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Non-Abelian statistics is a phenomenon of topologically protected non-Abelian geometric phases
as we exchange quasiparticle excitations. In this paper, we construct a ZN rotor model that realizes
a self-dual ZN Abelian gauge theory. We find that lattice dislocation defects in the model produce
topologically protected degeneracy. Even though dislocations are not quasiparticle excitations, they
resemble non-Abelian anyons with quantum dimension

√
N . Exchanging dislocations can produces

topologically protected projective non-Abelian geometric phases. Therefore, we discover a new kind
of (projective) non-Abelian anyons that appear as the dislocations in an Abelian ZN rotor model.
The new non-Abelian anyons can be viewed as a generalization of the Majorana zero modes.

PACS numbers: 05.30.Pr, 05.50.+q, 61.72.Lk, 03.67.-a

Introduction— Searching for Majorana fermions (or
more precisely, Majorana zero modes) in condensed mat-
ter systems have attracted increasing research interests
recently.1–10 But what really is the Majorana zero mode?
In fact, the so called “Majorana zero mode” is actually
a phenomenon of topologically protected degeneracy11,12

in the presence of certain topological defects (such as
vortices in 2D px + ipy superconductors2,3). In the
race for finding Majorana zero modes, much attention
has been paid to the fermion systems.4–10 However the
boson/spin systems also have topologically protected
degeneracies,11–20 which may also be ascribed to Majo-
rana zero modes or their generalizations.

A 2D bosonic example of emergent Majorana zero
modes is found in Z2 plaquette model model18, where
lattice dislocations are braided and fused as if they were
Majorana zero modes21,22 which resemble non-Abelian
anyons23–25 of quantum dimension

√
2. The Z2 pla-

quette model can be generalized to a ZN rotor model,
whose low energy effective theory is a self-dual ZN gauge
theory26,27, which could be realized in the ZN spin liq-
uid states28–31. In this paper, we study the topologi-
cally protected degeneracy associated with the extrinsic
topological defects, namely lattice dislocations in the ZN
rotor model, and found that these defects are of quan-
tum dimension

√
N , which can be viewed as a general-

ization of the “Majorana zero mode”. Braiding topo-
logical defects with protected degeneracy will lead to
topologically protected projective non-Abelian geomet-
ric phase,32 which may allow us to perform decoherence
free quantum computations.25

We like to remark that the dislocations in our ZN rotor
model are not non-Abelian anyons, since the non-Abelian
anyons must be excitations of the Hamiltonian, while the
dislocations are not the excitations in this sense. The dis-
locations do not really carry non-Abelian statistics since
the non-Abelian geometric phase from exchanging dis-
locations is topologically protected only up to a total
phase. We say the dislocations carry a projective non-
Abelian statistics.33,34 An other example of projective
non-Abelian statistics for dislocations in fractional quan-

tum Hall states on lattice can be found in Ref. 35.
To summarize, the finite energy quasiparticles in our

ZN rotor model have only Abelian statistics. However,
the dislocation defects in the model have a (projective)
non-Abelian statistics, which generalize the (projective)
non-Abelian statistics of Majorana zero modes.
ZN plaquette model— The ZN plaquette model is a ro-

tor model on a two-dimensional square lattice (see Fig. 1).
On each site i, define a ZN rotor with N basis states |mi〉,
labeled by the angular momentum mi = 0, 1, · · · , (N−1).
For each rotor, introduce Ui to measure the angular mo-
mentum Ui|mi〉 = eiθNmi |mi〉 with θN ≡ 2π/N , and
Vi to lower the angular momentum by one Vi|mi〉 =
|(mi − 1)mod N 〉. Both Ui and Vi are unitary operators

U†i Ui = V †i Vi = 1, satisfying ViUi′ = eiθNδii′Ui′Vi.
The ZN plaquette model is given by the Hamiltonian

H = −
∑
p

Op + h.c., (1)

where the operator Op describes a kind of ring coupling
among the rotors on the corner sites of each plaquette p,

Op =
1 2

34
p = U1V2U

†
3V
†
4 . (2)

Here we adopt the graphical representation for the oper-

ators: Ui = , Vi = , U†i = , V †i = , by drawing
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FIG. 1: (Color on line.) Even×even periodic lattice with
plaquettes colored in a check board pattern: red and darker
(blue and lighter) plaquette will be called even (odd). Each
directed string represent a product of Ui and/or Vi operators
on the sites along the string. The operator on each site is
specified by the string direction (see text).
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directed strings going through the site. Because these op-
erators only connect diagonal plaquettes, a string start-
ing from the even plaquette will never enter the odd pla-
quette (and vice versa). So we can locally distinguish
two different types of strings: e-string (m-string) if it
lives in the even (odd) plaquettes (see Fig. 1). The as-
signment of even/odd to the plaquettes can be reversed
under the translation of one lattice spacing, so the in-
terchange of e- and m-strings could be realized by the
curvature of the lattice as will be seen later. This du-
ality related translation symmetry is a unique property
of the ZN plaquette model (self-dual ZN gauge theory),
which is not presented Kitaev’s quantum double model16

for ZN (generic ZN gauge theory).

The ZN plaquette model Eq. (1) is exact solvable, as
evidenced from the commutation relation [Op, Op′ ] = 0,

as OpOp′ = p p¢ = eiθN e−iθN p p¢ = Op′Op for ad-

jacent p and p′, where the overlay of strings indicates
the ordering of the operators, such as ViUi = and
UiVi = , with the algebra = eiθN .

Every Op operator has N distinct eigenvalues eiθNqp la-
beled by qp = 0, 1, · · · , (N − 1), as implied from ONp ≡ 1.
qp denotes the (generalized) ZN charge hosted by the
plaquette p. If the plaquette is even (odd), we may call
it e-charge (m-charge). The energy will be minimized
if all Op’s take the eigenvalue 1 (qp = 0). Therefore
the ground states are the common eigenstates that sat-
isfy Op|grnd〉 = |grnd〉 for all p’s, and are free of any
ZN charges. They can be obtained from the projection
|grnd〉 =

∏
p Pp|any state〉, where the projection oper-

ator Pp =
∑N−1
n=0 O

n
p is defined for each plaquette p.

The projective construction enumerates all degenerated
ground states as the starting |any state〉 transverses all
super-selection sectors.

Intrinsic Abelian anyon excitations— The excited
states can be obtained by applying open string operators
to the ground state, which create opposite ZN charge
excitations in pairs at both ends of the string. These
excitations and can be detected by the close string oper-
ator (like Op) surrounding them in the counterclockwise
direction. Take S in Fig. 1 for example, OpS|grnd〉 =

· · · |grnd〉 = eiθN · · · |grnd〉 = eiθNS|grnd〉, show-

ing that a charge qp = +1 is created at the end of the
open string by the action of S. One can show that the
opposite charge qp = −1 is created at the other end.

Because ZN charge excitations are the ends of open
strings, their statistics are inherited from the algebra of
the string operators. According to = eiθN , braiding
a qe e-charge with a qm m-charge would acquire a phase
ei(θN/2)qeqm . In this sense, these excitations are Abelian
anyons. However we must stress that these anyons are in-
trinsic, as they are collective motions of rotors, described
by the excited state within the rotor Hilbert space. This
is to be distinguished from the extrinsic anyons intro-
duced later as lattice dislocations, which does not be-
longs to the rotor Hilbert space. Note that both the
phase ei(θN/2)qeqm and the excitation energy are invari-

ant under the exchange of e and m. This manifests the
self-duality of the ZN plaquette model, and can be real-
ized by lattice translation.

Ground state degeneracy— The degeneracy of the
ground states of the ZN plaquette model depends on
the topology of the lattice. Let us consider the torus
topology by setting the model on a Lx × Ly sized lat-
tice with periodic boundary condition in both directions.
The total number of states is NNsite , with Nsite = LxLy
being the number of sites. To count the ground states,
we note that they are constrained by ∀p : Op = 1. Con-
sider a particular Op operator and the subspaces labeled
by its different eigenvalues. Those subspaces all have
the same dimension, because any open string operator
that ends in the plaquette p (with the other end in a
fixed particular plaquette) can be used to perform a uni-
tary transform that rotates these subspaces into each
other. So each time imposing Op = 1 on a particu-
lar plaquette will reduce the available Hilbert space di-
mension by a factor of N . However the Op operators
are not independent. Because e-charges (m-charges) are
created in opposite pairs, summing over the lattice, e-
charges and m-charges must be neutralized respectively,
i.e.

∏
p∈evenOp =

∏
p∈oddOp = 1. This is true on an

even×even lattice (i.e. both Lx, Ly are even), which
reduces the number of independent Op constrains to
(Nplaq − 2), with Nplaq = LxLy being the number of
plaquettes. So after restricting the full Hilbert space to
the ground state subspace, the remaining dimension is
NNsite−Nplaq+2 = N2, meaning the ground state degener-
acy of the ZN plaquette model is N2 on the even×even
lattice.36 However for the even×odd or odd×odd lattices
(i.e. Lx or Ly is odd), e-string and m-string can be con-
tinued into each other by going along the odd direction,
thus e-charge and m-charge are made identical. So they
are no longer required to be neutralized respectively, but
only neutralized as a whole. Therefore we only have one
relation

∏
pOp = 1, which reduces the number of inde-

pendent Op constraints to (Nplaq − 1), and the resulting
ground state degeneracy will be NNsite−Nplaq+1 = N .

To summarize, the ground state degeneracy of the ZN
plaquette model on a torus follows from the general for-
mula (which holds for any arbitrary large lattice with or
without dislocations)

GSD = NNNsite−Nplaq , (3)

where N denotes the number of species37 of the intrin-
sic excitations that are supported by the lattice topol-
ogy. On the even×even lattice, we have totally N = N2

distinct excitations by combination of e- and m-charges.
When it comes to the even×odd or odd×odd lattice, e-
and m-charges are no longer distinct, and the number of
excitation species is reduced to N = N . The topological
order in the ground state is now evidenced from the pro-
tected ground state degeneracy on torus,11,12 and from
the dependence of the ground state degeneracy on the
parity of the lattice periodicity.
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FIG. 2: (Color on line.) (a) Lattice with a pair of disloca-
tions, marked out by aaa and `̀̀. Plaquettes on the branch cut
are colored by violet. Periodic boundary conditions are as-
sumed in both direction by sticking the dashed edges with
the solid edges on the opposite side. The ring operators Op

are redefined around the pentagonal plaquette. C operators
denote large close strings looping around the lattice. (b) Pla-
quette to site mapping. The site that is not mapped to is
marked by a black dot.

Dislocations— One can change the lattice periodicity
by first generating a pair of edge dislocations with op-
posite unit length Burger’s vectors, and moving them in
the direction perpendicular to their Burger’s vectors all
the way around the lattice, then annihilating them as
they meet again at the periodic boundary. During this
process, the ground state degeneracy must have changed.
This motivates us to introduce dislocations as shown in
Fig. 2(a) to probe the topological order by looking at the
degeneracy associated to them. With dislocations, one
can no longer globally color the plaquettes consistently.
Branch cuts must be left behind between each pairs of
dislocations. Going around a dislocation exchange the
e- and m-charges, as e- and m-strings are transmuted
into each other across the branch cut. The self-duality is
made explicit by dislocations.

In the presence of dislocations, the ZN plaquette model
is still defined by the Hamiltonian in Eq. (1), with the
same ring operatorOp in Eq. (2) for quadrangular plaque-
ttes (including those on the branch cuts). Only around
the pentagonal plaquettes (at the dislocations), the ring
operator Op should be redefined as

Op = −e−i
θN
2

1 2

34

5 p = −e−i
θN
2 U1V2U

†
3V
†
4 U5V

†
5 . (4)

The phase factor −e−iθN/2 is to guarantee that ONp ≡ 1
holds for the pentagonal plaquette as well. The pentag-
onal ring operator Op commutes with all the other ring
operators, so the exact solvability of the model is pre-
served. The ground states are again common eigenstates
of ∀p : Op|grnd〉 = |grnd〉. The dislocations are topo-
logical defects that do not belong to the model Hilbert
space. To distinguish from those intrinsic ZN charges,
we will call the dislocations as the extrinsic defects.

With the branch cuts, e-charge and m-charge are indis-
tinguishable, so the species of intrinsic excitations count
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FIG. 3: (Color on line.) Diffeomorphism of the torus with
a pair of dislocations at c and d. Expand the branch cut
(violet dashed line) between c and d into a hole, with two
edges marked by α and β. Separate the e- and m-layers.
Unwrap both layers by cutting along the large loops around
the torus. Rotate one layer to glue the β edges together along
the marked direction. Glue the other edges and rewrap into
a double torus.

to N = N . According to Eq. (3), the ground state de-
generacy will be given by NNsite−Nplaq+1 in general. To
count the number of sites and plaquettes, we first es-
tablish a correspondence between them by mapping each
plaquette to its bottom-left corner site, as indicated by
the arrows in Fig. 2(b). Between a pair of dislocations,
only one of them will hold a site that has no plaquette
correspondence (see Fig. 2(b)), so the introduction of ev-
ery pair of dislocations will give rise to one extra site
(with respect to the number of plaquettes). Therefore
if there are n dislocations on the lattice, there will be
Nsite −Nplaq = n/2 more sites than plaquettes, and the
ground state degeneracy of the ZN plaquette model will
be GSD = Nn/2+1. This conclusion holds in the thermal
dynamic limit for infinite large lattice size.

This ground state degeneracy is topologically pro-
tected indeed. To better understand the topology, we
start from the even×even periodic lattice without dislo-
cations, i.e. a torus with no branch cut. In this case, the
e-strings and m-strings are distinct, and can never be de-
formed into each other, as if they were living on two dif-
ferent layers of the torus. So the topological space is the
disjoint union of two separate torus. Introducing a pair of
dislocations, the two layers will be connected: strings on
one layer can be carried on into the other layer through
the branch cut. So the topological space becomes a dou-
bled torus under the diffeomorphism38 as shown in Fig. 3.

All the operators that act within the ground state
subspace are closed-string (cycle) operators which com-
mute with the Hamiltonian (open-string operators will
create excitations taking the sate out of the ground state
subspace). Note that the contractable cycles act triv-
ially (as Op = 1). Only non-contractable cycles can
be used to label the different ground states and to per-
form unitary transforms among them. On the double
torus topology as in Fig. 4(a), one can specify 4 non-
contractible cycles: Cex, Cey, Cmx, Cmy, as the canon-
ical homology basis. Their operator forms are given
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FIG. 4: (Color on line.) Diffeomorphism of string operators
on the torus (a) with a pair of dislocations, or (b) with 3 pairs
of dislocations.

explicitly according to their graphical representations
depicted in Fig. 2(a). We now study the representa-
tion of these cycle operators in the ground state sub-
space. First we find the following commutation relations
[Cex, Cey] = [Cmx, Cmy] = [Cex, Cmx] = [Cey, Cmy] = 0,
and two independent algebras CeyCmx = eiθNCmxCey,
CmyCex = eiθNCexCmy. Each algebra requires an N -
dimensional representation space, so the 4 cycle operators
together requires N2-dimensional representation space,
which must have completed the ground state subspace,
since all the non-contractable cycles can be generated
by these 4 basis cycles. Therefore the ground states are
N2-fold degenerated, and each of them corresponds to a
basis in the representation space. Any perturbation of
the Hamiltonian that is non-zero only in a local region
will not change the ground state degeneracy,39 since the
non-contractable cycle operators that avoid the local re-
gion still commute with the Hamiltonian.

The above can be generalized to the case with any
number of dislocations. Consider n dislocations with
n/2 branch cuts. Following the similar cut-and-glue pro-
cedures in Fig. 3, the topological space will be a genus
g = n/2 + 1 surface as in Fig. 4(b), on which one can
choose g pairs of non-contractable cycle operators Ca and
C ′a (a = 1, · · · , g), such that [Ca, Cb] = [C ′a, C

′
b] = 0

and CaC
′
b = eiθNδabC ′bCa. These operators spans a

Ng-dimensional representation space isomorphic to the
ground state subspace. Therefore the ground state de-
generacy of the ZN plaquette model with n dislocations
is GSD = Nn/2+1, which is consistent with our previous
result. Each dislocation contributes to the ground state
degeneracy by a factor of

√
N . Thus the dislocations re-

semble non-Abelian anyons of quantum dimension
√
N ,

as described in Ref. 38. Braiding the dislocations leads to
topologically protected projective non-Abelian geometric
phases.32 We see that projective non-Abelian anyon can
emerge from an Abelian model as the extrinsic topologi-
cal defects, such as lattice dislocations. Those projective

non-Abelian anyon can be used to perform topological
quantum computations,25 but not universally since the
square of the quantum dimension is an integer.40

Parton approach— For the N = 2 case, the quantum
dimension

√
2 implies that the extrinsic anyons are Ma-

jorana fermions.21 To expose the Majorana fermion ex-
plicitly, we evoke the parton projective construction, in
which 4 Majorana fermions ηαi (α = 1, 2, 3, 4) are in-
troduced on each site i, obeying the anti-commutation

relation {ηαi , η
β
j } = δijδαβ . Under the constraint

η1i η
2
i η

3
i η

4
i = 1/4, the rotor operators can be expressed

as Ui = iη1i η
2
i , Vi = iη2i η

3
i .18,36 Then the Z2 plaquette

model can be mapped to an interacting fermion model,
which has a “mean-field” description given by Hmean =
−
∑
〈ij〉(sij∆ij + h.c.) with the ansatz sij = ±1 on each

bound, where ∆i,i+x̂ = iη1i η
3
i+x̂ and ∆i,i+ŷ = iη2i η

4
i+ŷ.

Let |{sij}〉 be a free fermion ground state of Hmean, and
P =

∏
i
1
2 (1 + 4η1i η

2
i η

3
i η

4
i ) be the projection operator to

the physical Hilbert space of rotors. All the eigenstates
of the ZN plaquette model can be obtained by the pro-
jective construction as P|{sij}〉. To obtain the ground
states, {sij} must satisfy the flux configuration given by
Op = 1, which has totally 4 gauge inequivalent solutions
on a torus. Given a particular {sij}, all the Majorana
fermions will be paired up across the bound, except for
the dangling Majorana fermion at the dislocation site.
If there are n dislocations in the system, there will be
n dangling Majorana zero modes, which leads to a 2n/2

fold degeneracy in the free fermion ground states. So al-
together we have 4× 2n/2 fermion states to be projected
from, half of which will be projected to nothing due to
their odd fermion parity. Therefore the resulting physical
ground states add up to 4× 2n/2/2 = 2n/2+1, consistent
with our previous formula. The above discussion has
shown that the

√
2 quantum dimension of the extrinsic

anyon actually originated from the dangling Majorana
fermion, or the Majorana zero mode, at the dislocation
site. It has been shown that exchanging Majorana zero
modes will lead to non-Abelian geometric phase. In Ref.
32, it is shown that exchanging dislocations in our ZN
plaquette model will also lead to protected (projective)
non-Abelian geometric phase.

In conclusion, we studied the phenomenon of topolog-
ically protected degeneracy and topologically protected
projective non-Abelian geometric phases produced by ex-
trinsic topological defects (such as dislocations) in a ZN
rotor model. We find that these dislocations are projec-
tive non-Abelian anyons with quantum dimension

√
N .

For N = 2, such a result can be re-derived from a parton
construction where the dislocations can be identified as
Majorana zero modes. For higher N (N > 2), the pro-
jective non-Abelian anyons (i.e. the dislocations) can be
viewed as a generalization of the Majorana zero modes.
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