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We develop a theory of the correlated magnetically ordered insulating state at the edge of a two-
dimensional topological insulator. We demonstrate that the gapped spin-polarized state, induced by
the application of the magnetic field B, is naturally facilitated by electron interactions, which drive
the critical easy-plane ferromagnetic correlations in the helical liquid. As the key manifestation, the
gap ∆ in the spectrum of collective excitations, which carry both spin and charge, is enhanced and
exhibits a scaling dependence ∆ ∝ B1/(2−K), controlled by the Luttinger liquid parameter K. This
scaling dependence could be probed through the activation behavior G ∼ (e2/h) exp(−∆/T ) of the
longitudinal conductance of a Hall-bar device at lower temperatures, providing a straightforward
way to extract the parameter K experimentally. Our findings thus suggest that the signatures of the
interaction-driven quantum criticality of the helical liquid could be revealed already in a standard
Hall-bar measurement.

PACS numbers: 72.25.-b, 71.10.Pm, 73.43.Lp

INTRODUCTION

Topological insulators [1–15] form a new class of ma-
terials with nontrivial band structure caused by spin-
orbit interactions. The key physical feature that distin-
guishes a topological insulator (TI) from a conventional,
nontopological, one is the presence of gapless surface or
edge electron states. The edge of a two-dimensional (2D)
topological insulator [1–3, 7, 9] supports two branches of
gapless counter-propagating helical states with opposite
spin projections on the axis perpendicular to the plane
of the sample (Fig. 1). Protected by the time-reversal
symmetry against single-particle nonmagnetic backscat-
tering [16, 17], these edge modes serve as nearly ideal
conducting channels that give rise to the quantum spin
Hall effect. So far, a 2D topological insulator was realized
in HgTe-CdTe quantum wells, which was first predicted
theoretically [9] and shortly after confirmed experimen-
tally [10, 11].

Interactions between electrons in the counter-
propagating states lead to a one-dimensional helical Lut-
tinger liquid (LL) phase [16–27], which hosts a number
of remarkable physical properties, such as quantum crit-
icality, bonding of the spin and charge degrees of free-
dom, and charge fractionalization. However, interaction
effects in a LL are generally known to be quite elu-
sive to experimental probes. In particular, for negligible
single-particle backscattering, the longitudinal conduc-
tance e2/h of a LL remains essentially unaffected by the
interactions [28, 29]. In a helical LL, this holds as long
as time-reversal symmetry is preserved and the system
remains gapless. Probing interactions in this regime by
a transport measurement generally requires creating a
tunneling setup of some kind [20–24, 27].

In this paper, we demonstrate that electron interac-
tions in a helical liquid reveal themselves in an interest-

FIG. 1: (Color online) Helical edge states of a 2D topologi-
cal insulator. (Left) The states propagating in the opposite
directions have opposite spin projections on the direction per-
pendicular to the plane of the sample. (Right) In the absence
of the magnetic field the counter-propagating states are gap-
less. Shaded regions depict the continuum of the extended
bulk states with the insulating gap ε0.

ing fashion once the time-reversal symmetry is broken by
the application of an external magnetic field. Indeed, on
the one hand, in the noninteracting picture, the magnetic
field couples the counter-propagating edge states, opens
a gap in the single-particle spectrum, and spin-polarizes
the edge. On the other hand, in the absence of the mag-
netic field, interactions in a helical LL result in a ten-
dency towards easy-plane ferromagnetism, manifested in
a critical power-law decay of the spin correlations. There-
fore, once the magnetic field is applied, one can naturally
expect electron interactions to facilitate the formation of
the spin-polarized state.

The present paper is devoted to the theory of this cor-
related magnetically ordered insulating state, induced by
the magnetic field and enhanced by the interactions, at
the edge of a 2D topological insulator. Our key finding is
that the gap ∆ in the spectrum of collective excitations is
enhanced by the interactions and exhibits a critical scal-
ing dependence ∆ ∝ B1/(2−K) on the magnetic field B.
Its exponent is controlled by the LL parameter K, which
characterizes the interaction strength. Crucially, this
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critical scaling should reveal itself in the low-temperature
activation behavior G ∼ (e2/h) exp(−∆/T ) of the longi-
tudinal conductance of a Hall-bar device, which allows
one to extract the LL parameter K and infer about the
strength of interactions in a real system. Our work sug-
gests that the interaction-driven quantum criticality of
the helical liquid at the edge of a 2D topological insu-
lator could be accessed already via a standard Hall-bar
measurement.

The suppression of the longitudinal conductance with
the applied magnetic field was already observed experi-
mentally in HgTe quantum wells [10, 11]. However, two
factors preclude direct comparison of the present pre-
diction with that data: (i) the magnetic-field data were
provided for a large sample of size 20×13µm2, for which
backscattering was substantial; (ii) the temperature de-
pendence of the conductance, necessary to extract the
transport gap ∆, was not provided.

MODEL AND HAMILTONIAN

The effective low-energy Hamiltonian for the interact-
ing electrons in the counter-propagating edge states of
a 2D topological insulator in the presence of a magnetic
field [11, 18] may be written down in the helical basis of
right-moving (with respect to the x direction along the
edge) spin-up (↑) and left-moving spin-down (↓) states
as

Ĥ = Ĥ0 + Ĥm + Ĥi, Ĥ0 =

∫
dxψ†(x) vp̂ σz ψ(x), (1)

Ĥm = −∆0

∫
dxψ†(x)(σx cosϕ0 + σy sinϕ0)ψ(x), (2)

Ĥi =
1

2

∫
dxdx′ ψ†σ(x)ψ†σ′(x

′)V (x− x′)ψσ′(x′)ψσ(x).

(3)
Here, ψ = (ψ↑, ψ↓)

t is the two-component fermionic field
operator, p̂ = −i~∂x, and σx, σy, σz are the Pauli ma-

trices in the helical basis. The part Ĥm describes the
effect of the external magnetic field. For the in-plane
orientation, B = B(cosϕ0, sinϕ0, 0), only the Zeeman
effect is present, whereas the orbital effect vanishes; the
angle ϕ0 correspond to the direction of the field in the
xy plane of the 2D sample and the gap is given by the
Zeeman energy ∆0‖ ∼ µBB. In case of the perpendic-
ular orientation of the field, B = (0, 0, B), the Zeeman
effect does not affect the dynamics and only the orbital
effect remains. The orbital effect of the perpendicular
field is estimated [11] to be stronger than the in-plane
Zeeman effect, ∆0⊥ ∼ 10∆0‖; ∆0‖ ≈ 3K and ∆0⊥ ≈ 30K
at B = 1T. For arbitrary field orientation, the single-
particle gap ∆0 scales linearly with the magnetic field,
∆0 ∝ B.

We consider the case of Coulomb interactions, V (x) =
e2
∗/|x| in Eq. (3), possibly screened by the nearby metallic

electrodes beyond some length ls; the charge e∗ = e/
√
κ

incorporates the effects of screening by the dielectric envi-
ronment. This allows us to consider both unscreened and
screened interactions, the latter modeling practically any
finite-range interactions. The short-scale spatial cutoff α
of the theory [Eqs.(1), (2), and (3)] and of the poten-
tial V (x) is set by the decay scale of the edge states into
the bulk. For simplicity, it is assumed that the chemical
potential is exactly at the branch crossing ε = 0 of the
unperturbed edge spectrum εp = ±vp, where the correla-
tion effects are strongest. This can be achieved by tuning
the gate voltage to the minimum of the longitudinal con-
ductance.

The Hamiltonian Ĥ [Eqs. (1), (2), and (3)] describes
one-dimensional interacting Dirac fermions, which are
massive in the presence of the magnetic field; for point
interactions, this is known as the Thirring model [32, 33].
This fermionic model can be mapped a bosonic one by
mean of the bosonization procedure [32, 33]. One relates
the fermion fields ψ↑,↓(x) of the right and left movers to
the bosonic ones ϕ↑,↓(x) as

ψ↑,↓(x) =
1√
2πα

e±iϕ↑,↓(x), (4)

where the Klein factors are omitted. The operators
ϕ(x) = 1

2 [ϕ↑(x) + ϕ↓(x)] and θ(x) = 1
2 [ϕ↑(x) − ϕ↓(x)]

satisfy the canonical (up to a coefficient) commutation re-
lations [ϕ(x), ∂x′θ(x

′)] = −iπδ(x− x′) and are related to
the coordinate and momentum variables of the collective
excitations. In terms of ϕ(x) and θ(x), the Hamiltonian
Ĥ [Eqs. (1), (2), and (3)] can be expressed as

Ĥ0 =
~

2π

∫
dx v[(∂xθ)

2 + (∂xϕ)2], (5)

Ĥm = −∆0

πα

∫
dx cos[2ϕ(x) + ϕ0], (6)

Ĥi =
1

2π2

∫
dxdx′ ∂xϕ(x)V (x− x′)∂x′ϕ(x′). (7)

The Hamiltonian (5), (7), and (6) describes the dynam-
ics of the collective edge excitations of a 2D topological
insulator in the presence of a magnetic field. This is the
sine-Gordon model [32, 33] for point interactions and its
nonlocal generalization for finite-range interactions. Be-
low we analyze the properties of this model.

COLLECTIVE SPIN-CHARGE EXCITATIONS

To visualize the collective excitations described by
Eqs. (5), (6), and (7), let us link the fields ϕ(x) and
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FIG. 2: (Color online) Collective spin-charge excitations of
the edge of a 2D topological insulator. Excitations are de-
scribed by the phase variable ϕ(x), which determines both
the in-plane spin polarization [Eq. (8)] and charge density
[Eq. (9)]. As a specific illustrative example, a kink of height
π in ϕ(x) rotates the spin polarization in the xy plane of the
sample by 2π and accumulates a unit charge in the region of
variation of ϕ(x).

θ(x) to the physical observables. From the relation (4),
one obtains(

sx(x)
sy(x)

)
=

1

2πα

(
cos(−2ϕ(x))
sin(−2ϕ(x))

)
(8)

for the x and y components of the spin density operator
s(x) = ψ†σ(x)σσσ′ψσ′(x) (defined without 1/2 factor) and

sz(x) =
1

π
∂xθ(x), ρ(x) =

1

π
∂xϕ(x) (9)

for the z component of the spin density and the parti-
cle density ρ(x) = ψ†σ(x)ψσ(x) operators. As seen from
Eq. (8), the angle −2ϕ(x) corresponds to the direction of
the spin polarization in the xy plane and the field ϕ(x) is
thus directly related to the spin degrees of freedom. At
the same time, according to Eq. (9), the charge density is
determined by the gradient of ϕ(x). Therefore, the col-
lective excitations carry both charge and spin, which is a
direct consequence of the coupling between the spin and
orbital degrees of freedom in the single-particle states.
As a specific illustrative example of this property, a kink
of height π in ϕ(x) rotates the spin polarization in the
xy plane by 2π and simultaneously accumulates a unit
charge in the region of variation of ϕ(x), Fig. 2. It was
suggested in Ref. [18] to exploit this bonding of spin and
charge degrees of freedom to observe charge fractional-
ization effects in domain-wall structures with inhomoge-
neous magnetization.

GAPLESS HELICAL LIQUID AT B = 0

Let us first consider the system in the absence of the
magnetic field, Ĥm = 0, when the edge is in the heli-
cal LL phase, and obtain the excitation spectrum and
basic correlations. The calculations can be conveniently
performed in the Langrange finite-temperature formal-
ism. From Eqs. (5) and (7), the action for the Fourier

transformation ϕ(ωn, q) =
∫ ~/T

0
dτ
∫

dx eiωnτ−iqxϕ(τ, x)

(~ωn = 2πTn, n ∈ Z) of the phase field takes the form

S0[ϕ] + Si[ϕ] = T
∑
ωn

∫
dq

2π

(
1

uq
ω2
n + uqq

2

)
|ϕ(ωn, q)|2

2πKq
.

(10)
The momentum-dependent velocity uq and LL interac-
tion parameter Kq are given by

uq/v = 1/Kq =
√

1 + V (q)/(π~v) =
√
rs ln[1/(q∗α∗)],

(11)
where V (q) = 2e2

∗ ln[1/(q∗α)] is the Fourier transform
of the potential V (x), rs = 2e2

∗/(π~v) is the Coulomb
parameter, q∗ = max(|q|, 1/ls), and α∗ ∼ αe−1/rs .

From Eqs. (10) and (11), one obtains the excitation
spectrum ω(q) = uq|q| of the collective edge excitations
of a 2D topological insulator. For unscreened Coulomb
interactions V (q) = 2e2

∗ ln[1/(|q|α)] at qls & 1, uq and
Kq depend logarithmically on q and the excitations have

a 1D plasmon-type spectrum ω(q) ∝ q
√

ln(1/q). At spa-
tial scales exceeding the screening length ls, qls . 1,
the interactions become effectively short-range with V (q)
saturating to the value V (q . 1/ls) = 2e2

∗ ln(ls/α). The
velocity uq = u and interaction parameter Kq = K be-

come q-independent, u/v = 1/K =
√
rs ln(ls/α∗), and

the spectrum ω(q) = u|q| linear. In the absence of the
magnetic field the spectrum is gapless, but for unscreened
Coulomb interactions the log-dependence of the velocity
uq signals of a strong tendency towards gap opening.

Let us now study the correlations. The operators
that describe coupling between the counter-propagating
helical modes are given by the “spin-flip” components
s±(x) = sx(x)± isy(x) of the spin density (8),

s+(x) = ψ†↑(x)ψ↓(x) =
e−2iϕ(x)

2πα
. (12)

The tendency towards gap opening is thus directly re-
lated to the spin polarization in the xy plane of the sam-
ple. Calculating the correlation function of s±(x) with
respect to the action (10) at zero temperature T = 0, we
obtain

〈s+(x)s−(0)〉 ∝

{
exp

[
−4
√

ln (|x|/α∗) /rs
]
, |x| . ls,

(ls/|x|)2K
, |x| & ls.

(13)
For screened Coulomb interactions at |x| & ls the corre-
lations (13) of the in-plane spin density sx,y(x) have a LL
power-law decay. For unscreened Coulomb interactions
at |x| . ls, the decay is slower than any power law. The
interactions in the helical liquid thus result in the ten-
dency towards easy-plane ferromagnetic ordering. How-
ever, due to strong quantum fluctuations in a 1D system
the long-range order is not formed, 〈s(x)〉 = 0. For un-
screened Coulomb interactions, the tendency towards fer-
romagnetism is as strong as that towards Wigner crystal-
lization in a conventional one-dimensional electron sys-
tem [30, 31]. Note that numerical factors in the spectrum
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FIG. 3: (Color online) Magnetically ordered insulating state
at the edge of a 2D topological insulator. Magnetic field cou-
ples the spin up and down helical states, opens a gap ∆0 in the
single-particle edge spectrum (right), and polarizes the elec-
tron spins in the plane of the sample (left). The many-body
gap ∆ [Eq. (14)] is enhanced by the interactions compared to
the bare gap ∆0.

ω(q) = uq|q| [Eq. (11)] and correlation function (13) differ
from those of Refs. [30, 31] because in our case electrons
are single-flavored.

In the massless LL phase, the edge conductance
Gedge = e2/h is essentially unaffected by the interac-
tions and the edge remains a perfect conducting chan-
nel [28, 29]. Therefore, in the absence of perturbations
that break time-reversal symmetry, the interactions do
not reveal themselves in the transport measurement of
either the two-terminal or Hall-bar longitudinal conduc-
tance G = 2Gedge = 2e2/h, where the factor 2 is due
to two edges in the former case and due to the mode
equilibration in the contacts in the latter case.

GAPPED MAGNETICALLY ORDERED PHASE
AT B > 0

The situation changes, if the magnetic field is ap-
plied, ∆0 > 0 in Ĥm [Eq. (2)]. Even in the ab-
sence of interactions, the magnetic field couples the he-
lical counter-propagating states [11, 18] according to
Eq. (2) and opens a gap ∆0 in the single-particle spec-
trum εp = ±

√
(vp)2 + ∆2

0 of the Hamiltonian Ĥ0 + Ĥm,
Fig. 3. In the ground state, the edge becomes spin po-
larized in the plane of the sample in the direction ϕ0,
〈s(x)〉 ∝ (cosϕ0, sinϕ0, 0).

Opening of the single-particle gap ∆0 has a direct
consequence on transport. For the noninteracting elec-
trons, the edge conductance can be calculated using the
Landauer formula and for long enough edge of length
L� ~v/∆0 it is given by

Gedge(T ) =
2e2/h

exp(∆0/T ) + 1
.

The presence of the gap makes the edge insulat-
ing at temperatures T � ∆0, where the conduc-
tance follows the Arrhenius activation law Gedge(T ) ≈
2(e2/h) exp(−∆0/T ).

Let us now take the interactions into account. In terms
of the collective excitations, the effect of the magnetic
field is described by the cosine term (6) in the bosonized
Hamiltonian. The fact that the ground state is spin po-
larized means that the phase field ϕ(x) is locked in the
minimum of the cosine term, 〈ϕ(x)〉 = −ϕ0/2. The col-
lective excitations are now massive and for low energies
described by the fluctuations of ϕ(x) around this mini-
mum. Since even without the magnetic field the interac-
tions tend to order the edge ferromagnetically, naturally,
the gap ∆ in the spectrum of the collective excitations
turns out to be enhanced compared to its bare single-
particle value ∆0. For screened Coulomb interactions we
obtain

∆ ∼ ε0
(

∆0

ε0

) 1
2−K

∝ B
1

2−K , (14)

up to a numerical factor ∼ 1. Here ε0 is the bulk insulator
gap, which determines the high energy cutoff of the edge
spectrum and is assumed ε0 � ∆0. For HgTe quantum
wells, it is estimated ε0 ∼ 100K [11]. The result (14)
can be obtained by several means, e.g., using the self-
consistent harmonic approximation [33].

The gap (14) has a power-law dependence on the bare
gap ∆0 ∼ µBB and hence on the magnetic field B. The
exponent 1/(2 −K) of this dependence is controlled by
the LL interaction parameter K, which varies between
K = 1 in the noninteracting case and K = 0 for infinitely
strong finite-range interactions; these cases give the low-
est ∆min = ∆0 and highest ∆max ∼

√
∆0ε0 ∝

√
B pos-

sible values of the many-body gap ∆, respectively. Due
to the long-range nature of the Coulomb forces, for un-
screened interactions the gap appears to be close to ∆max

even for moderate interaction strength rs ∼ 1. Perform-
ing the harmonic approximation [33], we obtain

∆2 ∼ ∆0ε0 exp[−
√

2 ln(ε0/∆0)/rs]. (15)

The gap (15) differs from the K = 0 limit ∆max of
Eq. (14) only by a function of ∆0/ε0 that varies slower
than any power law. The result (15) applies if the corre-
lation length l∆ = ~v/∆ determined from Eq. (15) does
not exceed the screening length, l∆ . ls. Otherwise,
what concerns the gap, the interactions are effectively
screened and the gap is given by Eq. (14). For unscreened
Coulomb interactions, the enhancement of the gap could
thus be quite substantial: for ∆0 ∼ 1K and ε0 ∼ 100K
one gets ∆max ∼ 10K. The enhancement of the gap
means, in particular, that interactions should favor ob-
servation of the effects predicted in Ref. [18].

SUMMARY AND EXPERIMENTAL
MANIFESTATION

Summarizing, we studied the correlated magnetically
ordered insulating state at the edge a of 2D topological
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insulator. This spin-polarized state is induced by the ap-
plication of the magnetic field and naturally facilitated
by electron interactions, which drive the easy-plane fer-
romagnetic correlations in a helical liquid. The key mani-
festation of the correlations is that the gap ∆ ∝ B1/(2−K)

[Eq. (14)] in the spectrum of the collective spin-charge ex-
citations exhibits a scaling dependence on the magnetic
field B, controlled by the Luttinger liquid parameter K,
reflecting the quantum criticality of the helical liquid.

The main experimental implication of our findings is
that electron interactions should readily reveal them-
selves in the insulating transport behavior of the mag-
netically ordered phase in a standard Hall-bar setup: the
gap ∆ determines the activation dependence G(T ) ∝
(e2/h) exp(−∆/T ) of either two-terminal or longitudinal
conductance at temperatures T � ∆. This should al-
low one to extract the Luttinger liquid parameter K and
infer about the strength of the interactions in the heli-
cal liquid via the scaling dependence ∆ ∝ B1/(2−K) of
the gap. Our findings thus suggest a Hall-bar device in
an applied magnetic field as the minimal setup to access
the interaction-driven quantum criticality of the helical
liquid at the edge of a 2D topological insulator.
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