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We propose several topological order parameters expréssedns of Green’s function at zero frequency
for topological superconductors, which generalizes tle®ipus work for interacting insulators. The ¢beient
in topological field theory is expressed in terms of zero ity Green'’s function. We also study topological
phase transition beyond noninteracting limit in this zeemfiency Green’s function approach.
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I. INTRODUCTION instead of the more conventional symmetries such as time re-
versal symmetry. In the present paper, we will focus only on
entrme more conventional cases, namely superconductors with-

topics in condensed matter physis These phases of mat- out any additional symmetry and superconductors with time
reversal symmetry, since these cases are closer to real mate

ter are interesting in that their bulk is gapped but their sur’. | bl . : B di h ious|
face is robustly gapless. Among these topological phaseréa pro E:j"(];s In e:xgenm_ents. y eﬁten ing the grewousy
are topological insulators, including quantum Hall insate?, ~ Mentioned Green’'s function approach to superconductas, w

and the recently discovered time reversal invariant togolo will obtain se_veral simple yet general topological order pa
ical insulators including the quantum spin Hall insulafots rameters for interacting superconc_iuctors. These topedbgi
and its three-dimensional(3d) generalizatidnOn the other order parameters are expressed in terms of zero f_requency
hand, many superconductors have gapped fermionic spectru eens function, which are easy to compute by various nu-
in the bulk, therefore, they can also be topologically dtass mencal methods a}nd arllalyfucal cal_culatlon_s. We also p_ltese
fied. For free fermion systems, the topological classifirati _swnple anmﬁjleﬁ In Wh|ch_|_nteract|rc])_rﬁ1;ect induce Eontrlz-

of insulators and superconductors are well establisheddy p 12! toPological phase transitions, which are nevertheles

vious work§€-1%. The central tools in these topological clas- described W'th'n our app.roach. ,
sifications are various band topological invari&ft12-15 The rest of this paper is organized as follows. In Sec.ll we

starting from the classical Thouless-Kohmoto- Nightirgal Present topological_order parameter for 2d chiral su;?ercon
den Nijs(TKNN) invarianté. In the presence of interactions, ductors expressed in terms of zero frequency Green's func-
topological states of matter can be generally defined ingermtion. and then in Sec.lil we study a simple but nontrivial
of the topological response functions within topologiceldi ~ nsatz to illustrate the application of our new formula in
theory. Recently, there are great interests in the field of in-Strongly correlated systems. In Sec.lV we present topelogi
teracting topological insulatof28. Among the most urgent cal order parameter for 3d time reversal invariant to_pcd_ag|
problems in the field of interacting topological insulatrgo ~ SuPerconductors. Then in Sec.V we obtain the gravitational
formulate topological invariant®pological order parameters @ngle in terms of Green's function, and show that it is exactl
to distinguish diferent topological phases. To this end, topo-9iven by the winding number of zero frequency Green's func-
logical order parameters expressed in terms of Green's fund!On Proposed in Sec.V. In Sec.VI, we discuss generabrati
tion for interacting topological insulators were propced ©f zero frequency Green's function approach to gapless sys-
There are much recent interest in the Green’s function ap€Ms: We then make several concluding remarks in Sec.VIl.
proach to interacting topological insulat#t$4 More re- Elnal_ly, |n_a_1ppend|ces we collect various exact Green $_fun
cently, it was proposed that topological order parametans c tlon_ identities for sgpercondugtors, which are use_ful i th
be expressed in terms Green’s functions at zero frequencfain text, and detailed derivations of several equatiortiseén
without losing any informatio??36 which greatly simplifies ~Main text.

numerical calculatiorf§37*8and analytical calculation.

The theory of interacting topological superconductors are

Recently topological phases have been among the ¢

still less investigated compared to topological insulgtoin II.  CORRELATED CHIRAL TOPOLOGICAL

Ref3%4% it has been proposed that gravitational topological SUPERCONDUCTORSIN TWO DIMENSIONS

field theory can be formulated to describe interacting 3&tim

reversal symmetric topological superconductdts*: how- In this section, we will obtain topological order parameter

ever, there is no explicit formula for the angle appearing for chiral superconductors. This topological order parame
in the 6 term (even for noninteracting systems). Thereforeter is expressed in terms of zero frequency Green’s function
it is generally a dficult task to determine the topological This is analogous to the generalized first Chern number for
class of a given interacting superconductor. Recentlyethe quantum (anomalous) Hall insulatdts however, there are
are several studies on interacting superconductors4fr?d differences between the two, among which the most promi-
in which some judiciously chosen symmetries are imposeaent is the breaking of) (1) gauge symmetry for supercon-



ductors. More precisely, the Green’s function matrix cortda winding number defined from interacting Green'’s function at
four submatrices, which are nonetheless not independémt wi all frequency, which is explicitly given 8%
each other. The fermion operators &g, « = 1,2...N,

where o refers to any degree of freedom other than mo- p, _ 1 fd3kTr (69, GYNGo.G-INGI.G D (5
mentum. We can define theN2component Nambu opera- 2452 [€7(G6.67)(G0,6 )(G2,6 ) (5)

tor as¥(k) = (ck, cfk)T. The Matsubara Green’s function __ . . .

_ i ) B i + ) This topological quantum number measures the quantized
is defined aop(io, k) = — [ €“(T:Wa(r, ¥4(0,K) With  thermal Hall éfect’®. We can prove the equivalence

a,B = 1,2...2N. The Green'’s functioy are decomposed

into four submatrices as Nz = Cy (6)
i K = [ Caliw, k) Ge(iw, k) 1) by similar calculation to its analogue in the quantum Hall
G(iw,K) G K G K 1) 6 . . . .
c(iw,K) Gp(iw,K) effecS. The key idea is to introduce a smooth deformation

of G(iw, k) which does not changd,. Due to intrinsic prop-

where erties of Green'’s functions, a simple deformation conmegcti

_ i + G(iw, K) to an “dfective noninteracting” Green’s function can
(Ga)opliw,K) = - . dre (T Cu (7, K)Cyy (0. K)) be found (see Appendix B for details) , it can thus be shown
5 that N, is fully determined by zero frequency Green'’s func-
(Ge)opliw, K) = _f dre“ (T Cro (T, K)C_ks(0, K)) tion. This leads exactly tdl, = C;. The readers are referred
0 to Appendix B for details of calculations, which is a straigh

B e : forward generalization of the derivations in REf.
_ﬁ dre"(T.c, (7 k)Ck[)’(O’ K)) Similar to the cas¥ of quantum Hall insulators, Eq.(6)

8 shows that it is unnecessary to do frequency integral tambta
_ f dTei“”<TTCika(T, K)c_is(0, K)) (2) the topological invariant for superconductors, because ze

0 ' frequency Green'’s function already containfisient infor-
mation to determine the topological class. This greatly-sim
plifies numerical and analytical calculations.

The topological invariant given in Eq.(4) is equivalent to

G Hiw, Kla(iw, K) = pa(iw, Ko, k) (3) the Chern number calculated from affieetive “noninteract-
ing Bogoliubov-de Gennes Hamiltonian”

(Ge)apliw, K)

(Gp)ap(iw. K)

Following Ref2>3¢ we diagonalize the inverse Green’s
function as

We define those eigenvectors wiih,(0,k) > 0 as “R-

zero”, while those withu,(0,K) < 0 as “L-zero®>3¢ From h(K) = -G (w = 0.k) (7)
Eq.(A10), we know that the Green’s function is Hermitian at ) ]

zero frequency, more explicitly, we hag (0,k) = g(0,k),  therefore, we may be tempted to think that Eq.(4) is a gen-
therefore, the eigenvalues @(0,k) is real. The spaces erallzatlon_ of the noninteracting topolog|ca_\l invariatdghe
spanned by R-zeros and L-zeros are named as R-space af@normalized energy bands”, or “Bogoliubov-de Gennes
L-space. From the property of Hermitian matrix we can segluasiparticles”. However, this picture is incorrect. L&t u
that vectors within R-space are orthogonal to those within L €xplain more about this important point following R€f. In
space, therefore, we can define Berry connections and cufact, in the “renomalized bands” or “quasiparticle” pietwe
vature in the R-space. With these preparations, we can nofiould use the self-consistent equaiipr(wa, k)|uq(k)) = 0,
propose one of the central results of this paper, namely a ge¥/hich reveals the approximate quasiparticle poles. Taithg

eralized Chern number vantage of the Dyson equati@ *(w.. k) = w, — ho(k) -
1 ¥(wq, K), we have
Ci=— | d’kH, 4
YT 2n f Y “) [ho(K) + Z(wa, K)]IU(K)) = welua(K)) (8)
where¥ij = 0iA; — 9;A;, andA; = —i Yr_space(kaldi k), whereho(K) is the free part of the Hamiltonian ar&iw, k)

where [ka) are orthonormal vectors spanning the R-spacejs the self energy generated by electron-electron intieract
The simplest basis choice k) = |a(iw = 0.K)). Ed.(4)  This“renormalized bands’ or “quasiparticle” approach bu
strongly resembles the result for the quantum anomalous Haéuggest us to define topological invariant in termsgugk)),
insulator$®, however, the R-zeros in superconductor casefowever, this approach is fiérent from the zero frequency
are mixtures of particjaole components. We also mention Green's function approach. Unlike this “renormalized Band

in passing that since only zero frequency Green’s functon i picture, the zero frequency Green'’s function approach dop
needed in Eq.(4), we can also use real frequency Green's fung gjgerent equatioff

tion, which is the same as the Matsubara Green’s function at

zero frequency. Since we only need zero frequency Green’s [ho(K) + 2(0, K)] k) = €,|ka) 9)
function, Eq.(4) can be evaluateéfieiently by various ana-
lytical and numerical methods. which follows from the Dyson equationGg—2(0, k) = hg(k) +

Next we will show the relation of Eq.(4) to another topolog- (0, k). Eqg.(9) is counterintuitive because the nonzero eigen-
ical invariant defined for chiral superconductors, nambly t valueg, suggests us to self-consistently @fe,, k) instead of



%(0,k). As a comparison, we note that in Eq.(R),(K)) has
the clear physical meaning as the “ quasiparticle”(or “vasul
be quasiparticle”, because the concept of quasiparticieist

useful only when the lifetime is long), and the correspond-
ing eigenvalues can be regarded as energy spectra. In con-
trary to EqQ.(8), in EQ.(9) such clear physical meaning is ab-

sent for|ka), and the corresponding eigenvalugscannot

be interpreted as energy spectra, because of the lack ef se

consistency in Eq.(9).

To summarize the above discussions, the
bands” or the “(would-be) quasiparticle” approach prefbes
self-consistent Eq.(8), while the zero frequency Greansf
tion approach in this paper makes use of Eq.(9).

Eq.(12) that

0, m>0
-1, -2<m<0

CGM =3 1" 4cm<-2" (13)
0, m< -4

is very interesting to note that the highly nontrivial pew
does not enter the topological number because only the
Green'’s function eigenvectors are needed, which do not de-

‘renormalizéflan g omy,. The simplest way to obtain Eq.(13) is outlined as

follows. The generalized Chern number given by Eq.(4) is un-
changed as we tumaexcept at the three points= 0, -2, -4,

It has beefhere the Green's function encounters singularities. Near

emphasizet that the self-consistent “renormalized bands” Ol these three singular points, we can linearly expathdnd ob-

“quasiparticle” approach following Eq.(8) is not suitalite
calculating topological invariants, though it is an acteitaol

for obtaining the energy spectra. On the other hand, the-seerp

ingly inconsistent zero frequency Green’s function apphoa
is an exact tool for topological invariafttsthough it is a poor
tool for the purpose of energy spectra.

IIl. STRONGLY CORRELATED TOPOLOGICAL PHASES
TRANSITIONSVIA GENERALIZED CHERN NUMBER

tain the changes a;. For instanceAC;(m = 0) = C;(m —
0*)-Ci1(m — 07) = —1 can be obtained by linearly expansion
(kx, ky, m) neark = 0.

The central point here is that the ansatz in Eq.(10) desxribe
a strongly correlated superconductor, which can neversisel
be detected by the generalized Chern number for interacting
superconductorsin Eq.(4). At the topological phase ttamsi
point, e.g. whemm = 0, the situation becomes more interest-
ing. Green'’s function becomes singular at this point, big it
does not fit into the non-interacting picture whes 0, since
the smallk behavior of Green’s function is

Since our new formalism of topological order parameter

can be applied to general interacting superconductors,iive w

use a simple ansatz of Green’s function to illustrate itgasa
Suppose that the Green’s function of a 2d superconductor
given as

iw+n-t
(w? + n2)y

G Hiw, k) = (10)
wheren = (ny, ny, n) = (sinky, sinky, m+ 2 — cosky — cosky),
andr = (74, 1y, 7)) are the Pauli matrices. In the— 0 limit,
this ansatz becomes Y(iw, k) ~ (iw + K- 7 + mr)(w? + K2 +

(w? + K2

iw—-k-1

Gliw,K) ~ (14)
®hich signifies a strongly correlated topological phasedia
tion. If y > 1/2, G(iw, k) — 0 when {w, k) — (0, 0), in sharp
contrast to the non-interacting transitions wéttiw, k) — co.

It is worth mentioning that the same ansatz as Eq.(10)
can be proposed for the quantum Haflleet, and an analo-
gous strongly correlated topological phase transition lman
obtagiged using the generalized TKNN invariant obtained in
Ref:

m?)~™. If y = 0, this ansatz describes a mean field super-

conductor with essentially free BdG quasi-particles. Gene
ally, this ansatz describes a strongly correlated supeomn
tor. When we replacerr, term by ak,r, term, this Green’s
function becomes the “unparticle” propagdfd®, with power
law Green’s function which is characteristic of conformeldi
theories. Unlike these gapless systems, our Green'’s mcti

IV. CORRELATED TOPOLOGICAL
SUPERCONDUCTORSIN 3D

In this section we focus on time reversal invariant super-
conductors in 3d, which in the non-interacting limit is das

ansatz Eq.(10) describes a gapped system (for fermion), arfgd Py an integef*%. In the Appendix A, we show that the

the topological order parameter can be readily calculaged u
ing Eq.(4).

Following the formalism in the previous section, we write
down the zero frequency Green’s function as

n-r

-1
0,K) = —— 11
60N = 1oy (11)

The Berry curvaturéyy, can be obtained as
Fry = 2Pl ol 12
Xy = ze Ny kxnb kync ( )

wherer® = n?/ /nZ +n3+n3. It follows from Eq.(4) and

Green'’s function for superconductors ab,(k) and Ciw, —k)

is intrinsically correlated as illustrated by Eq.(A7). Bme-
versal symmetry provides an additional symmetry of Green’s
function relating iw, k) and {w, —K) as illustrated by Eq.(C7).
From these two equations we can obtain

-G(-iw,K)

whereX = —iC = 7 ® oy, in whicht ando are Pauli
matrices in particle-hole and spin spaces [see the appesidic
Sincex? = 1, the eigenvalues af is +1, and we can choose a
basis so thak is diagonal

5 = ( Inxn

G (iw, Kt (15)

—Inxn ) (16)
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Due to Eq.(15), zero frequency Green’s function in this $asi (even for noninteracting limit) for thé angle from the pre-
is given as vious works. Therefore, the remaining problem is to evauat
61in Eq.(19) explicitly. A natural guess is thats proportional
Q(K) ) (17) to W given in Eq.(18), namely = Wr. However,9 can only
be defined mod 2 from the bulk information, because a 2
ambiguity can always be introduced depending on the details
The topological order order parameter of 3d time reversal inof interfaces between superconductors witfiedentw. For
variant topological superconductors is defined as theviello instance, the simplest surface states of a topologicalsape

G(iw=0,K = ( Q"'(k)

ing winding number ductors withw = 2 can be described by two surface Majorana
cones, and the surfac&ective Hamiltonian read$
ke Tr(Q9,Q 1) (Qd,Q 1) (Q3,Q )] (18
24 2472 f [(Q9,Q7)(@5,Q ) (@5,Q 7] (18) Hzp = Z Z Mo, kV U'ka + U'Xky) Na k (20)
=12

which has similar expression as its non-interacting arfdjog

however, Eq.(18) is well defined for superconductors in theVherenex = (akr, e, k) is a tWO component Majorana
presence of electron-electron interaction. As a bypradoist ~ fermion operator satisfyingx = 77 « A mass term of the
shows that the integer classification of 3d time reversal inform ¥, m,nloyn, can induce a gap for the surface states.
variant topological superconductors is stable with respec If m, m, > 0 the surface thermal Hall conductafités
electron-electron interaction, although various possfidc- Kny = 2 X 24r : on the other hand, ifr, > 0,m, < 0, we
tional states are not included in this description. Thersfo AeT

free fermion superconductors infidirent integer class cannot N2Vekxy = 0x —g-. Therefore, the bulk topological invariant

be smoothly connected even if we add fermion-fermion mtercannOt fully determine the surface thermal Hall conduatanc
action dfect. Following the relatio?®*° between surface thermal Hall re-

sponses and gravitational topological field theory, nartied
In the non-interacting limit, it is straightforward to chec P e 9 polog y y

that Eq.(18) reduces to the winding number defined in termgxy = 9;4;, (assuming that the vacuum has 0), we conclude
of non-interacting Hamiltoniaf. thatd = 2r for the casan, mp > 0, andd = O for the case
my > 0,mp < 0. To summarize the above calculations, if we
know from the bulk that the topological superconductor has
V. GRAVITATIONAL TOPOLOGICAL FIELD THEORY W = 2, we can at most conclude that 2r mod 2r, in other
AND GREEN’SFUNCTION AT ZERO FREQUENCY word, 8 = 0 is equally possible a& = 2 for this topological
superconductor. Therefore, we should modify our previous

In this section, we focus on physical responses of 3d tim@Ues¥ = Wr to
reversal invariant topological superconductors andedletm 0= Wr mod 2 (21)
to the Green’s function. Since in superconductorslit{g)
symmetry corresponding to fermion number conservation isve will obtain this result by explicit calculation in Appeind
spontaneously broken, we cannot get a topological field thee. The Eq.(21) is among the central results of this paper.
ory by coupling fermion tdJ(1) gauge field, instead, we can  Now let us find a dferent approach to calculate the gravita-
get a gravitational topological field theory since the spacetionald angle. By analogy with the electromagnetic responses
time metric couples to the energy-momentum tensor. Thén topological insulator we propose the following expres-
gravitational topological term obtained in R€f!°from chiral  sjon for thed angle
anomaly is given as

g 1 f dkodk f A Tr 70,6 72G0,G ™
s - TR 24072
6 = 2 AR 1 1 1
224 8 xG0,6 160,67 G0.G ] (22)
= 153&2 dethfyyp(r@RZng (19) whereky = iw is the continuous Matsubara frequency(in the

zero temperature limitk,, ko, ks are spatial momenta, arg
whereR? =4, ra +T" I — (u < v), and the dierential IS a dimensional extension parameter (Wess-Zumino-Witten

By VB : . -
formR = 1&,de” A dx’. Itis worth noting here that the pre- parameter). The reference functigiko, ky, kz, ks; ks = ) is
chosen as a trivial “flat-band” Green'’s function analogaus t

factor 2/2 in the first line of Eq.(19) comes from the fact the hat i 29 dix E f licit f f rof
fermions are Majorana instead of complex. The fcg;gR/\R that in Ref™ [see Appendix E for explicit form of reference
is known as the Pontryagin class in mathematical literatfire functhn for supercondgctors]. : o

; A direct Feynman diagram calculation of gravitatiomal
For general superconduct@rs: §(x, t) can be space-time de- angle is much more involved than the electromagnetn-

pendent, but for time reversal invariant superconductois, gle, therefore we will justify Eq.(22) as follows. In the non

guantized to be 0 or mod 2. : L e
As we mentioned in Sec.l, although the above gravitationallnteractlng limit, Eq.(22) reduces to the Chern-Simonsater

topological field theory provides a description of inteinagt 0 1 3 ik :
superconductors in this class, there is no explicit formulaz; = T2 fd keI Tr{(Fij (k) ~ "[Ai(k),Ai(k)]) - Ac(K)}



1 i 2.
_ @fdskeljkTr[aiAj+§|AiAj]Ak (23) VII. CONCLUSIONSAND DISCUSSIONS

In this paper we have obtained several topological order pa-
rameters for interacting superconductors. They are egpces
in terms of zero frequency Green'’s function, and their egtuiv
lence to topological order parameters defined with frequenc
integral is explicitly shown. These new topological order p
6(m>0)-6(m<0) 1 (24) ameters are much easier to calculate in numerical and ana-
2r 2 lytical calculation. They produce topological invariauti-

which is the same as the result obtained from chiralferent from the "quasiparticle” or “renormalized band” ap-

: . . o roach, in which Green’s function (or self ener at nonzer
anomaly®*®.  Since non-interacting Hamiltonian can al- b ( 9y )

ways be deformed to Dirac type at low energy, we Concluole1;requency should be self-consistently used. Taking acwepnt

: e g of the zero frequency Green’s function approach, we analyze
Fhat Eq:(22)_ IS exactly the g.rawtatpnalangle in the non- a nontrivial topological quantum phase transition beydra t
interacting limit. For general interacting supercondustthe

guantization ob (due to time reversal symmetry) dictates that "2 n-interacting picture. The topological field theory foe :
: SO cient, namely the gravitationdlangle, has been expressed in
Eq.(22) is the corred angle, which is analogous to the case f the zero frequency Green’s function
of electromagneti@ anglé€?°. Thed value in Eq.(22) is of terms o _ quency freen's tunction. , _
Z, character because of the ambiguity of the dimensional For numerical calcu,latlon vylth finite size, at f_|rst sight
extensioR?. This is consistent with the fact that the bulk of e anomalous Green's functid@g, Gc would vanish be-
a superconductor can only determine the surface thermal Haf2use of the fermion number mismatch. One viable ap-
coefficient mod even intega}, as we have discuss early in this Proach to circumvent this fliculty is to study the fi-
section. diagonal long-range ord®r®2  The idea can be outlined
Since we have justified Eq.(22) as the correct gravitationafS follows.  Since(0c,(r1)cs(r2)l0) = 0 (where|0) is
¢ angle, we can now derive Eq.(21) from Eq.(22). The detaildn® ground state) for any Ig{\_rge but finite system, we can
of this calculation is left to Appendix E. calculate(0lc, (r1)Cs(r2)c,(ra)c;(r4)0) instead. In the limit
[r1 —ral,|r3 — rgq| << |ry — rg|, this expectation value can
be formally decomposed &s, (r 1)¢s(r 2))(C}(r3)c; (1)), from
VI. GENERALIZATION TO GREEN'SFUNCTION which (c,(r1)cs(r2)) can be extracted. In fact, this can be
SINGULARITIESIN GAPLESSSYSTEMS taken as the definition ofc,(r1)cs(r2)). The only ambigu-
ity is the global phase factor of Cooper pairing, which is not
It is also straightforward to generalize the zero frequencysignificant for our purpose.
Green’s function topological invariants in this paper tpga In the above simplified analysis we omit the (
less systems, e.g. systems with Weyl points in momenturor « ) variable, and this variable can be straightfor-
space. The zero frequency topological invariants are emsie wardly added as(0|c,(r1,71)Cs(r2, Tz)CI/(rg, T3)C§(r4,7‘4)|0>
use than the topological invariants with frequency inté’éra_ (OF (0ICy(r 1, iw1)Cs(r 2, iw2)Ci(r s, iws)Cj,:(M, iws)[0) ), thus we
For instance, a zero frequency Green's function topoldgicacan extractc,(r, 71)Cs(r 2, 72)) (OF (Co(r 1, iw1)Ca(r 2 iw2)) ),
invariant can be defined for a singular point (Fermi point, oryhose Fourier transformation into the momentum space leads
Weyl point) in 3d gapless systems (insulator or supercondugy the single particle Green's functid®s andG¢ needed to
tor) as define topological invariants.

This is analogous to calculating magnetization in finite sys
1 fT tem. The naive expectation value of magnetizatim(r)) =
2r Js

where Ag’/j = —i(y?ok v’y are Berry connections defined
in terms of Bloch state§y®). For a non-interacting Dirac
fermion with Lagrangiany(iy#d, + m)y3%4% from Eq.(23) it
follows that

C:

0, but we can calculatén,(r1)my(r2)) (&, b = x,v,2). In the
1 o limit when |[ry — ry| is large, we have the formal decompo-
= f ds' ek, (25)  sition (Ma(r1))my(r2)) ~ (Ma(r1)Xmy(r2)), where(my(r)) can
be regarded as the definition of “magnetization” in large but
where we have chosen a small 2d sph@raround this sin- finite systems. This definition is natural becacisg(r)) be-
gular point, andS' is its area element. The connection andcomes the true magnetization in the thermodynamical limit.
curvature is defined af = —i Y r_space(kaldy lka) and i = T.hg nonzero magnetization in thg thgrmodynamic'_s _remains
8iA; - 8;A;, wherelka) are orthonormal vectors spanning the visible as the long range correlations in Iarg_e b_ut f|_n|te sys
R-space. Equation (25) is a direct generalization of Eqq4) tems, though the latter do not have magnetization in a strict
gapless systems. The construction of a 2d sphere around tRense.
singular point can be found in R&f, in which topological In all the calculations in this paper, we have assumed that
invariants for Fermi points are defined in terms of frequencythere is no ground state degeneracy (besides the phase of su-
integral. Equation (25) has the advantage that no frequengyerconducting order parameter). For fractional phasestwhi
integral is needed. For the definition of Eq.(25), itis calltd  violate this condition, our formulas are not directly apph
realize that the zero frequency Green’s functionis a Héamit ble. The extensions of the present approach to such exotic
matrix, so that a Chern number can be defined oktgace. fractional phases will be left for future works.



We conclude with the remark that the zero frequency + Z (On-2/C-kgIM)(NlCkal On) (A3)
Green'’s function approach used in this paper can be straight iw+ (En — Eg)

forwardly generalized to topological insulators and saper

ductors in other symmetry classes. where|Oy) is the ground states with fermion numbr Note

ZW would like to thank Xiao-Liang Qi and Xi Dai for dis- thattwo ground states with fermions numibeandN-2 enter
cussions. ZW is supported by Tsinghua University Initiativ this spectral representation. The ground state endfgy(N)
Scientific Research Program(No. 20121087986). SCZ is sugsatisfiesEq(N) ~ Eo(N - 2) in the thermodynamical limit,
ported by the NSF under grant numbers DMR-0904264 angvhich is simply denoted a&,. Note that we have absorbed
the Keck Foundation. the chemical potential into the definition of Hamiltonian, i

other word,E; is the eigenvalue dfl — uN. (If we defineEn
as eigenvalues ¢4, we would haveEg(N)—Eg(N-2) ~ 2u53).
Appendix A: Exact Green’s function identities for Eq.(A3) should always be implied wherever the formal spec-
superconductors tral representation given in Eq.(Al) @ appears. Similarly
modification ofG¢ is also understood in this paper.

In this appendix, by straightforward calculation we wilkob ~ With these preparations of Lehmann representation, we can
tain several useful identities of Green’s function for supe obtain exact Green’s function identities. The first exaenid
conductors without assuming any additional symmetry sucliity in this appendix is given as
as time reversal symmetry. Variant forms of some of these
identities can be found in Ré%. The departure point of our Go(iw, K) = ~GA(~iw, —k) (A4)
calculation is the Lehmann spectral representation ofdhe f
submatrices iG(iw, k) given as

which can be obtained from the following calculation

| (o m)micy Iny .k = (nIcTy {5
(GR)uglic, k) = Z e Cgfn) (Go)apliv.K) = ;Drm e

. (G IM)(mIC.gln) _ (mic-iginnicl, Imy
Galusliel) = 3 D= —p - ;D"“ iw— Em

_ (nic, Imymic;Im) . (mic_sinxnic’,,,Im)
(Geluslier) = ;D’m iw — (Em — En) " 70m ~lw = Enm

mn
S0 (nic’,, ImXmic_gsIn) A ~(Ga)pa(~iw, ~K)
™ e — (Em - En) where we have definel, = En — En. We mention that an
variant form of Eq.(A4) has been given in RE&f.
The second identity is

(Gp)ap(iw. K)

where|m) are exact eigenvectors & = H — uN with eigen-
valuesky, (H is the many-body Hamiltoniany is chemical
potential,N is particle number)Dyy, = €#?(e”En + eF5n), Ge(iw, K) = ~GL(~iw, —K) (A5)
andQ is the thermodynamical potential defined &8y¢ =

Tre?H-+#N)_ We do all calculations at finite temperature andwhich can be calculated as follows

then take the zero temperature limit, which is always intplie

in this paper. There is a important point hidden in the sim- (GB)op(iw, k) = Z Dmn<n|ck(.,|m)(m|c,k5|n)
plified notation in the above equations, namely that in the mn lw = Em
“anomalous propagator$Gg qnd_GC, t_he naive expr_essions B b {Mic_ig|N){N|Cie|M)
such agn|ci,/m){mic_is|n) vanish identically due to mismatch = - Z m Ziw—Em

of fermion number, therefore, the precise meaning of the
above formal Lehmann representations@grandGe should

be understood as follows. Let us focus on the zero temperatu
limit 8 — oo, then we have the naive expression

—(Ga)pa(-iw, —K)

We can check that Eq.(A5) can also be obtained directly from
the more precise spectral representation given in Eq.(A3).

: (Olcke/m)mic_s/0) By analogous calculation we can also obtain
mo o Ge(iw, k) = ~GL(~iw, —K) (AB)
(Olc_kIn)XniCka|0) AD
* Z iw+ (En — Eg) (A2) Now we define a charge conjugation matrix

where|0) is the ground state. This expressiorGy vanishes C- 1
due to fermion number mismatch. The correct spectral repre- |1
sentation should be modified as

) {On=2|CialmM{mMIC_ksl|On)
Gg)y, k) = :
Geloplion) = D, = = E “5y Ol KC = —G (<, —K) (A7)

then we can readily obtain that




which can be calculated as

_ (GD(ia), k) Ge(iw,K)

CGIw.KC™ = | G k) Galiw. K

|

 { -GX(=iw, k) ~GL(~iw,—k)
= ( Gl (ciw, k) ~Gf(ciw,—K) )
= _gT(_iw’_k)

By similar calculations, we can also obtain that

Gg(iw, k) = GL(~iw, k) (A8)
and

Galiw, K) = G (=iw, k) (A9)
from which it follows that

Gliw. k) = G'(-iw, K (A10)

Appendix B: Derivation of N, = C; for superconductors

Here we have definedy = Y, & (nlce|m) and By, =
> b;(nlcfka|m> (herea,, b, are the components ¢d), |b)).
The following calculation is almost identical to the case of
insulators®, which we will briefly outline. From Eq.(B3) it
follows that

sign(y1Ga(iw, KIy)) = —signw (B4)
for an arbitrary|y). Suppose thaty) is an eigenvector
of G(iw, k, A) with eigenvaluepdjl, then it can be obtained

that Imfu, (iw, k)] = W) (1 - DWGa(iw, Ky -
Aw Y sls(w? + €2)71], where we have expandeg)
SUs(iw, k 2)|s(K)), with |s(k)) being the eigenvector of
-G~%(0, K) with eigenvalues. From this equation and Eq.(B4)
we can see that whe # 0, Im[u;*(iw,k, )] # 0. On the
other hand, wherw = 0, G(0,k, 1) = G(0,K) is independent
of 4, and Re,{ll/’/l(ia), k, 2)] # 0. Summarizing the above calcu-
lations, we haver,*(iw, k, 2) # 0. Therefore, the deformation
given in Eq.(B1) is smooth, and we haMg(2 = 0) = No(1 =
1). Now we can calculatetl, = Np(4 = 0) by calculating
N2(1 = 1) with “effective non-interacting” Green'’s function

The key idea of this derivation is analogous to the one giveriv + G(0; K™)™. By a straightforward calculation, we are

in Ref3®, though the calculations for superconductors is a lit-

led to Eq.(6).

tle more involved because of appearance of four submatrices 1he interested readers are referred to Rébr a similar to

Ga, Gg, Gc, Gp in the Green’s functiorg(iw, k), as we will
show below.

The key idea is to introduce a deformation @fwhich
smoothly connect§(iw, k) and an “dfective non-interacting”
Green's functioniw + G(0,k)"})* as

Gliw,k 2) = (1 - DG(iw, k) + Aiw+ G 0,K)™ (BL)

whered € [0,1]. It is not evident that this deformation is
smooth, since in principlg(iw, k, 1) can have zero eigenval-

ues. It turns out that zero eigenvalue does not appear becaus

of intrinsic properties of Green’s function as we show below
It is convenient for our purpose to decompgse G1 + iG>,
whereG, G, are both Hermitian matrices. The explicit form
of G, is given by its four submatrices

(Gan)ap(iw, k)

= dan(nlcklmXmic],n)

(G2g)apliw, K)

= " dmNiCIM)(MiC_isIn)

(GZC)wﬁ(iw’ K)

= dan(nlc] ., ImXmic;In)

(G2p)apliw, K)

= " dlnic] ImX(mic gl (B2)

wheredy, = Dmnm, and Dy, is defined in the Ap-
pendix A. The crucial property - is the following. Take
an arbitrary Al component vectoy) = (|ay, |b))T, in which

|ay, |by areN-component vectors, we have

=" dmllAml® + ArBm + AmBim + 1Brml’]
mn

WlGaly)

- Z Ol Amn + an|2 (B3)

derivation for the case of insulators.

Appendix C: Exact Green’sfunction identitiesin the presence of
timereversal symmetry

The basic calculational tool in this section is the Lehmann
representation and the following identity
@by = (-1)™(blay, (alby = (-1)N(bja) (C1)
which follows from T2a) = (=1)Mja), where N, is the
fermion number ofa), and|a) = T|a). It is worth noting that
Eq.(C1) are identities for exact many-body eigenstesnd
|b), which should not be confused with the analogous identit-
ties for non-interacting Bloch states, in which1)N factor is
replaced by-1. Taking advantage of time reversal symmetry,
we will obtain several exact identities. The first one is

Ga(iw,K) = TGa(iw, —K)TT (C2)

whereT = ioy is the time reversal symmetry matrix defined
by T = ioyK (K is the complex conjugation operator). The
transformation of fermion operator s, T~ = 2.5 TapCois-
Eq.(C2) is analogous to the time reversal identity in time re

versal invariant insulatof$32 Eq.(C2) can be derived explic-
itly as

(i ImymicyIn)

(Ga)ap(iw. K)

> Dm

mn

> Dm

mn

(Pl Imymicy I
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<n|C7k5|rﬁ><rﬁ|Ciky|n> Appendix D: Green’sfunction in the M ajorana operator basis

> T, TpsDm——
m lw ~ Em . . .. .

) + Since the Majorana basis is convenient for some problems,
Tps(Ga)sy(iw, =T, we will present several identities in this basis for refeen
(TGa(iw, - T e Let us start with notations. The fermion operators are reter

ascCy,, Wherek is spatial momentuny = 1,2...N refers to
In the third line, we have used the first one in Eg.(C1)any other degrees of freedom including spin, orbital, ete. W
by taking [a) = [n) and |b) = ck/m), which leads to also define Bl Majorana operatorgg, 5= 1,2...2N by
Ib) = T T TIM) = T, CoiIM), and finally (Alc|m) =

(—1)Nm+1Tj;7<m|cfky|n>. By a similar calculation, we can also  Yko = Cka + C' s YkN+o = 1(Cka — €', )i (@ =1,2...N)YD1)
obtain
Since our results do not depend on the basis we use, we will
Gg(iw, K) = T'Gp(iw, -K)T (C3) formulate t_hem ip the most convenient basis, namely the M.a-
jorana basis defined above. The Matsubara Green’s function
The third identity is in this basis is defined as
Gyliw, k) = ~T'Ge(iw, -K)T? (C4) Gop(r. K) = —(Te¥ka(t)7i5(0)) (D2)
which can be explicitly calculated from where T, is the imaginary time ordering. The fre-
guency domain Green'’s function is defined @8wn, k) =
(Ge)aplio K) = Z Dmn<”|ckt.r|m><m|cfkﬁ|n> foﬁ drexp(wnt)G(r,k).  The Lehmann representation of
— iw— Em Green’s function at finite temperature is given by
(NiCkaIM)(MIC_isIN)
= Z Dy —— s o (MelmM(Mly—gln) e e
- iw— Em Gopliw, k) = ; T E—E) (e7PEr + eEn)(D3)
T, Tas(mich, InXnicl,Im)
= Z mn i E whereg is the inverse temperatulie)) are exact eigenvectors
mn m of K = H — uN (u is the chemical potentiaN = ', ci"mqm
T(§7T56<n|ci6|m><rﬁ|cfkyln> is the fermion number operator), afds the thermodynamic
= Z m " _E potential defined bg#? = Tre#(H-#N)| Taking advantage of
mn m this spectral representation, we can obtain several edant i
= —T;(;(Gc)(;y(iw, -KT], tities. The first one is
- e ¥ ~ ~
= ~(TGe(lw. =0T Do G'(iw.K) = G(-iw. K) (D4)

in which we have used Eq.(C1) several times and the identi%
T" = T, which follows fromT'T = 1 andT*T = -1.
Similarly we can obtain

hich is the same as the identity in insulators. The secord on
is

GL(iw, K) = ~TGa(iw, k)T (C5) Gliw. k) = =67 (-iw, =Ky (S)

) . . which has no counterpart in insulators. This identity igsi
Now we can define a time reversal matrix in the Nambu space .~ . .
major diference between the superconductors and insulators,

as and will be crucial for construction of interacting topoical
T order parameters for superconductors in 3d. It can be appre-
7= ( Tt ) (C6)  ciated that in contrast with the case in insulator, supetaon
tors’s Green’s function at and —k are intrinsically related
With this definition, we can calculate because cooper pairing between opposite momenta.
In the zero temperature limit, the discrete Matsubara fre-
. 1 TGA(iw,KTT  —TGg(iw, KT quency variable becomes continuous, and the Lehmann rep-
TG(w, QT = ( ~TGc(iw, TT TiGp(iw, KT ) resentation of the Matsubara Green'’s function reads

5 OlykelmM{Mly_ik5l0>  {Oly_ksIM){Ykel|O)
Gopliw) = Zm:[ iw—(En—Eo) i+ (Em—Eo)

ID6)

Gliw,~K) GL(iw, k)
( Gh(iw, —K) G (i, —K) )

gT(iwv _k)

wherel|0) is the ground state.
which is written compactly as We mention in passing that the derivations in Sec.B can be
simplified if we use the Majorana basis, in which the compli-
TG([w. T =G (iw, K (C7)  cation of four submatrices in Eq.(B2) can be avoided.
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Appendix E: Gravitational 6 coefficient and zero frequency Now we can proceed to calculate the Chern-Simons term,
Green’sfunction which is at this stage already expressed in terms of zero fre-
guency Green'’s function. We will show that we are led exactly
In this section we derive Eq.(21), which relates the gravt0 Eq.(21) by direct calculation. The physical Green's func
itational 6 codficient to Eq.(18). First, we extrapolate the tion at zero frequency has the following form as obtained in
Green's functiong(ko = iw, ki, ko, ks) to G(Ko, ka, ko, ks, ks), ~ the main text
with the reference Green’s function Bf = x chosen as
Galiw, K1, ko, ks, ) = = 1nun, Gpliw, ki, ko, ks, 1) = L Inxn, G(0, Kk, ko, k) = ( Q' (k. ko, ko)
Ga(iw, ki, ko, k3, 7) = 1T, Ge(iw, ki, ko, ks, 7) = 1T, where L2
A is a positive number with dimension of energy, anet ioy ~ or
is the time reversal operator in the spin space. Physidailty t
Green’s func;tlon descrlbes.a mean field trl\_/l_al s-wave super -1(Q, ky, ky, ks) = ( o
conductor with momentum independent pairing. Q (ki ko, ka)
By an calculation analogous to that given in R&fsee also
Appendix B], we can deforng(iw, k) to (iw + G1(0,k))™*
without encountering singularities. This fact will be cialc
for the entire calculation, because it implies that zeroe fre

Q(k]_, k2, kS) ) (E4)

(Q-I.(kl, k2, k3))7l ) (E5)

in which ks = 0 is implied. From the chiral symmetry
TG(0,k)xt = —G(0,K) it follows that the eigenvectots) =
(u,v)T and|g) = (u,—v)" of G1(0, k) form chiral pairs as

iqnl\ler:it;yat(ireen’s function can fully determine the topologica G HOK)lla) = uola)
. , G ORI = uglBy
Taking advantage of the time reversal symmetry Eq.(C7), ’ B
we can also writ® in Eq.(22) as -
with
— } 1 i 3 " HUVPOT -1 -1 - _
0= 5 22072 J:,, dked kj:” dksTr[e"?7"G0,G - GO,G Ha Hp
xgapg—lgagg—lgarg—l] (E1)  All R-zeros (namely eigenvectofs(0, k)) with 1, (0, k) > 0)

span the “R-spacé® at eachk, on which the Chern-Simons
in which G in the k4 € [-x,0] region is determined term is defined. Due to the specific form@f*, we can find
by TG(iw, ki, ko, ks, ka)T1 = G(iw, —ki, —ko, —ks,—ks)  all the R-zeros by finding the eigenvector@fQ. Suppose
andCG(iw, ki, ko, ka, k)C™ = =G (—iw, —ki, —ko, —ks, —ks).  thatu?Q'QIv) = |v) with (viv) = 1, thenla) = (xuQV), V)T is
Eq.(E1) is evidently unchanged in smooth deformations. Af-an eigenvector o~* with eigenvaluesu. Therefore, a basis
ter deforming the Green’s function ta(+ G%(0,k))tina  of R-zeros has the following form
similar fashion to Appendix B, by a direct calculation we can

expresd in EqQ.(22) in terms of zero frequency Green’s func- (0, K)) = 1 (ﬂaQWa) ) (E6)
tion explicitly as ’ V2\ Vo)
1 i T 3 ik with u, > 0, where|v,) is anN component column vector
0/2n = 32,sz; dkq ~ d°ke [ Fu] satisfyingu2Q'Q|v,) = |v,) and normalized byv,|v,) = 1.
_ _ S The magnitude of eigenvalugs is irrelevant for calculations
= CSks =0)-CSf4 = .
e =0) ke =7) of topological numbers, so we deformall = m> 0. As a
= CSke = 0) (E2) result, the eigenvectofs(0, k)) in Eq.(E6) are deformed to
in which the Chern-Simons term 1 [ RV,
1 N 1 |a'(07 k)> = 72 |Va> (E7)
CS = 1o [ kT - AR KD - A0
1 - 2 whereR is a dimensionless matrix satisfyijR = 1 because
= 25 fe'JkTr[ai:}{j + ZIAA;] Ak (E3) 12Q'QV,) = IV,) is preserved during the deformation. To cal-
8r 3 culate the Chern-Simons term over the R-space in Eq.(E3), we
where can choose a trivial basis in whigh,) is k-independent (this
is possible because the fiber bundle spannedbys trivial)
F = § AP ajﬂ.“ﬁ L [ﬂi ﬂj]aﬁ , and the R-space Berry connection in this basis is given as
ij j i ’ ’
o . 0 i
AP K) = —ikal - 1kB) Ay = -5 RIHR (E8)

in which |ke) is an orthonormal basis of the R-space spannedavhere the crucial A2 factor comes from the/IV2 in Eq.(E7).

by R-zeros [see the main text, below Eq.(3), or see®R&. It is worth noting that although Chern-Simons term is basis

. In thek integral in CS termk, is fixed to be constant, and dependent, a basis change (a “gauge transformation”) can at
d®k = dk;dkodks. We have used the fact that & 7) = 0 most change the Chern-Simons term by an integer. Our central
becausg(ks = x) is a trivial reference function. result Eq.(21) is a mod2equation, which is thus nofiacted



by basis choices. The Chern-Simons term in Eq.(E3) can be
calculated directly from Eq.(E8) as

CStks = 0) r,l,rz f ke Tr{(R 19, R) (R *0,R)(R1,R)]

1
~SWR) (E9)

which is equal to—%W(Q) because smooth deformation can-
not change the winding number. The minus sign comes from
the exchange oR and R~ compared to the definition in
Eq.(18). It is interesting to note that Eq.(E8) is not a pure
gauge because of the crucigl2lfactor. Summarizing the
above calculations, we can see that

0 1 :
o = CSks=0)= §W(Q) (mod integer) (E10)

which is exactly the Eq.(21).

10



11

X.L.Qiand S. C. Zhang, Phys. Tod&3, No.1, 33 (2010).

J. Moore, Naturel64, 194 (2010).

M. Z. Hasan and C. L. Kane, Rev. Mod. Phgg, 3045 (2010).
X.-L. Qi and S.-C. Zhang, Rev. Mod. Phy&3, 1057 (2011).

R. B. Laughlin, Phys. Rev. Let80, 1395 (1983).

C. L. Kane and E. J. Mele, Phys. Rev. L&, 146802 (2005).
B. A. Bernevig, T. L. Hughes, and S.C. Zhang, Sciedb& 1757
(2006).

N o a0 bh W N P

8 M. Konig, S. Wiedmann, C. Briine, A. Roth, H. Buhmann,

L. Molenkamp, X.-L. Qi, and S.-C. Zhang, Sciend&8, 766
(2007).

9 X.-L. Qi, T. Hughes, and S.-C. Zhang, Phys. Rev7® 195424
(2008).

10 A, P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.

Rev. B78, 195125 (2008).

11 A Kitaev, Proceedings of the L.D.Landau Memorial Conferen
"Advances in Theoretical Physics”. Arxiv preprint 0901856
(2009).

2 L. Fuand C. L. Kane, Phys. Rev. B, 195312 (2006).

13 J. E. Moore and L. Balents, Phys. Rev78 121306 (2007).

¥ L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. L&8, 106803
(2007).

15 7. Wang, X.-L. Qi, and S.-C. Zhang, New J. Ph{y&, 065007
(2010).

16 D, J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs

Phys. Rev. Lett49, 405 (1982).

29

30
31

32

33

34

35

36

37

38

39

40

41

17's. Raghu, X.-L. Qi, C. Honerkamp, and S.-C. Zhang, Phys. Rev.

Lett. 100, 156401 (2008).

18 A. Shitade, H. Katsura, J. Kune, X.-L. Qi, S.-C. Zhang, andih-
gaosa, Phys. Rev. Left02, 256403 (2009).

19Y. Zhang, Y. Ran, and A. Vishwanath, Phys. Rev7® 245331
(2009).

20 B, Seradjeh, J. E. Moore, and M. Franz, Phys. Rev. L8,
066402 (2009).

21 D. A. Pesin and L. Balents, Nat. Phys.376 (2010).

22 L. Fidkowski and A. Kitaev, Physical Review B1, 134509
(2010).

23 R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nature Phy€ic884
(2010).

24 M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev. Lett

104, 106408 (2010).
25 S. Rachel and K. L. Hur, e-print arXiv p. 1003.2238 (2010).

42
43
a4
45

46
a7
48

a9

50

51

52

26 X. Zhang, H. Zhang, J. Wang, C. Felser, and S.-C. Zhang, &gien 53

335, 1464 (2012).

27 T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, Phys.

Rev. Lett.108, 046806 (2012).

28 A. Go, W. Witczak-Krempa, G. S. Jeon, K. Park, and Y. B. Kim,

Phys. Rev. Lett109, 066401 (2012), URIlhttp://link.aps.
org/doi/10.1103/PhysRevLett.109.066401.

Z.Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. L&@5, 256803
(2010).

L. Wang, X. Dai, and X. C. Xie, Phys. Rev. &, 205116 (2011).

L. Wang, H. Jiang, X. Dai, and X. C. Xie, arxiv. cond-
may1109.6292.

V. Gurarie, Phys. Rev. B3, 085426 (2011).

K.-T. Chen and P. A. Lee, Phys. Rev88, 205137 (2011).

T. Yoshida, S. Fujimoto, and N. Kawakami, arxiv: cond-
may1111.6250.

Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. &,

165126 (2012), URLhttp://link.aps.org/doi/10.1103/
PhysRevB.85.165126.

Z. Wang and S.-C. Zhang, Phys. Rev2X031008 (2012), URL
http://link.aps.org/doi/10.1103/PhysRevX.2.031008.
L. Wang, X. Dai, and X. C. Xie, arxiv: cond-nm/a203.1124.

J. C. Budich, R. Thomale, G. Li, M. Laubach, and S.-C. Zhang,
arxiv: cond-mat1203.2928.

Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. &,
014527 (2011), URLhttp://link.aps.org/doi/10.1103/
PhysRevB.84.014527.

S. Ryu, J. E. Moore, and A. W. W. Ludwig, Phys. Rev.8B,
045104 (2012), URLhttp://link.aps.org/doi/10.1103/
PhysRevB.85.045104.

X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys. Rev.
Lett. 102, 187001 (2009).

X.-L. Qi, arxiv: cond-mat1202.3983.

S. Ryu and S.-C. Zhang, arxiv: cond-ifi&02.4484.

H. Yao and S. Ryu, arxiv: cond-m&02.5805.

G. E. Wolovik, The Universe in a Helium Droplet (Oxford Univer-
sity Press,USA, 2003).

N. Read and D. Green, Phys. Rev6B 10267 (2000).

Z.Wang and B. Yan, ArXiv e-prints (2012), 1207.7341.

H. Georgi, Phys. Rev. LetB8, 221601 (2007), URLhttp://
link.aps.org/doi/10.1103/PhysRevLett.98.221601.

G. E. Volovik, arxiv: cond-mgfl111.4627.

M. NakaharaGeometry, Topology, and Physics (A. Hilger, 1990).
O. Penrose and L. Onsager, Phys. REM, 576 (1956), URL
http://link.aps.org/doi/10.1103/PhysRev.104.576.

C. N. Yang, Rev. Mod. Phys34, 694 (1962), URLhttp://
link.aps.org/doi/10.1103/RevModPhys.34.694.

A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskilethods
of Quantum Field Theory in Satistical Physics (Courier Dover
Publications, 1975).



