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Theory of dielectric nanofilms in strong ultrafast optical fields

Vadym Apalkov and Mark I. Stockman
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

We theoretically predict that a dielectric nanofilm subjected to a normally-incident strong but
ultrashort (a few optical oscillations) laser pulse exhibits deeply nonlinear (non-perturbative) optical
responses which are essentially reversible and driven by the instantaneous optical field. Among them
is a high optical polarization and a significant population of the conduction band, which develop
at the peak of the pulse and almost disappear after its end. There is also a correspondingly large
increase of the pulse reflectivity. These phenomena are related to Wannier-Stark localization and
anticrossings between the Wannier-Stark ladders originating from the valence and conduction bands
leading to optical “softening” of the dielectric. Theory is developed by solving self-consistently
the Maxwell equations and the time-dependent Schrödinger equation. The results point out to a
fundamental possibility of optical-field effect devices with the bandwidth on the order of optical
frequency.

PACS numbers:

I. INTRODUCTION

Experimental availability of intense ultrashort (a few
femtosecond-long) optical pulses with just a few oscil-
lations of optical field opens up unique possibilities of
optical control of the electric and optical properties of di-
electric materials within femtosecond time scale1,2. The
electric field in such intense optical pulses is comparable
to the internal fields acting on valence electrons in atoms
and solids and is on the order of a few V/Å2,3. Interac-
tion of the electrons of a solid with such strong fields has
long been the subject of intensive research4–8. A strong-
field optical pulse induces deep changes of the system,
which can be reversible for a short enough pulse3,9–13.

For semiconductors and their heterostructures, the op-
tical field causes decrease of the bandgap between the
valence and conduction band known as Franz-Keldysh
effect14,15 and quantum-confined Stark effect16,17, re-
spectively. For conjugated molecules, which are organic
semiconductors, it has been predicted that the Stark ef-
fect decreases the gap between the occupied and unoc-
cupied molecular orbits leading to absorption of the ini-
tially non-resonant pulses and electrical currents due to
the ω − 2ω interference18.

A dielectric subjected to a weak optical field reacts to
its change instantly (adiabatically) as long as the laser
frequency ω0 is small enough, ω0 ≪ ∆g/~, where ∆g

is the gap between the valence band (VB) and conduc-
tion band (CB); e.g, for silica ∆g ≈ 9 eV. This adia-
baticity implies that the light-matter interaction is fully
reversible: after the pulse end, the system returns to
its ground state, the residual excited-band population is
small, and so is the residual interband polarization. This
is expected for wide-bandgap dielectrics.

When the pulse field F increases, approaching the criti-
cal field strength Fcrit, which induces a change in electron
potential energy by ∆g over the lattice period a ∼ 5 Å,
the adiabatic band gap decreases and completely col-

lapses, where

Fcrit =
∆g

|e|a ∼ 2
V

Å
, (1)

and e is electron charge.
Previously, theoretical analysis of interaction of a in-

tense optical pulse with dielectric media was mainly re-
stricted to relatively long pulses with duration & 100
fs. For such pulses, the electron dynamics in the time-
dependent field of the pulse be described in terms of the
density matrix whose evolution is determined by rate
equations with phenomenological relaxation and genera-
tion times19–23. In this description, the effect of the pulse
electric field is restricted to generation of an electron-
hole plasma through multiphoton or collisional ionization
processes. Such rates as functions of the instantaneous
electric field are usually introduced into the model phe-
nomenologically.
Another theoretical approach to interaction of ultra-

short optical pulse with semiconductor and dielectric me-
dia was introduced in Refs. 24–26. In these publica-
tions, a coupled system of Maxwell equations and time-
dependent density-functional theory equations is solved
numerically for diamond or silicon. In Ref. 26, the fre-
quency of the pulse is close to the interband gap, i.e., the
system is close to the resonance conditions. Therefore,
although the duration of the pulse is small, ∼ 10 fs, the
dielectric system experiences a non-adiabatic dynamics
with high residual excitation and a strong increase of the
pulse reflectance.
In the present article, we consider an extremely in-

tense and ultrashort pulse with duration of a several
femtoseconds, and the dielectric system far away from
the resonant conditions. Specifically, we consider silica
with bandgap ∆g ≈ 9 eV and pulse carrier frequency
~ω0 = 1.5 eV. With relaxation time ∼ 20 fs, the electron
dynamics for such an ultrashort pulse is expected to be
field-driven and coherent (Hamiltonian), which can be
described in terms of wave functions11,13. We introduce
a coupled system of Maxwell equations and the time-
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dependent Schrödinger equation, and solve it numeri-
cally. The Hamiltonian of the dielectric system is of the
nearest neighbor tight-binding type with the parameters
chosen to reproduce the band structure of silica. Within
this approach, the electric field of the pulse couples the
states of the VB and the CB of the dielectric. Inherent
in this system, electrons are dynamically transferred to
the CB without any assumptions about the generation
rate. We apply this approach to a nanofilm of silica with
a thickness of ≤ 150 nm.
Under such conditions, the underlying electronic dy-

namics is characterized by a strong localization of the
Wannier-Stark (WS) states7,27. These states originating
from a given band are separated by the Bloch oscilla-
tion frequency28, which significantly exceeds ω0. Thus
the electron dynamics is mostly adiabatic except for an-
ticrossings of the Wannier-Stark levels originating from
different bands. At those anticrossings, rich dynamics ap-
pears, which generally is a superposition of both diabatic
and adiabatic processes. This leads to “softening” of the
system: enhanced optical responses of the dielectric, in
particular strong polarization and reflection of the pulse,
which are deeply nonlinear (non-perturbative) phenom-
ena. For the strong ultrafast fields that are still below
the threshold of the dielectric breakdown, the dynamics
is reversible: the electron population of the CB left after
the pulse end is very low in contrast to a relatively high
CB population during the pulse.
With respect to the previous prediction of the adia-

batic metallization of dielectric nanofilms11,13, a signifi-
cant difference is that the present processes are too fast
to be predominantly adiabatic. Also of fundamental im-
portance is that in the present work the pulse field is
parallel to the surface while in Refs. 11,13 it is normal to
the surface causing appearance of the so-called quantum
bouncer states playing an important role.
The paper is organized as the following. In Sec. II,

we derive the main system of equations, which includes
the Maxwell equations and the Schrödinger equation. In
Sec. III, we introduce the Wannier-Stark states of CB
and VB, and coupled adiabatic states of electron system
in the external electric field. We discuss formation of the
Wannier-Stark states of a single band for time-dependent
electric field of the excitation near-infrared (NIR) pulse.
In Sec. IV, we present the results of the calculations and
discuss physical interpretation of these results. In Sec.
V we present the concluding discussion of the obtained
results.

II. MODEL AND MAIN EQUATIONS

A. Propagation of optical pulse

We study propagation of an optical pulse using a cou-
pled system of equations, consisting of Maxwell equa-
tions, which describe the propagation of the pulse in a
system with a known polarization, and the Schrödinger

equations, which determine electron dynamics and the
polarization of the electron system. The Maxwell equa-
tions are written down in the following form

∇ ·D = 0 (2)

∇ ·B = 0 (3)

∇× F = −1

c

∂B

∂t
(4)

∇×B =
1

c

∂F

∂t
+

4π

c

∂P

∂t
(5)

where B is magnetic field, F is electric field, and D =
F+ 4πP is the electric displacement field.
The polarization P of the dielectric medium is deter-

mined by electron dynamics. This polarization, which
is calculated in the next section, depends on the electric
field of the pulse in a strongly nonlinear manner due to
strong mixing of CB and VB states in a high electric field.
Solution of the Maxwell equations determines the

propagation of the optical laser pulse and the fields out-
side and inside the dielectric. The way we solve them
takes into account the boundary conditions at the sur-
face of dielectric film automatically. We assume that the
optical pulse propagates along the positive direction of
the z-axis i.e., it is incident normally on the dielectric
film. In this case, all variables in the Maxwell equations
depend on z only, and the problem becomes effectively
one-dimensional.
We solve the Maxwell equations numerically by the fi-

nite difference time domain (FDTD) method29,30 for a
finite size system with the absorbing boundary condi-
tions. The size of the computational space in the z direc-
tion is 6000 nm with the coordinates of the boundaries
z1 = −3000 nm and z2 = 3000 nm. The dielectric film
is placed at the mid plane of the system, i.e, it is cen-
tered at z = 0. The optical pulse is generated at the left
boundary and propagates along the positive direction of
the z axis with the polarization of the electric field along
the x axis. We assume that the pulse has the following
shape,

Fx(t) = F0e
−(Γvt)2 cos(ω0t), (6)

where F0 is the amplitude of the pulse, which is related
to its power, P , thorough the relation P = cF 2

0 /4π;
τp = 1/Γv is the duration of the pulse, ω0 is the carrier
frequency of the pulse. Below we assume that the fre-
quency of the pulse is in the near-infrared (NIR) range,
~ω0 = 1.5 eV, and the duration of the pulse is τp = 4 fs.
In FDTD solutions of the Maxwell equations, we

choose the spatial step to be 1 nm, while the time step
is 0.7 attoseconds (1 as=10−18 s). These values pro-
vide convergence for both the Maxwell equations and the
Schrödinger equation – see Sec. IIB.

B. Electron dynamics

We capitalize on the fact that in our case the pulse
length τp = 4 fs is very short. In fact, it is much shorter
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FIG. 1: Schematic illustration of the pulse normally incident
on the dielectric film. The pulse is propagating in the positive
direction of axis z. The dielectric film of a finite thickness,
d < 150 nm, is placed at z = 0. The size of the system in z
direction is 6000 nm.

than typical time of the electron-electron Coulomb inter-
action τe. For instance, in such a good metal as silver,
τe ≈ 20 fs – see, e.g., Ref. 31, i.e., τp ≪ τe. Hence, during
the pulse duration the electron-electron collisions do not
have time to produce a significant effect on the electron
dynamics. Correspondingly, we will neglect the Coulomb
interaction and describe the light-matter interaction by
one-particle Schrödinger equation.
The electron dynamics in a periodic lattice potential in

the presence of an external electric field Fx is described
by the Hamiltonian:

H =
p2

2m
+ V (r) + eFx(z, t)x, (7)

where V (r) is the periodic crystal potential,m is the elec-
tron mass, and e is elementary charge. The electric field,
Fx(z, t), which is calculated from the Maxwell equations
(2)-(5), depends on the z coordinate and time t.
Without an external electric field, the periodic poten-

tial, V (r), produces the standard band structure of a
solid with conduction and valence bands. The external
electric field results in time-dependent coupling between
different bands. For Fx(z, t) periodic in t, which our field
is not, such a coupling would be described by quasiener-
gies.
Below we carry out our analysis for a multi-band sys-

tem that includes both the conduction and valence bands.
We denote the numbers of the conduction and valence
bands as Nc and Nv, respectively, where the total num-
ber of bands is Nbands = Nc+Nv. The bands are labeled
by index α = 1, . . . , Nbands.
For simplicity, we also assume that the periodic poten-

tial is separable in the x, y, and z-directions. Then for
each value of the z coordinate, the electron dynamics in
the x direction, i.e., in the direction of external electric
field, becomes decoupled from the motion along the z and

y directions. Correspondingly, in the y and z directions
the potential is periodic with period a. In the x direc-
tion, the potential is aperiodic: it is a superposition of
the periodic crystal potential and the external potential
of the uniform electric field, eFx(z, t)x, depending on the
z coordinate as a parameter and on time t.
In the absence of an external field, the eigenfunctions

of Hamiltonian (7) in the x direction are Bloch functions,
ψαk(x), which are labeled by wave vector k, −π/a < k ≤
π/a, and have the following form

ψαk(x) =
1

2π
eikxuαk(x) , (8)

where uαk(x + a) = uαk(z) are periodic Bloch unit-cell
functions. In the zero external field, the Bloch functions
diagonalize the Hamiltonian (7) yielding energy disper-
sion relation Eα(k) for a band α.
We use an approximation of the tight-binding

model32,33 for dispersion relations of the conduction and
valence bands,

Eα(k) = εα +
∆α

2
cos(ka), (9)

where ∆α is the width of band α and εα is the band
offset, which is the midpoint of the band α.
The external electric field, Fx(z, t), introduces coupling

of states of different bands and also causes time depen-
dence of the electronic wave functions. Using the Bloch
functions as the basis, we can express the general solu-
tion of the time-dependent Schrödinger equation in the
following form

Ψ(x, z, t) =

Nbands
∑

α=1

√

a

2π

∫ π/a

−π/a

dk φα(k, z, t)ψαk(x).

(10)
Here the dependence of the wave function, Ψ(x, z, t),
on coordinate z is due to electromagnetic wave propa-
gation expressed as the dependence Fx(z, t) on coordi-
nate z. Substituting expression (10) of the wave function
into the Schrödinger equation i~∂Ψ/∂t = HΨ, we obtain
equations34,35 on expansion coefficients φα(k, z, t)

i~
dφα(k, z, t)

dt
=

[

Eα(k) + ieFx(z, t)
d

dk

]

φα(k, t) +

Fx(z, t)
∑

α′

Zαα′φα′(k, z, t), (11)

where

Zαα′ =
e

a

∫ a

−a

dz uαk(z)
∗i
∂

∂k
uα′k(z) (12)

are parameters of the model, which are the dipole matrix
elements between the unit-cell Bloch functions of bands
α and α′.
For a single band and in a constant electric field Fx,

solutions of Eq. (11) are Wannier-Stark states27,28, which
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are parametrized by an integer quantum number l and
have wave functions35

φ̃αl(k) = ei[lak+γα sin(ka)], (13)

where γα = ∆α/ (2eaFx). In the coordinate representa-
tion,

φ̃αl(x) = Jl−x/a (γα) , (14)

where Jn(x) is the Bessel function of the first kind.
The corresponding energies of the Wannier-Stark

states are

ǫαl = εα + leaFx . (15)

These energies are equidistant and form the so-called
Wannier-Stark ladder36–38 with the levels separated by
the Bloch-oscillation frequency

ωB = eaFx/~ . (16)

This spacing physically corresponds to the energy needed
to move an electron by one lattice constant in the field
direction. Thus, in the constant (or, adiabatic) electric
field, the electron spectrum of the system is universal:
each band gives rise to a Wannier-Stark ladder with the
same level spacing ~ωB. While the form of the Wannier-
Stark wave functions Eqs. (13) or (14) are specific for
the tight-binding approximation, i.e., model-dependent,
the energy spectrum of the Wannier-Stark states depends
only on the lattice constant and is model-independent.
In a time-dependent electric field Fx(z, t), it is con-

venient to solve the Shrödinger equation (11) using
an adiabatic basis of the time-dependent eigenfunctions
φ̃αl(k, z, t) and the corresponding eigenenergies ǫαl(z, t),
which acquire their time dependence due to that of
Fx(z, t). These adiabatic basis wave functions we cho-
sen as

Φ̃αl(k, z, t) = exp

[

− i

~

∫

ǫαl(z, t)dt

]

φ̃αl(k, t, z) , (17)

where we have explicitly indicated the evolutionary ex-
ponent due to the phase accumulation of the adiabatic
solution.
We emphasize that this adiabatic basis describes a

system of uncoupled Wannier-Stark ladders of different
bands and does not take into account the coupling be-
tween them due to the Zener tunneling39. We will call
it an uncoupled adiabatic basis. It is different from the
complete adiabatic basis, which is a solution of the full
Scrödinger equation in a stationary (adiabatic) external
field.
We perform a discreet Fourier transform of the adia-

batic basis wave functions (17) from the integer variable
l to “quasi-momentum” −π < q ≤ π defined as

Φ̃αq(k, z, t) =
∑

l

e−iql

√
L

Φ̃αl(k, z, t) . (18)

Then the solution of the Schrödinger equation (11) can
be expressed in the following form

φα(k, z, t) =
∑

q

βα(q, z, t)Φαq(k, z, t) , (19)

where βα are expansion coefficients, which satisfy the fol-
lowing system of equations

dβα(q, z, t)

dt
= iµα(t, z)βα(q, z, t)−

i
Fx(z, t)

~

∑

α′

Zαα′καα′βα′(q, z, t) . (20)

Here

µα(z, t) = −dγα
dt

sin

(

q +
ea

~

∫

Fx(z, t)dt

)

(21)

and

καα′ = exp

{

i

[

t
ǫα − ǫα′

~
+

+ (γα′ − γα) sin

(

q +
ea

~

∫

Fx(z, t)dt

)]}

, (22)

where, as everywhere else in this article, α, α′ =
1, . . . , Nbands.
Eliminating the diagonal terms from the system (20)

via the following substitution

βα(q, z, t) = β̂α(q, z, t)e
i
∫
µαdt, (23)

we obtain the final system of equations, which describes
coupling of the states of the conduction and the valence
bands,

dβ̂α(q, z, t)

dt
= −iFx(z, t)

~

∑

α′ 6=α

Qαα′(q, z, t)β̂α′(q, z, t) ,

(24)
where we have denoted

Qαα′(q, z, t) = Zαα′ exp

{

i

[

t
ǫα − ǫα′

~
+

∆α −∆α′

2~

∫ t

−∞

dt1 cos

(

q +
ea

~

∫ t1

−∞

Fx(z, t2)dt2

)]}

.

(25)

The system of equations (24)-(25) describe dynamics of
an electron in an external time-dependent electric field
within the Nbands-band approximation.
Combining all terms in the definition of function

Φαq(k, z, t), one can derive that the solution of the
Shrödinger equation [see Eq. (19)], can be also expressed

in term of the Houston functions40 Φ
(H)
αq (k, z, t),

φα(k, z, t) =
∑

q

β̂α(q, z, t)Φ
(H)
αq (k, z, t) , (26)
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where

Φ(H)
αq (k, z, t) = δ̃ (k − kF (t))×

× exp

{

−i
(

t
ǫα
~

+
∆α

2~

∫ t

dt1 cos [kF (t1)a]

)}

,(27)

where the time-dependent wave vector is defined as

kF (t) =
q

a
+
e

~

∫ t

Fx(z, t1)dt1, (28)

δ̃(k) =
∑

n δ(k+2πn/a) with summation over integer n,
and δ(k) is the Dirac delta-function.
The system of equations (24)-(25) is applicable to an

electronic system with any number of bands Nbands. For
simplicity, below we consider only two bands: one valence
band and one conduction band, i.e., Nbands = 2. Such
two-band system captures main features of the propa-
gation of an ultrashort optical pulse through a dielec-
tric film. We assume that the dielectric is silica with
the parameters of the Hamiltonian corresponding to the
band structure of silica41. Namely, we choose εc = 0,
εv = −11.25 eV, ∆v = 0.5 eV, and ∆c = −4.0 eV. Such
values of the parameters determine the band gap of silica
equal to 9 eV.
An additional parameter, which characterizes the elec-

tron dynamics, is the interband dipole matrix element
Zvc. For a two-band system, there is only one such a
parameter corresponding to the dipole coupling of the
CB and VB. It is obvious that Zvc . ea ∼ 5 eÅ, where
we assume that the lattice constant of silica is a = 5
Å. Correspondingly, we will mostly use below values for
this parameter Zvc = 1 eÅ and Zvc = 3 eÅ. Note that
eÅ ≈ 4.8 debye.
A unique feature of the coherent dynamic equations

(24) is that the interband coupling is realized only be-
tween the states with the same value of quasimomen-
tum q. This property strongly simplifies the problem,
since now we only need to solve the finite system of two-
component (in this case of a two-band electron system)
first-order differential equations.
The relaxation processes, which take place on a longer

time scale, t & τe ∼ 20 fs, would lead to population
transfer between states with different q. In such a case
purely Schrödinger description of the dynamics would be
impossible and the dynamics could be described using,
e.g., density matrix equations.
With the known time-dependent electric field Fx(z, t),

the system of equations (24), for each value of q, deter-
mines the temporal evolution of the dressed electronic
states (in the Houston-function representation)

B = (β̂v, β̂c) , (29)

where β̂v and β̂c are amplitudes to be in the VB and the
CB, respectively.
For such states, there are two types of initial condi-

tions, B(v) = (1, 0) and B(c) = (0, 1), which correspond

to the evolution of the dressed states of the VB and
CB, respectively. During this temporal evolution, all the
dressed states B(v)(t) are occupied by electrons, while
all the dressed states B(c)(t) remain empty. Although
the dressed states B(v)(t) initially correspond to the pure
VB states, at later times they are a mixture of the initial
(unperturbed) VB and CB states.
Such a mixing of the valence and conduction bands

results in polarization (i.e., an oscillating optical dipole-
moment density) of the system. This polarization’s vec-
tor has only x components and is determined by the
dressed states B(v) only and has the following form

Px(z, t) =
1

2πa3
×

∫ π

−π

dq
[

B(v)†(q, z, t)Q̂(q, z, t)B(v)(q, z, t) + c.c.
]

,

(30)

where Q̂ is a matrix with elements Qαα′ – see Eq.
(25). Such a polarization should be substituted into the
Maxwell equation (5), which finally closes the system of
equations (2)-(5), (24), (30), self-consistently describing
the propagation of ultrashort pulse through the dielectric
system.
Similar system of equations were introduced to de-

scribe the propagation of electromagnetic pulses through
two-level systems – see, e.g. Refs. 42,43. For a two-level
system, the corresponding system of equations is a com-
bination of the Maxwell equations and the Bloch equa-
tions. Our system of equations, which describe the elec-
tron dynamics in the two-band approximation, becomes
similar to the Bloch equations for two-level systems if
the bandwidths, ∆α, are set to zero. In contrast to the
two-level (resonant atomic) systems, the quantum evo-
lution of a solid is significantly dependent on the finite
bandwidths – see Eq. (25) – that determine the adia-
batic phase, ea

~

∫

Fx(z, t)dt, associated with transitions
between the Wannier-Stark levels.

III. ADIABATIC STATES IN EXTERNAL

ELECTRIC FIELD

A. Adiabatic states of coupled two-band system

The physical picture of the unfolding processes can be
understood in terms of the full adiabatic states of the
coupled-band system, which are different from those for
the uncoupled bands introduced in Sec. II B. Such full
adiabatic states are defined as solutions of Eq. (11) at a
constant electric field Fx. It is convenient to use the
Wannier-Stark functions φαl(k) as the basis functions
and express an adiabatic state Ψ in the following form

Ψ =
∑

αl

Λαlφαl(k). (31)
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Then from Eq. (11) we obtain that the coefficients Λαl

satisfy the following equation:

EΛαl = (εα + leaFx) Λαl +

Fx

∑

α′l′

Zαα′J|l−l′|(γα − γα′)Λα′l′ , (32)

where E is the eigenenergy corresponding to Ψ. This ex-
pression of the interband coupling in terms of the Bessel
functions is a characteristic feature of the tight-binding
approximation.
The Wannier-Stark states are characterized by an in-

teger index l, which can be considered as the number of
the lattice site at which a given Wannier-Stark state is
localized. The second term in right-hand side of Eq. (32)
describes the coupling between the localized Wannier-
Stark states of different bands, which is defined by the
function

J|l−l′|(γα − γα′) = J|l−l′|

(

∆α −∆α′

2eaFx

)

, (33)

which depends on the “distance” |l − l′| between the lo-
calized Wannier-Stark states and on the difference of the
bandwidths ∆α −∆α′ .
In contrast to the electron wave functions without ex-

ternal electric field, which are delocalized Bloch states,
the Wannier-Stark states are localized along the direc-
tion of external electric field. The localization length of
the Wannier-Stark states, as follows from Eq. (14), is

LWS ∼ ∆α

|eFx|
. (34)

Due to the localized nature of the Wannier-Stark
states, we can conclude that the interband coupling is the
strongest for the nearest-neighbor Wannier-Stark states.
Indeed, at a strong electric field, ea |Fx| & ∆α (or,
LWS . a), the interband coupling has the largest value
at ∆l = l − l′ = ±1 and monotonically decreases with
increasing ∆l. For instance, assuming a realistic value
∆α = 4.5 eV, the strong electric field is & 0.2 V/Å.
Strong mixing of the Wannier-Stark states of different

bands takes place when the energy separation between
the corresponding Wannier-Stark states is comparable to
the interband coupling, i.e., under the condition of an-
ticrossing of the Wannier-Stark levels. From Eq. (15) it
follows that the anticrossing condition of two Wannier-
Stark states belonging to conduction and valence bands
acquires the form

εc − εv = a |eFx∆l| . (35)

Hence, for all members of the Wannier-Stark ladder, an-
ticrossings occur simultaneously.
The magnitude of the anticrossing gap is determined

by the value of the interband coupling (33) at ∆l = (εc−
εv)/|eaFx|. Such coupling is strongest for the minimum
value of ∆l = 1, i.e., for the largest Fx.

With an increasing external field Fx, the two-band
system undergoes successive anticrossings corresponding
to decreasing values of ∆l [see Eq. (35)]: Fx ≈ (εc −
εv)/|e|a∆l. Note that the approximate nature of this
relation is due to the fact that a strong coupling causes
shifting of the anticrossing points with respect to the val-
ues of Eq. (35) expected for the weak coupling. The final
and strongest (with the maximum gap) anticrossing oc-
curs at ∆l = 1 at an electric field Fx ≈ (εc − εv)/|e|a.
To illustrate relative strengths of the anticrossing gaps,

we show in Fig. (2) the energy levels of a finite two-band
system consisting of 50 crystallographic planes in the
field direction; correspondingly, there are 50 Wannier-
Stark states in each of the two (valence and conduc-
tion) Wannier-Stark ladders. This energy spectrum is
calculated from Eq. (32). Two sets of anticrossings are
clearly visible. These correspond to ∆l = 1 (at Fx ≈ 2.6
V/Å) and ∆l = 2 (at Fx ≈ 1.1 V/Å), i.e., the anti-
crossings of the nearest neighbor and the next-nearest
neighbor Wannier-Stark levels of the conduction and va-
lence bands. The largest gap at the ∆l = 1 anticross-
ing illustrates the strongest interband coupling for the
nearest-neighbor Wannier-Stark states.
Within an optical half-cycle of the time-dependent field

of a strong optical pulse, the Wannier-Stark levels can
experience a number of anticrossings as the field increases
(corresponding to |∆l| = Np − 1, Np − 2, . . . , , 2, 1, where
Np is the number of the crystallographic planes in the
direction of the field), and then the same number of the
anticrossings occur as the field decreases. The passage
of any such an anticrossing corresponding to a given ∆l
will be adiabatic if ~ω0 ≪ ∆Eac (where ∆Eac is the
corresponding anticrossing splitting) and diabatic in the
opposite limiting case – see Sec. IVB.

B. Wannier-Stark levels in adiabatic field

The analysis of the previous section is based on the pic-
ture of the Wannier-Stark states and anticrossing of such
states when the electric field is varied. Such analysis is
valid only if it is enough time for the time-dependent elec-
tric field to form the Wannier-Stark states. To analyse
the formation of the Wannier-Stark states we consider in
this section a single-band system, which is characterized
by zero offset energy, ε1 = 0, and finite band width, ∆1.
The condition of formation of Wannier-Stark states can

be expressed in a following way. The physical origin of
Wannier-Stark localization and quantization is the inter-
ference of electron packages, first accelerated by electric
field and then reflected from the periodic lattice poten-
tial. The motion of an electron with 1D wavevector k,
pointing along the direction of electric field, is described
by the following equation

dk

dt
=
e

~
F. (36)

The electron motion in reciprocal space is restricted by
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FIG. 2: Energy spectra of two-band system as a function of
external uniform electric field. The two bands correspond to
valence and conduction bands of silica with the energy gap of
9 eV. The band edges are shown by arrows, and anticrossings
are marked by red ovals. Only the strongest anticrossings,
corresponding to ∆l = ±1 and ∆l = ±2, are shown. The
anticrossing gap is the strongest for ∆l = ±1.

the values of k within the first Briullien zone, i.e., −π/a <
k < π/a. Therefore, the wavevector k, after reaching
the point π/a following equation of motion (36), will be
Bragg-reflected to the point−π/a. Such reflections result
in periodic Bloch motion of electron in reciprocal space
with the period

TB =
2π

ωB
. (37)

Therefore, the time of formation of Wannier-Stark states
is the period of Bloch oscillations, TB. This time should
be compared to the rate of change of electric field to
determine the applicability of description in terms of
Wannier-Stark states. For example, for F = 2 V/Å and
a = 5 Å the period of Bloch oscillations is TB ∼ 0.4 fs.
The wave functions, introduced in Sec. IIB to describe

the electron dynamics, are the Houston functions (27),
which at zero electric field are Bloch functions and at
finite electric field depend on time t through the time-
dependent wavevector, kF (t). Even at constant electric
field, these functions are not stationary: they depend on
t and contain information about the stationary Wannier-
Stark functions. To demonstrate this, we perform a slid-
ing Fourier transform of the Houston function (27)

ψlq(x, t) =

∫ t+∆t/2

t−∆t/2

dt′eilωBt′
∫ ∞

−∞

dk

2π
e−ikxΦ(H)

q (k, t′) .

(38)
In Fig. 3, we show the driving field F (t) as a function of
time t [panel (a)] and the time-dependent wave functions
ψlq(x, t) for q = 0 (i.e., originating from the Γ-point of
the Brillouin zone) for two moments of time t: when
field F near its maximum, F = 2.1 V/Å [panel (b)] and

(a)

F=2.1 V/Å

F=0.6 V/Å
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FIG. 3: Driving electric field and localized electronic states.
(a) Electric field of an optical pulse with frequency ~ω0 = 1.5
eV and pulse length τp = 4 fs as a function of time t. The elec-
tronic states were computed at points in time 1 and 2 with
instantaneous fields F = 2.1 VÅ and F = 0.6 VÅ, respec-
tively, marked by the red dots. (b) Sliding Fourier transform
(38) of the Houston functions (27) calculated for instanta-
neous field F = 2.1 VÅ at the energies of the Wannier-Stark
ladder El = l~ωB , where l is integer. The curves are displaced
vertically according to El. The red and black colors denote
the VB and CB ladders, correspondingly. The width of the
time window of the sliding Fourier transform is ∆t = 0.5 fs.
(c) The same as (b) but for F = 0.6 VÅ.

at the moment when F is relatively low, F = 0.6 V/Å
[panel (c)]. In all cases, these wave functions are well-
defined Wannier-Stark localized states. For a strong field
[Fig. 3(b)] their localization is much stronger than for a
moderate field [Fig. 3(b)], as expected. Also, the spatial
width of these wave functions in the CB is significantly
greater than in the VB because the CB energy width is
much greater, in accord with Eq. (14).

In such a way, we can assume that for F & 1 V/Å the
description of electron dynamics in terms of Wannier-
Stark states is applied. This is the range of electric field,
within which the strong anticrosssings of Wannier-Stark
levels of different bands are expected.
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IV. RESULTS AND DISCUSSION

A. Enhancement of reflection of the optical pulse

A strong optical pulse propagating through a dielectric
film causes nonlinear modification of its electronic sys-
tem, which through the dielectric polarization Px changes
the propagation of optical pulse itself selfconsistently.
Consequently, the reflectance of the strong pulse should
significantly depend on the intensity of the pulse, i.e., on
its peak electric field, F0.
Consider a moment of time tf when the reflected and

transmitted pulses are well separated as ishown in Fig. 4
for a 100 nm dielectric film. Both the pulses, reflected
and transmitted, have the shapes similar to that of the
incident pulse and propagate away from the film. Re-
flectance R, which is defined as the reflected fraction of
the optical pulse energy, is calculated from the following
expression

R =

∫ 0

−∞ dz|Fx(z, t = tf )|2
∫ 0

−∞
dz|Fx(z, t = 0)|2

, (39)

where z = 0 is the coordinate of the left boundary of the
dielectric film. It is assumed that the incident pulse is
generated at t = 0 far away from the film.
In a similar way, we can calculate absorption of the

optical pulse as the fraction of its absorbed energy. For
the pulse intensity P not too high, i.e., for the in-
tensity smaller than the breakdown threshold intensity,
PB ≈ 2.5 × 1014 W/cm2 for a few-femtosecond pulse,
our calculations indicate (results not shown) that the ab-
sorbance A of the pulse in a thin dielectric nanofilm is
small, A . 1 − 2 %. This is much smaller than the re-
flectance of the pulse, R ∼ 20 %. This fact suggests that
the interaction of the ultrashort strong pulse with the
dielectric is reversible, non-damaging.
The reflectance R depends also on the thickness h of

the film, which is due to interference of the transmitted
optical wave with that reflected from the back boundary
of the film. In Fig. 5(a), the dependence of the reflectance
on the thickness of the film is shown for two pulses with
different intensities. The reflectance is small for a small
thickness of the film, and it reaches its maximum value at
a finite thickness h, which is a behavior characteristic of a
very thin Fabry-Pérot interferometer (this is a part of the
first Fabry-Pérot oscillation). This maximum is reached
at h ∼ λ/neff , where neff is the effective refractive index
of the film. In this maximum, an analytical solution of
the Maxwell equations yields the following expression for
the reflectance44,

Rmax ≈
(

1− n2
eff

1 + n2
eff

)2

. (40)

The reflectance shown in Fig. 5(a) increases from R =
13% to R = 25% when the field amplitude increases from
F0 = 0.1 V/Å to F0 = 3.5 V/Å. This corresponds to the

F0 = 2.4 V/Å
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FIG. 4: Spatial distribution of the electric field of the pulse
at a moment of time when the laser pulse just passed through
the dielectric film. The well-formed transmitted and reflected
pulses are clearly visible. The pulses propagate away from
dielectric film, which is shown schematically by red line. The
peak electric field of the incident pulse is 2.4 V/Å. The thick-
ness of the dielectric film is 100 nm. The reflectance of the
pulse is R = 19 %.

increase of the effective index (40) from neff = 1.46 to
neff = 1.73, i.e., the effective index change is ∆neff = 0.2.
To compare, with the known Kerr constant for silica45

n2 = 3.2 × 10−16 cm2/W and the peak pulse power
P0 = 1.6 × 1014 W/cm2 (corresponding to F0 = 3.5
V/Å), the Kerr-effect increase of the index would have
been ∆neff = 0.05, i.e., significantly less than predicted
by the present theory – see Fig. 5 (b) where the black
curve displays the theory prediction, and the red one
shows the Kerr-effect reflectance. This implies that in
high fields the dielectric (silica) becomes much more po-
larizable (“softer”) than expected from the low-field be-
havior. This softening is interpreted as a precursor to the
adiabatic metallization11,13, which is incomplete because
the present field is too fast to be adiabatic.

In Fig. 6 we display polarization relative to the max-
imum pulse field χeff = Px/F0; note that εeff =
max [4π |χeff |] is the corresponding contribution to effec-
tive maximum permittivity. This relative polarization is
computed for the mid-plane of a h = 100 nm nanofilm
and for the optical pulse with peak value of F0 = 2.4
V/Å. This effective permittivity contribution is signifi-
cant, εeff ≈ 2.5, which again implies the field-induced
softening of the dielectric.

The increase of the refractive index in a strong external
electric field of the optical pulse is due to generation of
non-linear internal polarization, Px, of the system. Such
polarization is determined by the nonlinear mixture of
the states of the valence and conduction bands. Such a
mixture can be described in the basis of the Wannier-
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FIG. 5: (a) The reflectance of the laser pulse as a function of
the thickness of the silica film is shown for two pulses with
high (black line) and low (red line) intensities with corre-
sponding peak electric field values F0 = 2.4 V/Å and F0 = 0.1
V/Å (red line). (b) The reflectance of the laser pulse as a
function of the peak electric field of the pulse is shown for the
100 nm dielectric film (black line). A reflectance prediction
from the Kerr effect (red line) – see the text: Eq. (40) and
below.
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FIG. 6: Time-dependent relative polarization χeff = Px/F0

for silica film of h = 100 nm thickness calculated from Eq. (30)
for laser pulse with the amplitude of 2.4 V/Å (black curve).
Electric field of the pulse as a function of time (red curve).
Both the polarization and the field are calculated in the mid-
plane of the dielectric film.

Stark states. In this basis, the interband coupling is a
nonlinear function of electric field and is the strongest
near the anticrossing points of the Wannier-Stark energy
ladders.

To illustrate this effect, consider the adiabatic levels of
the system (see Sec. III) shown in Fig. 7 where we dis-
play a small fragment of the band diagram of Fig. 2 in an
intermediate region of fields along with interband dipole
transitions denoted by the vertical arrows and popula-
tion of the filled and empty states indicated by filled and
empty circles, respectively.

Figure 7 (a) illustrates a case of the diabatic passage
of the level anticrossings, where this passage occurs so
rapidly that these anticrossings are ignored by the sys-
tem. The condition of the diabatic passage is δ ≫ 1
where δ = ~ω /∆ac is the so-called adiabatic param-
eter, and ∆ac is the anticrossing splitting energy. In
Fig. 7 (a), the crossed arrows indicate the direction in
which the populations and wave functions are preserved
through the anticrossings. As one can see from the en-
ergy scale, in the vicinity of the anticrossings, there are
allowed transitions (i.e., those between the empty and
filled levels) in the near-infrared/visible (nir-vis) spectral
region, i.e., within the spectral width of the excitation
pulse. These transitions are responsible for the polar-
ization discussed above in conjunction with Fig. 6. As
one can see, all the transitions in this case occur between
the terms that are not parallel, which in accord with Eq.
(35) implies that the corresponding Wannier-Stark states
are localized at different lattice sites. Given that at such
fields these states are strongly localized (cf. Fig. 3), the
overlap of the wave functions of such states localized at
different sites is relatively small. Therefore the dipole
transitions between them are suppressed and the corre-
sponding polarization is not large. This appears to be
the case for the conditions under consideration.

The opposite limiting case of the adiabatic (i.e., for
δ ≪ 1) passage of the anticrossings is illustrated in Fig.
7 (b). In this case, the population stays on a continuous
line (term), as the curved arrows indicate, while the wave
functions are exchanged when an anticrossing is passed.
Such an exchange implies transfer of the electron popula-
tion in space between different lattice sites. As a result,
there are strong transitions between parallel terms, i.e.,
between the Wannier-Stark states localized at the same
lattice site. One such a transition is indicated by the
bold red arrow in Fig. 7 (b). These transitions, which
appear due to adiabatic population transfer, are analo-
gous to those appearing due to metallization of dielectric
nanofilms11,13.

In Fig. 8, we show the temporal dynamics of the inci-
dent pulse field (black curve) and that of the field inside
the dielectric (at the mid plane of the nanofilm) shown by
the red curve. This internal field is of importance since
it self-consistently determines electron dynamics in the
dielectric. This field is suppressed compared to the field
of the incident pulse due to reflection from the dielectric-
vacuum interface. This reflection is enhanced because of
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FIG. 7: Fragment of the adiabatic energy levels of the
nanofilm as function of the applied electric field. The ver-
tical arrows indicate allowed dipole transitions in a near-
infrared/visible frequency region. The arrows at the anticross-
ing points show pathways of the passage of the anticrossings.
The open (filled) circles denote empty (filled) states. The line
color codes the order of levels in their energy. (a) Diabatic
passage: at the anticrossing point the states with the given
quantum numbers preserve their population. The crossed ar-
rows indicated the directions in which the population is pre-
served. (b) Adiabatic passage: the population is conserved for
both the lower and upper levels as indicated by the curved ar-
rows. The bold red arrow shows the strongest transition that
occurs between the parallel levels (terms) corresponding to
the Wannier-Stark states localized at the same lattice site,
one of which is empty and the other populated.

the polarizability of the dielectric is increased due to the
enhanced nonlinear effects both in the diabatic and adia-
batic pathways – see above the discussion of Fig. 7. Note
that the internal field pulse (the red line) is almost (but
not perfectly) symmetric with respect to its maximum
point, which implies that the excitation of the dielectric
by the strong field is almost reversible: very little popu-
lation of the CB is left behind after the pulse ends. Nev-
ertheless, there is some small but appreciable asymmetry
of the internal field pulse with respect to its maximum:
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FIG. 8: The electric field of the incident optical pulse (black
line) and the electric field at the midpoint of the dielectric
film (red line) are shown as functions of time. The graphs are
shifted in time so that the maxima of two dependencies occur
at the same moment of time. The thickness of the film is 100
nm and the amplitude of the laser pulse is F0 = 2.4 V/Å.

on the trailing edge the internal field is somewhat smaller
compared to that at the leading edge implying that a rel-
atively small population is left behind by the strong pulse
– see also below Fig. 9 and its discussion.

B. Dynamics of electron system

The electric field of the optical pulse induces mixing of
the electronic states of the VB and CB. The amplitudes
for an electron to be in the VB or CB is given by pro-
jection of its exact time-dependent wave function onto
the unperturbed states of the corresponding band (VB
or CB). The occupied electron states, which are initially
the valence band states, are represented by wave func-

tions B(v) =
(

β̂
(v)
v , β̂

(v)
c

)

[see Eq. (29) above] and have

both the VB and CB components. The CB occupation
Nc(t) is given by

Nc(t) =

∫

dz

∫

dq
∣

∣

∣
β̂(v)
c (q, z, t)

∣

∣

∣

2

, (41)

where the integral over momentum q is extended over the
first Brillouin zone, and the z-integral is extended over
the nanofilm thickness. The conduction band popula-
tion of Eq. (41) is a fundamentally observable quantity,
though in practice it may not be easily measurable. Phys-
ically, Nc determines such a particularly important effect
as Pauli blocking of the VB to CB transitions.
The occupation Nc of the CB states is shown in Fig. 9

for the interband dipole parameter Zvc = 3.0 eÅ and
amplitude of the optical pulse F0 = 2.4 V/Å. The con-
duction band occupationNc is clearly behaving as a func-
tion of the instantaneous electric field of the pulse, more
precisely of |F (t)|. This occupation has its maximum
values at the maxima and minima of the pulse electric
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FIG. 9: The time-dependent conduction band population, de-
fined by Eq. (41), is shown for dielectric film with the thick-
ness of 100 nm. The amplitude of the pulse is 2.4 V/Å. The
electric field at the midpoint of the film is also shown. There
is a correlation between the the conduction band population
and electric field of the pulse. There is also small residual
population, illustrating that the electron system almost re-
turns to the original state after the pulse passes through the
film. The interband dipole matrix element is Zvc = 3.0 eÅ.

field. In addition to a smooth time-dependent part of Nc,
which follows |F (t)|, there are also fast oscillations with
frequency close to the ∆g/~, where ∆g is the bandgap.
There is also a small, ≈ 0.5%, residual population of the
CB after the pulse passes through the film. This small-
ness of the residual population is due to the circumstance
that both the pure diabatic and adiabatic passages of the
anticrossings do not leave the residual population. In our
case, this residual population, as well as the fast popula-
tion oscillations, are likely to be due to impure diabatic
passages (i.e., the passages that are fast but not infinitely
fast). Note that oscillations of a similar nature are also
seen in the polarization and internal field – see Fig. 6.

Above in this Section, we have considered the electron
dynamics for a fixed interband matrix element Zvc =
3 eÅ. There is a nontrivial dependence of the electron
dynamics on this matrix element that we will discuss be-
low.

In Fig. 10 (a), results are shown for a relatively low
dipole interband coupling, Zvc = 1.0 eÅ. For an anti-
crossing at ∆l = 2 (the next-nearest neighbor), the an-
ticrossing splitting (gap) is very small ∆ac ≈ 0.03 eV;
correspondingly δ ≫ 1, and the passage is extremely
diabatic. For the anticrossing at ∆l = 1 (the nearest
neighbor anticrossing, which occurs last as the electric
field increases), ∆ac ≈ 1 eV. With ~ω0 = 1.5 eV, δ ∼ 1,
and the passage of this last anticrossing is intermediate
between diabatic and adiabatic; consequently, one can
expect a significant residual CB population to occur (see
also discussion below in Sec. V).

The corresponding dynamics of the CB population for

Zvc = 1.0 eÅ

Zvc = 3.0 eÅ
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FIG. 10: Adiabatic energy spectra of two-band system is
shown as a function of external electric field for different val-
ues of Zvc: (a) Zvc = 1.0 eÅ, and (b) Zvc = 3.0 eÅ. The two
bands are the VB and CB of silica with the energy gap ∆g = 9
eV. This two-band system is finite and each band consists of
50 energy levels. The anticrossing points with ∆l = 1 and
∆l = 2 are shown.

this low interband coupling matrix element Zvc = 1.0 eÅ
is displayed in Fig. 11 (a). As we see, both the maximum
population (at t ≈ 2 fs) and the residual CB population
(for t > 6 fs) monotonously increase with the excitation
field amplitude F0. The CB population (both maximum
and residual) becomes very large, Nc ≈ 20 − 40%, for
F0 ≥ 2.8 V/Å leading to an increased deposition of en-
ergy and possible dielectric breakdown.

The adiabatic levels for a larger dipolar coupling,
Zvc = 3.0 eÅ, are illustrated in Fig. 10 (b). Note that
anticrossings for a given ∆l are shifted to higher fields
with respect to the case of low dipolar coupling [cf. Fig.
10 (a)]. For the anticrossing at ∆l = 2, ∆ac ≈ 0.3 eV and
δ ≈ 5; thus the passage of this anticrossing is mostly di-
abatic. In contrast, for ∆l = 1, ∆ac ≈ 5 eV and δ ≈ 0.3;
hence, this anticrossing is mostly adiabatic. However, it
occurs at a very high field F0 = 3.5 V/Å where electric
breakdown is likely to occur even for such short excita-
tion pulses [see also below in the discussion of Fig. 12 (b)
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FIG. 11: Time dependent CB population is shown for dif-
ferent amplitudes of the laser pulse and different values of
parameter Zvc: (a) Zvc = 3.0 eÅ and (b) Zvc = 1.0 eÅ. The
numbers next to the lines are the corresponding amplitudes
of the laser field. The thickness of the film is 100 nm. At
Zvc = 1.0 eÅ [panel (b)] there is a large residual population
of the conduction band, while at Zvc = 3.0 eÅ [panel (a)] the
residual population of the conduction band is small.

and Sec. V].
The dynamics of the CB population for the case of

large dipolar coupling, Zvc = 3.0 eÅ, is illustrated in
Fig. 11 (b). The most dramatic feature is the sharply
reduced residual population as compared to Fig. 11 (a),
Nc < 2% for all fields. This indicates high reversibil-
ity of the excitation in this case. The peak population
is reached close to the maximum of the excitation pulse
(t = 0); its value at the highest field is significantly re-
duced comparing to the case of weak coupling. Physi-
cally, this counterintuitive behavior (the reduction of the
residual and maximum populations with respect to the
case of weak coupling) is related to fact that the WS
anticrossings occur at a higher field, and the one within
the range of fields considered (∆l = 2) is highly diabatic,
which prevents a large population transfer.
The dependence of the CB population Nc on the dipo-

lar coupling constant Zvc at a fixed pulse amplitude
F0 = 2.4 V/Å is displayed in Fig. 12 (a). In the ini-
tial part of the excitation pulse (t < −1 fs), i.e., for
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FIG. 12: Population of the CB versus time and peak electric
field. The thickness of the film is 100 nm. (a) Time dependent
CB population is shown for a given amplitude of the laser
pulse, F0 = 2.4 V/Å, and different values of parameter Zvc as
indicated. (b) The maximum CB population as a function of
the peak electric field F0 for two values of the interband dipole
matrix element Zvc = 1.0 eÅ (red curve) and Zvc = 3.0 eÅ
(black curve).

low excitation fields, the population Nc monotonously
increases with Zvc, as intuition would predict. At the
pulse maximum, the dependence on Zvc saturates but
still is monotonous. In contrast, the residual (t > 6 fs)
population dependence on the dipolar coupling is non-
monotonous. For a low coupling, Zvc = 0.5 − 1 eÅ,
Nc increases with Zvc, which is characteristic of the di-
abatic case where the coupling is mostly perturbative.
Counterintuitively, with further increase of the coupling,
Zvc > 1 eÅ, the residual population decreases with in-
crease of Zvc. This is related to the fact that only the
last anticrossing (the one with ∆l = 1), which can have a
significant anticrossing gap, shifts to larger, unattainable
fields. The anticrossing gaps for ∆l ≥ 2 are very small
and, consequently, the corresponding dynamics is deeply
diabatic. This deeply diabatic dynamics is mostly pertur-
bative and contributes little to the population transfer.
The CB population Nc at its maximum value during

the pulse determines the heat production and damage of
the dielectric. This important quantity is displayed in
Fig. 12 (b) against the peak electric field for two typi-
cal values of the interband dipole element Zvc. The free
electron gas populating CB is characterized by the ratio
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η = RTF /aB, where RTF is the Thomas-Fermi screening
radius and aB is the Bohr radius,

RTF =
2e
√
m∗

c (3n)
1/6

π1/6~
√
ǫ

, (42)

aB =
ǫ~2

m∗
ce

2
, (43)

where n = 2Nc/a
3 is the maximum CB electron density,

ǫ ≈ 2.3 is the silica permittivity, and m∗
c is the electron

effective mass for the CB, whose experimental value is46

m∗
c ≈ 0.86m.
The electron gas in the CB possesses metallic behavior

for η . 1 which means that excitons are screened out,
and the electrons behave as a free gas. Judging from
Fig. 12 (b), such a behavior sets on for F0 & 2.5 V/Å
(irrespectively of Zvc) where Nc & 0.15 and, correspond-
ingly [see Eqs. (42)-(43)], η . 1.2. Thus, F0 ≈ 2.5 V/Å
is the breakdown field amplitude, which corresponds to
the peak pulse intensity ≈ 1.7× 1014 W/cm2.

V. CONCLUDING DISCUSSION

Let us briefly summarize fundamentals and main re-
sults of this article. One of the main points is non-
damaging character and reversibility of the interaction
of intense and ultrashort laser pulses with a dielectric.
These are determined by the maximum and residual elec-
tron population, Nc, of the CB – see Figs. 11 and 12. In
these figures, we can see that the maximum CB popula-
tion grows dramatically to ∼ 20 − 40% for the peak ex-
ternal field F0 = 2.4−3.6 V/Å corresponding to the peak
intensity ∼ 1.5×1014−3.4×1014 W/cm2. These numbers
are rather reliable because they relatively weakly depend
on the interband dipole matrix element Zvc whose exact
value is not precisely known. As we have shown at the
end of Sec. IVB, it is likely that the metallic behavior of
the electron gas in the CB and, correspondingly, break-
down occur for the peak field F0 & 2.5 V/Å or peak pulse
intensity & 1.7× 1014 W/cm2.
Previously it has been predicted25 that for significantly

longer 16-fs pulses with a twice higher carrier frequency of
3.1 eV the breakdown intensity is ≈ 1015 W/cm2. This is
significantly higher than predicted by our calculations for
≈ 4-fs pulses of 1.55 eV frequency. This difference is even
more significant if one keeps in mind that the damage
threshold should considerably decrease with increasing
the pulse length and carrier frequency. Notice that our
coherent approach is not applicable for such long pulses
as 16-fs due to importance of electron-electron scattering
at such long times.
The effective reversibility of the pulse-film interaction

is mostly determined by the residual CB population after
the end of the pulse: such a low population implies that
the next pulse would feel almost the same system as the
initial one. One has to keep in mind that the residual CB
population decays due to radiative interband transitions

and lives for a very long time ∼ 100 ps47, which is many
orders of magnitude longer than the characteristic times
of the process of excitation and dephasing relaxation con-
sidered in our article. In contrast to the maximum CB
population, the residual one very significantly depends
on the interband dipole matrix element Zvc – cf. Figs.
11 (a) and (b) and also see Fig. 12. Interestingly enough,
the dependence on Zvc is non-monotonic: it is increasing
for Zvc . 1 eÅ and sharply decreasing for Zvc & 1 eÅ.

This highly nontrivial dependence is due to the fact
that the residual population of the conduction band is
most efficiently created in the case intermediate between
the pure adiabatic and diabatic regimes where the adia-
batic parameter δ ∼ 1. In fact, in the extreme adiabatic
case (δ ≪ 1), the population at the leading edge of the
pulse is very efficiently transferred to the CB at the level
anticrossing point, just as it happens in the process of the
adiabatic metallization11. However, at the trailing edge
the population transfer at the anticrossing point occurs
in the reverse direction, to the VB, resulting in a very
low residual CB population13. Such reversibility is gen-
erally characteristic of adiabatic processes. In the oppo-
site limiting case of a very diabatic process (δ ≫ 1), the
anticrossings are largely ignored by the system, and very
little population transfer occurs. Only in the intermedi-
ate case, δ ∼ 1, there is a significant residual population
of the CB as we have already discussed above in conjunc-
tion with Fig. 10.

A major observable quantity in our work is re-
flectance of the strong ultrashort pulses from the di-
electric nanofilm. The predicted reflectance of a pulse
increases with the pulse peak field F0 [Fig. 5(b)] much
stronger than the perturbative theory of Kerr effect sug-
gests. This implies that the response of the nanofilm
is deeply non-perturbative even in the range below the
presumed breakdown threshold F0 ≈ 2.5 V/Å. Inter-
estingly enough, the waveform of the reflected pulse is
almost identical to that of the incident pulse. This is a
consequence of the reversibility of the pulse interaction
with the nanofilm under our conditions; if this interaction
were not reversible, e.g., if a significant electron popula-
tion were accumulated in the CB toward the end of the
pulse, then the trailing edge of the reflected pulse would
be significantly higher than the leading edge due to a
plasma-like response.

The underlying cause of the high reflectivity is the
“softening” of the dielectric, i.e., a significant increase of
its polarizability, in the strong field, which is illustrated
in Fig. 6. This softening is significant: the correspond-
ing contribution to the maximum permittivity is large,
εeff = 4πmax [|χeff |] ≈ 2.5, which causes more than dou-
bling the permittivity of silica. This is related to the
allowed low-frequency transitions between the adiabatic
energy levels of the system in the vicinities of the anti-
crossings of the Wannier-Stark levels shown in Fig. 7.

The phenomena described above in this article are
driven by the instantaneous pulse field rather than its in-
tensity or field integral (“area” of the pulse). This points
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toward a fundamental possibility of ultrafast (with band-
width comparable to the optical frequency) field effect
devices based on dielectrics similar to but much faster
than the field effect transistors (FETs)48–50 fabricated
from the much “softer” semiconductors. To explain this
analogy, in the case of the FET, the charges at the gate
electrode by their electrostatic field attract the minor-
ity carriers causing the adjacent channel of the FET to
conduct. Similarly, in our case the instantaneous electric
field of the light wave may be thought of as inducing the
appearance of the carriers (electrons in the previously
empty conduction band and the respective holes in the
valence band), which causes the dielectric to conduct.
To conclude, we have described a number of highly-

nonlinear (non-perturbative) phenomena in dielectric
(silica) nanofilms subjected to nearly-single-period strong
optical pulses whose field can be just below the predicted
breakdown threshold of ∼ 2.5 V/Å. These results show
possibility of fundamental phenomena and applications

based on field control of dielectrics very much similar to
the phenomena occurring in semiconductors used in field-
effects transistors. The strong but short optical fields
lead to the optical-electric softening of the dielectrics.
These phenomena are defined by the instantaneous op-
tical field rather then the pulse intensity or its field in-
tegral. Thus these phenomena are among the fastest in
optics.

Acknowledgments

This work was supported by Grant No. DEFG02-
01ER15213 from the Chemical Sciences, Biosciences and
Geosciences Division and by Grant No. DE-FG02-
11ER46789 from the Materials Sciences and Engineering
Division of the Office of the Basic Energy Sciences, Office
of Science, U.S. Department of Energy.

1 M. Gertsvolf, M. Spanner, D. M. Rayner, and P. B.
Corkum, J. Phys. B 43, 131002 (2010).

2 A. V. Mitrofanov, A. J. Verhoef, E. E. Serebryannikov,
J. Lumeau, L. Glebov, A. M. Zheltikov, and A. Baltuška,
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