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We describe the robustness of an excitonic condensate in double layer graphene against layer
density fluctuations and the associated charge inhomogeneity, and discuss the implications for ob-
serving the condensate in current experimental conditions. We solve the mean-field equations for a
finite imbalance in the Fermi energies in each layer and utilize the results in two phenomenological
models for inhomogeneity. We find that the stability of the excitonic condensate against density
fluctuations is strongly dependent on the size of the excitonic gap, and that transport experiments
(such as Coulomb drag) are promising methods for observing the condensate.

Excitonic condensates, where pairs of electrons and
holes in a semiconductor-like system undergo a Bose Ein-
stein condensation, have been predicted to occur in bi-
layer semiconductor heterostructures1. They have previ-
ously been observed experimentally under high magnetic
fields in the quantum Hall regime2,3. Recent advances in
fabricating double layer graphene (DLG), where a layer
of dielectric is sandwiched between two graphene layers,
have motivated theoretical predictions of the emergence
of an excitonic condensate at zero magnetic field in these
heterostructures4,5 when one layer is electron-doped and
the other is hole-doped. In DLG, the thick dielectric pre-
vents any tunneling of carriers between the two layers,
while the inter-layer (attractive electron–hole) Coulomb
interaction drives the formation of excitonic condensate.
The estimate of the critical temperature Tc for exci-

tonic condensation varies over a wide range, even within
mean field theory, depending on the level of screening
of the Coulomb interaction considered in the model. At
high density, unscreened Coulomb interactions produce
Tc approaching room temperature5, while static screen-
ing leads to Tc

<∼ 0.1K6,7. Large wave vector scattering
induced by short-ranged disorder further reduces Tc

8,9,
while the inclusion of dynamic screening10,11 and the full
band structure12 tend to favor the pairing. The con-
troversial nature of the size of the excitonic gap is rein-
forced by the absence of any signature of the condensate
in recent Coulomb drag experiments13 on DLG. Since
disorder scattering strongly suppresses Tc

8,9, the opti-
mal regime to search for excitonic condensates in DLG
is the relatively low density regime (kF d < 1) where kF
is the Fermi wavevector and d the inter-layer separation.
But this effectively low-density (i.e. low kF ) regime in
graphene is susceptible to strong density fluctuation ef-
fects (the so-called electron-hole puddles14) arising from
either extrinsic (Coulomb impurity-induced) or intrinsic
(e.g. ripple-induced) charge inhomogeneity in the sys-
tem. In the current work we explore the interesting and
important question of the effect of inhomogeneous layer
density fluctuations on the excitonic condensation, em-
phasizing that this is a distinct physical mechanism from
impurity disorder,8,9 where the latter mainly hinders the
condensate formation through momentum-conservation-
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FIG. 1. Sketch of DLG doped such that the upper layer con-
tains electrons and the lower layer contains holes with differ-
ent densities.

breaking scattering processes. The density fluctuations
may be caused by any general scalar potential such as
the Coulomb field of charged impurities or the effect of
corrugations and ripples. But regardless of the origin of
the potential, the key distinguishing feature of our work
is that we allow for imperfect nesting of the Fermi sur-
faces due to the difference in chemical potential in the
two layers which is likely to be the primary manifesta-
tion of disorder in these devices.
It is well known that the charge landscape of graphene

mounted on a substrate is inhomogenous14–16 and that
when the overall density is small, ‘puddles’ of elec-
trons and holes are formed. Various mechanisms for
the formation of this inhomogeneity have been pro-
posed, including the presence of charged impurities in the
environment17,18 and ripples19,20. These density fluctua-
tions can also be viewed as inhomogeneities in the local
chemical potential21. The presence of the top and bot-
tom gates, as well as the dielectric between the graphene
layers, implies that such chemical potential fluctuations
are ubiquitous in DLG samples. We study the effects of
these fluctuations on the excitonic condensate within a
local density approximation. Keeping in mind the wide
variation of the excitonic gap in the clean case based
on the theoretical approximation scheme, we look at the
two extreme cases: (i) unscreened Coulomb interaction
and (ii) Coulomb interaction with static screening, with
a focus on common features obtained by scaling various
energy scales by ∆̃0, which is the excitonic gap for the
clean sample in either approximation.
Our main results are: (a) In spatially homogeneous

DLG, with different elctron and hole Fermi energies, the
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pairing profile ∆k depends only on the average Fermi
energy µ̄, and is independent of the difference δµ un-
til |δµ| = 2∆̃0. Beyond this point, the pairing col-
lapses for both the screened and the unscreened inter-
action. (b) For imbalanced Fermi surfaces, we find no
evidence of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
type state22 with pairing at finite center of mass momen-
tum |Q| = kFu − kFl in either the unscreened or the
screened case. (c) We provide two different estimates of
the effect of charge inhomogeneity on the excitonic con-
densate: (i) the average pairing gap, which is relevant
for thermodynamic measurements and (ii) the fraction
of the sample area supporting the condensate which is
relevant for transport measurements. We discuss these
quantities as a function of the average chemical potential
and the width of density fluctuations for both screening
models. Our results show that screening makes the exci-
tonic condensates more vulnerable to charge fluctuations
by virtue of the smaller excitonic gap and that transport
measurements are more robust to these fluctuations than
bulk thermodynamic measurements.
The large separation of the two graphene layers implies

that the local chemical potential (and hence charge) fluc-
tuations are independent of each other. For convenience,
we will assume the top layer to be electron doped with
local chemical potential µu and the lower layer to be hole
doped with local chemical potential−µl. These quantites
may fluctuate spatially. The independent fluctuations of
the two chemical potentials imply that the perfect nest-
ing of Fermi surfaces is lost in these inhomogeneous ma-
terials even when the global average 〈µ〉 is the same in
each layer. Before going into the details of averaging
over distributions of chemical potentials through a local
density approximation, we examine the effect of unequal
(but spatially homogeneous) chemical potentials in the
two layers on excitonic properties.
The Hamiltonian for a single spin/valley species in

monolayer graphene in layer λ ∈ {u, l} is given by

Hλν =
∑

k (εkν − νµλ) c
†
λkνcλkν where ν ∈ {+,−} de-

notes the band and εkν = νvk is the single particle en-
ergy. We will set h̄ = 1 for the rest of this paper. For
excitonic condensates in DLG, we are interested in the
case where the average electron (hole) doping in the up-
per (lower) layer is large (i.e. |µλ| ≫ ∆0). Since exci-
ton condensation is dominated by processes around the
Fermi surfaces, we can exclude the filled (empty) valence
(conduction) band in the upper (lower) layer from our
model. The full Hamiltonian is thenH = Hu++Hl−+Veh

where Veh is the inter-layer interaction between the elec-
trons and holes. We neglect the intra-layer interaction
since it amounts only to a small renormalization of the
Fermi velocity in the layer23,24. We write the second-
quantized operators for electrons in the upper layer as

ak = cuk+ and for holes in the lower layer as bk = c†lk−.
This particle-hole transformation allows us to make a di-
rect connection with the BCS theory of superconductiv-
ity, albeit with a complicated and non-separable poten-
tial kernel. In this notation, the BCS pairing ansatz with
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FIG. 2. (a) The pairing amplitude ∆k for unscreened inter-
action with δµ = 0 and different µ̄. (b) The largest pairing

amplitude ∆̃0 for the unscreened interaction at δµ = 0. (c)

The evolution of the largest pairing amplitude ∆̃ with δµ for
the unscreened interaction. The dotted line is δµ/2 which
serves as a guide to the eye illustrating the collapse of the
excitonic pairing when δµ = 2∆̃0. (d) ∆̃0 for the statically
screened interaction at δµ = 0.

zero center of mass momentum for the interaction gives

Veh =
∑

kq

V (q)f(k+ q,k)a†−k−qb
†
k+qbka−k (1)

where V (q) is the interaction potential and f(k,k′) =
[1 + cos(θk − θk′)]/2 is the chirality factor due to the
graphene band wave functions. Using standard diagonal-
ization techniques with a mean field in the excitonic chan-
nel, ∆k = 〈bka−k〉, we obtain two quasiparticle branches

with spectrum Eα,β = δµ/2±
√

(h̄vk − µ̄)
2
+∆2

k where

µ̄ = (µu + µl)/2 and δµ = µu − µl. The self-consistent
gap equation is then given by

∆k =
∑

k′

V (k′ − k)
∆k′f(k,k′) [nβ(k

′)− nα(k
′)]

√

(εk′ − µ̄)2 +∆2
k′

(2)

where the occupation numbers are nα(β)(k) =
Θ(−Eα(β)(k)) at zero temperature. Equation (2) shows
that µ̄ and δµ are the natural variables to analyze the
system. We will first look at the system with δµ = 0,
where the two Fermi surfaces are perfectly nested.
Within a model of unscreened Coulomb interaction4,5,

which gives the most generous estimate for the excitionic
gap, the inter-layer potential is V (q) ≡ Vb(q)e

−qd =
2πe2e−qd/(κq) where Vb(q) is the bare 2D Coulomb
interaction and κ is the dielectric constant of the
environment25 The momentum profile of ∆k for δµ = 0
is shown in Fig. 2(a) for a small inter-layer separation
of 1nm and three different values of µ̄. ∆k has a non-
monotonic momentum dependence with a peak at k = kF
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whose height increases with the size of the Fermi surface.
This peak height, ∆̃0, is shown in Fig. 2(b) as a function
of µ̄ for two different values of the inter-layer separation,
d = 1, 5nm. The profiles have a convex shape which flat-
tens out at large values of µ̄. For δµ = 0, the quasiparticle
spectrum Eα = −Eβ and the positive energy branch has

a minimum ∆̃0 at k = kF . Thus ∆̃0 can be identified as
the true single particle spectral gap in the system.
In the opposite limit, we study the model of Coulomb

interactions with static screening, which gives the lowest
estimate of excitonic gaps at high density. In this case,
the inter-layer potential is given by7

Veh(q) =
Vb(q)e

−qd

1− Vb(q) [Πu +Πl] + Vb(q)2ΠuΠl (1− e−2qd)

where Πλ(q) is the polarization function in a single
layer26 which may be different in the two layers for mis-
matched Fermi surfaces. The momentum dependence of
∆k takes a similar form to the unscreened case, with a
peak at k = kF , but, as shown in Fig. 2(d), the size of the

peak ∆̃0 is several orders of magnitude smaller. Unlike
the unscreened case, ∆̃0 shows a non-monotonic depen-
dence on µ̄ with a peak occuring at a relatively small
value of µ̄. The increase in ∆̃0 at small µ̄ is due to the
increasing density of states at the Fermi level, but in-
creasing the size of Fermi surface also makes the screen-
ing of the Coulomb interaction more efficient since the
Thomas Fermi wave vector qTF ∼ kF in linearly dispers-
ing graphene. At large densities, the increased screening
overwhelms the increasing density of states and the ex-
citonic gap decreases rapidly6,7.
We now focus our attention on the effects of Fermi

surface imbalance on the excitonic properties, using a
pairing ansatz with zero center of mass momentum. We
see that changing the sign of δµ is equivalent to chang-
ing Eα → −Eβ so a discussion of δµ > 0 will suffice.
As δµ increases, we find that the profile of ∆k remains
unchanged until δµ = 2∆̃0. For δµ > 2∆̃0, the pairing
vanishes for all k leading to the normal state. This be-
haviour is common to both the unscreened and screened
interaction model and is equivalent to the Clogston-
Chandrasekhar27 limit for loss of pairing in a supercon-
ductor in a Zeeman field. This is visible explicitly in
Fig. 2(c), where the peak pairing amplitude ∆̃ is plot-
ted as a function of δµ for the unscreened interaction for
µ̄ = 50 and 100meV and d = 1 and 5nm. This behaviour
can be understood from Eq. (2) where δµ appears only
through the Fermi functions nα(β). The profile for ∆k is
unchanged from the δµ = 0 case so the occupation prob-
abilities are unchanged if |δµ|/2 < ∆̃0. Thus the profile

for δµ = 0 satisfies the gap equation for δµ < 2∆̃0. Be-
yond this value, the occupation probabilities are changed
around the gap edge, where the gap edge singularities in
the density of states ensure that the pairing is completely
lost.
We have also looked at the possibility of electron-hole

pairing with finite center of mass in the case of imbal-
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FIG. 3. The areally averaged excitonic gap, given by Eq. (3).
The layer separation and screening model are labelled.

anced Fermi surfaces, specifically for pairing with cen-
ter of mass momentum |Q| = |kFu − kFl|, which has
a rich history in the theory of superconductivity under
the name “FFLO pairing”22. We have not found any
evidence of FFLO type excitonic pairing in either the
screened or the unscreened model. This is not surpris-
ing, since, even with the model of a constant local in-
teraction, FFLO states are known to stabilize in only
a narrow parameter regime in higher than 1D28. The
momentum dependence of the Coulomb potential would
further destabilize this fragile state. We safely predict
the non-existence of any FFLO-type interlayer excitonic
superfluidity in density-imbalanced bilayer systems.
Having looked at the effects of Fermi surface imbalance

on homogeneous states, we now connect these findings
to excitonic condensates in actual inhomogeneous DLG
samples. In the first instance, one could imagine a ther-
modynamic experimental probe which couples to an area
of the sample which is larger than the size of the aver-
age fluctuation (e.g. measurement of a gap derived from
specific heat). In this case, the measured excitonic gap
might be best modeled as an average of the gap over the
spatial area sampled. Since the correlation length of the
density fluctuations is of the order of the system size, we
can use a local density approximation to write

〈∆̃〉 =
∫∫

dµl dµu P (µu)P (µl)∆̃(µu, µl) (3)

where P (µλ) is the probability distribution for the chem-
ical potential in layer λ. Similar averaging procedures
have been employed with great success29. It is well known
that for monolayer graphene, the distribution of density
fluctuations due to charge impurities is Gaussian17,30,
and hence

P (µ) =
2|µ|√

2π3v2σn

exp

[

− (µ|µ| − 〈µ〉|〈µ〉|)2
2σ2

nv
4π2

]

(4)
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FIG. 4. The fraction of the area supporting the excitonic con-
densate in inhomogeneous DLG. The black contour denotes
A = 0.5 and the white contour is A = 1.

where σn is the width of density fluctuations determined
by impurity concentrations, 〈µ〉 is the global chemical po-
tential (which we assume to be the same for both layers
and is set by external gating). It is known from theo-
retical work17 that in the case of charged impurities, σn

and the 2D impurity concentration are of the same or-
der of magnitude. We assume that the inhomogeneities
in the two layers are uncorrelated since if the density
fluctuations are caused by ripples there is no reason to
believe that these should be the same in the two lay-
ers, and the field due to charged impurities will be effec-
tively screened from the more distant layer by the closer
one. However, inter-layer correlations can be included by
substituting a more sophisticated function instead of the
product P (µu)P (µl). Thus we have reduced the effects
of inhomogeneity to one phenomenological parameter σn

which takes the same value in both layers. Evaluating the
integrals in Eq. (3) gives the color plots shown in Fig. 3.
In the unscreened case for small inter-layer distance, the
gap is large enough that the presence of density fluctu-
ations does not substantially alter the gap. However,
for static screening, the fluctuations are large enough to
completely kill the exciton condensate for moderate inter-
layer separation, and even for minimal separation at low
density a vanishing amount of inhomogeneity is required
if the gap is to persist.
A more definitive signature of excitonic condensates

is the “superfluid” or perfectly inductive response of the
system in drag transport measurements. The condensate
and non-condensate regions form a network and perco-
lation theory can be applied to determine the transport
properties31. The strongly inhomogeneous samples most
probably show glassy behaviour, but the nature of this
glassy state requires a more sophisticated treatment of
disorder. Although a full analysis of percolating clusters

is beyond the scope of this paper, the fraction of area
supporting the condensates can be related to percolation
thresholds. The fractional area of the sample which sup-
ports the condensate is given by

A =

∫∫

dµu dµlP (µu)P (µl)Θ(µuµl)Θ(2∆̃0 − |δµ|) (5)

The first step function represents the fact that in the in-
homogenous case it is possible for µu and µl to be in
the same band. If this is the case then the condensate is
not allowed. Figure 4 shows A for both the unscreened
and statically screened interactions, and for the two val-
ues of the inter-layer separation shown previously. The
black contour denotes A = 0.5, where half the area sup-
ports the condensate, and the white contour shows A = 1
meaning that the whole sample is excitonic. We see that
in the unscreened case, the condensate should be stable at
experimentally accessible values of density fluctuations,
but in the statically screened case the fluctuations have
to be smaller even than those currently available in hBN
devices30,32. By comparing Figs. 4 and 3, we see that in
samples with density fluctuations, the formation of the
excitonic condensate is easier to detect in transport-style
experiments than in probes that average over the bulk of
the sample33.
We also note that other authors10,11 have considered

the effect of dynamic screening on the exciton conden-
sate without disorder. In the high density limit (where
static screening gives a tiny gap due to the large size
of the polarization function), dynamic screening gives a
gap which is closer to the unscreened interaction than the
static screening. Using the data presented in Ref. 10, we
estimate that for physically realistic parameters, the dy-
namic screening theory predicts that the peak gap in the
high density regime will be ∼ 0.1meV, indicating that
the numerical effect of disorder is roughly similar to that
of the static screening in the low density regime. Since
our analysis shows that the nature of the screening has
no impact on the effects of inhomogeneity, Figs. 3 and
4 show that a gap of this size is marginally observable.
Therefore, just as the low density statically screened in-
teraction may be observed in the cleanest systems, so
should a gap generated by dynamic screening in the high
density regime.
In summary, we have examined the impact of chem-

ical potential fluctuations on the formation of an exci-
tonic condensate in DLG. The origin of these charge fluc-
tuations may be from ripples in the graphene surface,
charged impurities in the environment of the graphene,
or any other general spatially-varying scalar field. While
the absolute value of the gap depends sensitively on the
model of interaction used, the effects of Fermi surface
imbalance are identical in the two cases. However, since
the inhomogeneity can be controlled only on an absolute
scale, we find that the size of the gap is the crucial fac-
tor which determines the robustness of the condensate
against this form of disorder. If the gap is of the order of
a few meV, then the level of fluctuations found with hBN
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substrates should be sufficient to observe the condensate
in Coulomb drag experiments. Finally, if static screening
is important in the formation of excitonic condensates,
there is an optimal Fermi energy (which is ∼ 20meV for
d = 1nm), where it would be easiest to see the conden-

sate.

ACKNOWLEDGMENTS

This work is supported by NRI-SWAN and ONR-
MURI.

1 S. A. Moskalenko and D. W. Snoke, Bose-Einstein Conden-

sation of Excitons and Biexcitons (Cambridge University
Press, Cambridge, 2000).

2 J. P. Eisenstein and A. H. MacDonald, Nature (London)
432, 691 (2004).

3 J. P. Eisenstein, Science 305, 950 (2004).
4 C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 77, 233405
(2008).

5 H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald,
Phys. Rev. B 78, 121401 (2008).

6 M. Y. Kharitonov and K. B. Efetov, Phys. Rev. B 78,
241401 (2008); Semicond. Sci. Tech. 25, 034004 (2010).

7 Y. E. Lozovik and A. A. Sokolik, JETP Lett. 87, 61 (2008).
8 R. Bistritzer and A. H. MacDonald, Phys. Rev. Lett. 101,
256406 (2008).

9 D. K. Efimkin, V. A. Kalbachinskii, and Y. E. Lozovik,
JETP Lett. 93, 238 (2011).

10 I. Sodemann, D. A. Pesin, and A. H. MacDonald, Phys.
Rev. B 85, 195136 (2012).

11 Y. E. Lozovik, S. L. Ogarkov, and A. A. Sokolik, Phil.
Trans. R. Soc. A 368, 5417 (2010).

12 M. P. Mink, H. T. C. Stoof, R. A. Duine, and A. H.
MacDonald, Phys. Rev. B 84, 155409 (2011).

13 S. Kim, I. Jo, J. Nah, Z. Yao, S. K. Banerjee, and E. Tutuc,
Phys. Rev. B 83, 161401 (2011).

14 J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H.
Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144
(2008).

15 Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F.
Crommie, Nat. Phys. 5, 722 (2009).

16 A. Deshpande, W. Bao, F. Miao, C. N. Lau, and B. J.
LeRoy, Phys. Rev. B 79, 205411 (2009).

17 E. Rossi and S. Das Sarma, Phys. Rev. Lett. 101, 166803
(2008).

18 M. Polini, A. Tomadin, R. Asgari, and A. H. MacDonald,
Phys. Rev. B 78, 115426 (2008).

19 A. L. Vázquez de Parga, F. Calleja, B. Borca, M. C. G.
Passeggi, J. J. Hinarejos, F. Guinea, and R. Miranda,
Phys. Rev. Lett. 100, 056807 (2008).

20 M. Gibertini, A. Tomadin, F. Guinea, M. I. Katsnelson,
and M. Polini, Phys. Rev. B 85, 201405 (2012).

21 The width of the density fluctuations in graphene vary30

from ∼ 1010cm−2 (best samples on hBN) to ∼ 1011cm−2

(on SiO2).
22 P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
23 S. Das Sarma, E. H. Hwang, and W.-K. Tse, Phys. Rev.

B 75, 121406 (2007).
24 S. Das Sarma and E. H. Hwang, ArXiv e-prints (2012),

arXiv:1203.2627 [cond-mat.mes-hall].
25 Throughout this paper, we will use κ = 3.9 corresponding

to the dielectric constant for hBN or SiO2.
26 E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
27 A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
28 D. E. Sheehy and L. Radzihovsky, Annuls of Phys. 322,

1790 (2007); G. J. Conduit, P. H. Conlon, and B. D.
Simons, Phys. Rev. A 77, 053617 (2008).

29 D. S. L. Abergel, E. H. Hwang, and S. Das Sarma, Phys.
Rev. B 83, 085429 (2011).

30 J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod,
A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-
Herrero, and B. J. LeRoy, Nat. Mater. 10, 282 (2011).

31 E. Rossi and S. Das Sarma, Phys. Rev. Lett. 107, 155502
(2011).

32 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sor-
genfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shep-
ard, and J. Hone, Nat Nano 5, 722 (2010).

33 Such experiments could benefit enormously if the inhomo-
geneity in the individual graphene layers could be screened
out in a controlled manner by using screening layers as
was done in a clever recent experiment by Ponomarenko et

al.34.
34 L. A. Ponomarenko, A. K. Geim, A. A. Zhukov, R. Jalil,

S. V. Morozov, K. S. Novoselov, I. V. Grigorieva, E. H. Hill,
V. V. Cheianov, V. I. Fal’ko, K. Watanabe, T. Taniguchi,
and R. V. Gorbachev, Nat Phys 7, 958 (2011).


