).
Further proof that the state has a fractional Hall

conductance (or a fractional Chern number) can be
demonstrated by looking at the evolution of the quasi-
degenerate ground states upon flux insertion along the
x- or the y-direction. The effect of inserting a flux Φ in
either of the two directions is implemented by letting the
single-particle momenta kx,y → kx,y + Φ. For non-FQH
states, a state will come back to itself after one flux in-
sertion, whereas a FQH state returns to the original state
only after insertion of several flux quanta. Fig. 11 show
that at 1/3, one of the quasi-degenerate ground state
evolves into a second state after one flux quantum, and
into third after two flux quanta, before returning to the
original state. This demonstrates a Hall conductance of
1/3. Note that there is no level crossing with higher en-
ergy states. Similarly, in Fig. 12, the ground states only
evolve back to themselves, without crossing higher en-
ergy levels, after inserting two flux quanta, which reveals
the 1/2 Hall conductance.

D. Quasiholes and quasiparticles

A FQH state is characterized not only by its ground
state but also by the nature of its quasiholes and quasi-
particles, in particular the number of quasi-degenerate
states when one or several quasiholes or quasiparticles
are created. For FQH states, the CF theory has been
shown (in the spherical geometry) to give a complete ac-
count of states containing quasiparticles or quasiholes for
the fractions of the form n/(2pn±1), such as the number
of quasi-degenerate states, their quantum numbers (or-
bital angular momenta for the spherical geometry), and
their wave functions33; this demonstrates that the quasi-
particles are composite fermions in a nearly empty Λ level
and quasiholes are missing composite fermions from an
almost full Λ level. Unfortunately, formulation of the CF
theory in the torus geometry is not yet available, but we
can take the solution in the Hofstadter limit as our defini-
tion of the quasihole or quasiparticle spectrum (provided
a low energy band can be clearly identified). For quasi-
holes, the number of states in each momentum sector can
also be obtained using the generalized Pauli principle and
the folding rules9.
In Fig. 13 and Fig. 14, the quasihole spectra with N =

7, Nx = 4 and Ny = 6 and N = 10, Nx = 3 and Ny = 7
are presented, which correspond to a ν = 1/3 and 1/2
states with three and two quasiholes, respectively. The
principal observation is that the gap between the low
energy quasihole manifold and the higher energy states
does not close as R is increased from 0 to 1, as shown by
the circles and asterisks in Fig. 19.
In Fig. 15, we show energy spectra of H2 with N = 9,
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Nx = 4 and Ny = 6 which correspond to the 1/3 state
with 3 quasiparticles (i.e., three composite fermions in
the second Λ level). Here, it is not clear, even at R = 0,
how to identify the quasiparticle band. For this purpose,
we show in Fig. 16 the energy spectra for the correspond-
ing FQH state (9 electrons on a torus interacting via the
Coulomb interaction in the presence of 24 flux quanta)
on a torus. This system has a well defined quasiparticle
band, which allows us to also identify the quasiparticle
bands at R = 0 in the current problem as well, as marked
by the blue lines. This band is seen to evolve continu-
ously, without gap closing, in the square-checkerboard
model, but not in the triangular-kagome limit. The gaps
in the quasiparticle spectra are not as clear as those in
the quasihole cases; as a confirmation of our assignment
of the quasiparticle bands, we have also studied flux in-
sertion in these systems and found that the states marked
under the blue lines do not mix with higher energy states
above the lines.
The fact that the quasiparticle band is not very well

defined is already an indication that the 2/5 state will be
either weak or absent in the checkerboard lattice and ab-
sent in the kagome lattice. The large bandwidth of the
quasiparticle band implies substantial residual interac-
tions between composite fermions in the second Λ level,
which can weaken or destroy the two-filled-Λ-level 2/5
state. The n/(2pn± 1) states, which are the prominent
FQH states in the lowest Landau level of the continuum,
are even more unlikely to occur in Chern bands for n ≥ 3.

E. Particle entanglement spectra

The entanglement spectrum34 has been used to probe
the topological properties of many FQH states35–37. For
the torus geometry used here, the particle entanglement
spectrum (PES)36 has proved particularly useful. Given
d (quasi-)degenerate ground states {|ψi〉}, the density

matrix is defined as ρ = d−1
∑d

i=1 |ψi〉〈ψi|. We make a
cut in the particle space by dividing the N particles into
two groups A and B with NA and NB particles. The
reduced density matrix ρA = TrBρ is obtained by trac-
ing out the particles in B. The translational symmetries
along the x and y directions are preserved in this process,
so we can plot the eigenvalues exp(−ξ) (ξ is usually called
entanglement energy) of ρA versus the momenta of their
corresponding eigenstates. As previously found7–9, the
numbers of low-lying levels in the PES are determined
by the numbers of quasihole states that NA particles can
form on a Nx×Ny lattice. There are also levels at higher
entanglement energies separated from the low-lying uni-
versal ones by “entanglement gaps”. It is further demon-
strated that the PES can differentiate FQH states from
charge density wave states which occur in the thin torus
limit38.
The PES are presented in Fig. 17 and Fig. 18 for 1/3

and 1/2 fillings. We trace out 5 and 6 particles in these
two cases, respectively. For the 1/3 PES, the low energy

band (below the blue lines) consists of 46 states at each
momentum in the Ky = 0, 3 momentum sectors and 45
states in other sectors. For the 1/2 PES, the low energy
band has 200, 196, 201 and 196 states in the Kx = 0, 1,
2 and 3 momentum sectors, respectively. These numbers
agree with theoretical predictions9 and the entanglement
gap does not close for any value of R between 0 and 1.

F. Role of the Berry curvature

We now ask what weakens or destroys FQH states as
the Hofstadter lattices evolve to Chern insulators. It is
clear that the non-flatness of the bands is not relevant
here, both because the lowest bands are quite flat over
the entire evolution as shown in panels (a) of Fig. 3 and
Fig. 6, and because we have set the bands to be strictly
flat by hand. We believe that the relevant quantity in
this respect is the non-uniformity (in momentum space)
of the Berry curvature. The adiabatic path between a
FQH insulator and a FCI offers a natural way to explore
the role of the distribution of the Berry curvature in the
momentum space.
Panels (b) of Fig. 3 and Fig. 6 show distribution of

the Berry curvature (F) as a function of R along certain
lines in the Brillouin zone for our models. In both cases,
the Berry curvature of the lowest band is flat at R =
0, as expected for a Landau level. However, in the the
square-checkerboard model, the value of F reduces near
the Γ and M points, and has a peak at the X point as R
increases. In the triangular-kagome model, a peak of F
emerges at the K point while its value near the Γ point
goes to zero. Although the integrated Berry curvature in
the whole Brillouin zone remains constant (2π times the
Chern number), its fluctuations become nearly as large
as its mean value as R approaches unity.
This change in the distribution of the Berry curvature

has a direct correlation with the many body properties.
As a quantitative measure of the deviation of the Berry
curvature from its average value F̄ , we define the stan-
dard deviation of Berry curvature as

δF =

√

1

A

∫

BZ

d2k(F(k) − F̄)2 (15)

with

F̄ =
1

A

∫

BZ

d2kF(k) (16)

where A is the area of the Brillouin zone. We now argue
that this quantity determines the robustness of the FQH
states. We see from Fig. 19 that the spectral gaps for the
ground and quasihole states at different fillings follow the
same trend, changing rapidly for R < 0.7 and then satu-
rating at R ∼ 0.7. These many-body gaps have a strong
(anti)correlation with δF , indicating its important role in
the FCI states. While the topological properties remain
intact over a wide range of δF , an increase in δF reduces
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the size of the gap and thus the robustness of the FCI
states. Essentially, the variations in F enhance the resid-
ual interactions between composite fermions, as we see
from the increase in the bandwidths of the quasihole and
quasiparticle states, which causes a weakening of the FCI
states. Interactions between composite fermions open up
the possibility of new emergent structure, however.

IV. CONCLUDING REMARKS

A remark on the form of the interaction is in order. By
construction, the interaction becomes a nearest neighbor
interaction in the checkerboard and the kagome limits,
independent of what short range decay is assumed. How-
ever, the robustness of the states in the Hofstadter limit
depends on the form of the interaction. As mentioned
previously, we find that using an exponent of 1 rather
than 2 in H2 does not change our results qualitatively
for the 1/3 state, in the sense that adiabatic continu-
ity can still be established and the gap decreases as the
deviation of Berry curvature δF increases. On the con-
trary, if we choose the exponent in H3 to be 1 rather
than 2 then the 1/2 FQH state in the Hofstadter lattice
(i.e. R = 0) is much weaker, with a small spectral gaps
and relatively large ground state splittings; in this case,
the gap in the checkerboard limit is actually larger than
that in the Hofstadter limit, so our conclusion that the
gap decreases with increasing δF does not hold. This
is physically understandable. The Moore-Read Pfaffian
state is the exact zero energy state of a short-range three-
body interaction in the lowest Landau level, but adding
longer range component weakens, and even eliminates,
this state39. A smaller exponent in H3 means a longer
ranger interaction in the Hofstadter limit, which renders
the 1/2 FQH states weaker.
The equivalence of FQH and FCI states has been stud-

ied from the perspective of density algebra40,41, based
on the observation that the commutators of momentum-
space density operators have the same form in the long
wavelength (small momentum) limit and for flat Berry
curvature. This suggests the same low energy physics for
the two problems. However, all momenta are relevant to
the FCI states since the bands are exactly flat and the
low energy excitations may have large momenta. Very
recently, Roy42 demonstrated that the density algebra in
a lattice model has the same form as that of the Landau
level in continuum for all momenta if the Fubini-Study
metric satisfy a certain condition. The Hofstadter models
that we construct have nearly flat Berry curvature and
thus the folding rule is almost exact. Our work shows
that the low energy physics can evolve adiabatically as
the Berry curvature changes, and thus provides justifi-
cation for the assumption of flat Berry curvature in the
aforementioned works.
We use particle entanglement spectrum as a probe of

the quasihole physics of our models. Ref. 44 obtains the
orbital entanglement spectra34,43 for the kagome model

at both 1/3 and 1/2 fillings, which reveal the edge modes
of these states and provide further support for the adi-
abatic continuity between the FQH states in continuum
and FCI states on lattice.
We do not find conclusive evidence for adiabatic con-

tinuity for the 2/5 state in either model, which is due
to absence of the 2/5 FCI states. Recent papers have
proposed that 2/5 states can be obtained in the checker-
board model45 and the kagome model10 by either using
tilted samples or fine tuning of parameters. We believe
that these states are also adiabatic connected to the 2/5
state in the Hofstadter lattice, but have not confirmed
this. Similarly, if the quasiparticle spectra of the Chern
insulator models can be obtained from the FQH quasi-
particle spectra on torus via the folding rule at R = 1
after fine tuning of parameters, we do expect adiabatic
continuity between the quasiparticle spectra at R = 0
and R = 1.
In conclusion, we have shown, by studying the ground

states, quasihole and quasiparticle states, and their parti-
cle entanglement spectra, that the integer and fractional
states in the Hofstadter and Chern insulators are adiabat-
ically connected. Our study reveals that the nonuniform
distribution of the Berry curvature reduces the gap and
increases the interaction strength between quasiparticles.
In addition, our work shows how Chern insulators with
arbitrarily uniform Berry curvature can be constructed
by allowing more complex lattices, which should produce
many other FCI states. Time reversal invariant frac-
tional topological insulators can be constructed from the
p/(2p+1) states by introducing a spin, and are expected
to be topologically stable for odd p46.
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Appendix A: Non-Zero Elements in the Single-Particle Hamiltonians

For simplicity, we drop the subscripts sq− cb and tri− ka here. In the square-checkerboard hybrid lattice model,
the non-zero elements are

H01 = exp(ikx/4) H03 = exp(−i(kx/4 + 3π/80)) H04 = exp(i(kx/4 + 3π/80))

H0,12 = exp(−iky/4) H12 = exp(i(kx/4 + π/16)) H15 = exp(i(ky/4 + π/5))

H1,13 = exp(−i(ky/4 + π/16)) H23 = exp(i(kx/4 + 3π/40)) H26 = exp(i(kx/4 + 37π/80))

H2,14 = exp(−i(ky/4 + 3π/40)) H37 = exp(i(ky/4 + 39π/40)) H3,15 = exp(−i(ky/4 + 3π/80))

H45 = exp(i(kx/4 + 3π/80)) H47 = exp(−i(kx/4 + 39π/40)) H48 = exp(i(ky/4 + 3π/40))

H56 = exp(i(kx/4 + π/5)) H59 = exp(i(ky/4 + 19π/80)) H67 = exp(i(kx/4 + 37π/80))

H6,10 = exp(i(ky/4 + 2π/5)) H7,11 = exp(i(ky/4 + 37π/80)) H89 = exp(i(kx/4 + 3π/40))

H8,11 = exp(−i(kx/4 + 37π/80)) H8,12 = exp(i(ky/4 + π/16)) H9,10 = exp(i(kx/4 + 19π/80))

H9,13 = exp(i(ky/4 + 7π/40)) H10,11 = exp(i(kx/4 + 2π/5)) H10,14 = exp(i(kx/4 + 19π/80))

H11,15 = exp(i(ky/4 + π/5)) H12,13 = exp(i(kx/4 + π/16)) H12,15 = exp(−i(kx/4 + π/5))

H13,14 = exp(i(kx/4 + 7π/40)) H14,15 = exp(i(kx/4 + 19π/80))

H44 = (−2t2)(cos(kx + 7π/40) + cos(ky − 47π/40)) + 2t3(cos(kx − ky + 47π/20) + cos(kx + ky))

H4,14 = (−t1)(exp(i(kx/2 + ky/2 + 3π/10)) + exp(i(kx/2− ky/2 + 79π/40))

+ exp(i(−kx/2 + ky/2− 3π/8)) + exp(i(−kx/2− ky/2 + 3π/10))

H14,14 = (−2t2)(cos(kx + 47π/40) + cos(ky − 7π/40)) + 2t3(cos(kx − ky + 47π/20) + cos(kx + ky)) (A1)

and those related to them via complex conjugation where t1 = 1, t2 = 1−
√
2/2 and t3 = (

√
2− 1)/2. The elements

H44, H4,14 and H14,14 and their conjugate are due to the checkerboard part of the Hamiltonian Hsq−cb and should
be multiplied by R, whereas other elements should be multiplied by 1−R.

In the triangular-kagome hybrid lattice model, the non-zero elements are

H01 = exp(ikx/4) H03 = exp(−ikx/4) H04 = exp(iky/4)

H07 = exp(i(−kx/4 + ky/4− 25π/16)) H0,12 = exp(iky/4) H0,13 = exp(i(kx/4− ky/4− π/16))

H12 = exp(ikx/4) H14 = exp(i(−kx/4 + ky/4 + π/16)) H15 = exp(i(ky/4 + π/8))

H1,13 = exp(−i(ky/4 + π/8)) H1,14 = exp(i(kx/4− ky/4− 3π/16))) H23 = exp(ikx/4)

H25 = exp(i(−kx/4 + ky/4 + 3π/16)) H26 = exp(i(ky/4 + π/4)) H2,14 = exp(−i(ky/4 + π/4))

H2,15 = exp(i(kx/4− ky/4− 5π/16)) H36 = exp(i(−kx/4 + ky/4 + 5π/16)) H37 = exp(i(ky/4 + 3π/8))

H3,12 = exp(i(kx/4− ky/4 + π/16)) H3,15 = exp(−i(ky/4 + 3π/8)) H45 = exp(ikx/4)

H47 = exp(−i(kx/4 + 3π/2)) H48 = exp(iky/4) H4,11 = exp(i(−kx/4 + ky/4− 17π/16))

H56 = exp(ikx/4) H58 = exp(i(−kx/4 + ky/4 + π/16)) H59 = exp(i(ky/4 + π/8))

H67 = exp(ikx/4) H69 = exp(i(−kx/4 + ky/4 + 3π/16)) H6,10 = exp(i(ky/4 + π/4))

H7,10 = exp(i(−kx/4 + ky/4 + 5π/16)) H7,11 = exp(i(ky/4 + 3π/8)) H89 = exp(ikx/4)

H8,11 = exp(−i(kx/4 + π)) H8,12 = exp(iky/4) H8,15 = exp(i(−kx/4 + ky/4− 9π/16))

H9,10 = exp(ikx/4) H9,12 = exp(i(−kx/4 + ky/4 + π/16)) H9,13 = exp(i(ky/4 + π/8))

H10,11 = exp(ikx/4) H10,13 = exp(i(−kx/4 + ky/4 + 3π/16)) H10,14 = exp(i(ky/4 + π/4))

H11,14 = exp(i(−kx/4 + ky/4 + 5π/16)) H11,15 = exp(i(ky/4 + 3π/8)) H12,13 = exp(ikx/4)

H12,15 = exp(−i(ky/4 + π/2)) H13,14 = exp(ikx/4) H14,15 = exp(ikx/4)

H02 = −2(t1 cos(kx/2) + t2 cos(−kx/2 + ky))

H28 = −2(t1 cos(−kx/2 + ky/2) + t2 cos(kx/2 + ky/2))

H80 = −2(t1 cos(ky/2) + t2 cos(kx − ky/2)) (A2)

and those related to them via Hermitian conjugation, where t1 = 1.0+ 0.28i and t2 = −0.3− 0.2i. The elements H02,
H28 and H80 and their conjugate are due to the kagome part of the Hamiltonian Htri−ka and should be multiplied by
R, whereas other elements should be multiplied by 1−R.
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28 G Möller and N R Cooper, Phys. Rev. Lett. 103,105303
(2009).

29 R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
30 G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
31 B. A. Bernevig and F. D. M. Haldane, Phys. Rev. Lett.

100, 246802 (2008).
32 F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).
33 Composite Fermions, J.K. Jain (Cambridge University

Press, 2007).
34 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008)
35 N. Regnault, B. A. Bernevig, and F. D. M. Haldane, Phys.

Rev. Lett. 103, 016801
36 A. Sterdyniak, N. Regnault and B. A. Bernevig, Phys. Rev.

Lett. 106, 100405 (2011).
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43 A. M. Läuchli, E. J. Bergholtz, J. Suorsa, and M. Haque,

Phys. Rev. Lett. 104, 156404 (2010).
44 Z. Liu and E. J. Bergholtz, arXiv:1209.5310 (2012).
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