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We discuss the formal relationship between the real-time Keldysh and imaginary-time theory for
nonequilibrium in quantum dot systems. The latter can be reformulated using the recently proposed
Matsubara-voltage approach. We establish general conditions for correct analytic continuation pro-
cedure on physical observables, and apply the technique to the calculation of static quantities in
steady-state non-equilibrium for a quantum dot subject to a finite bias voltage and external magnetic
field. Limitations of the Matsubara voltage approach are also pointed out.
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I. INTRODUCTION

Experimental investigation of solids is in most
cases concerned with observation of static or dy-
namic properties in a weakly perturbed macro-
scopic system. Therefore, standard techniques
from equilibrium statistical mechanics are usu-
ally sufficient, possibly supplemented by linear-
response theories to account for transport. Equi-
librium statistical mechanics is based on the Gibb-
sian approach where the statistical density matrix
of a state s at energyEs and particle number Ns is
given by the Boltzmann factor e−β(Es−µNs) with
inverse temperature β = 1/kBT and the chemi-
cal potential µ. The big success in the theoretical
description of quantum systems in thermal equi-
librium is based on the fact that both the ther-
mal average and time evolution are based on the
same operator, and one can use the concept of
Wick rotation to formulate a theory which actu-
ally condenses both type of dynamics into a single
complex Matsubara frequency theory.
The advances in experimental methods over the

past two decades have however opened the access
to studies, where time dependencies on the scale
of internal time-scales become visible,1 or where
mesoscopic systems can be driven out of thermal
equilibrium in a controlled way and various prop-
erties can be experimentally observed2–5, both in
steady- and time-dependent states. Therefore,
one pressing question to modern quantum many-
body theory is how one can describe generic non-
equilibrium situations in macroscopic or meso-
scopic systems. For the latter the paradigms are
the single-electron quantum dot and nano-wires,
where a tremendous amount of data on transport
or transient response has been collected over the
past ten years.6,7

Out-of-equilibrium many-body theory is an
emerging field which poses an extreme chal-
lenge. There are many attempts to use ex-
isting theoretical approaches, the most popu-
lar being the ones based on the Keldysh for-
mulation of perturbation theory.8 In particular,
the growing interest in transport through meso-
scopic systems triggered a variety of applications
of this technique; for example direct perturba-
tion theory with respect to different zeroth or-
der Hamiltonians,9–11 functional renormalization
group methods12,13, real-time diagrammatic ap-
proaches14, or direct numerical evaluation of the
real-time propagators.15–21 There are many other
ideas, for example based on the concept of in-
finitesimal unitary transformations.22 A compre-
hensive overview can for example be found in Ref.
23,24.

An early attempt to formulate an out-of-
equilibrium version of statistical mechanics for
steady-state properties of general quantum many-
body systems is due to Zubarev,25 who tried to
construct a time-independent density matrix for-
malism by solving the equation of motion within
the scattering state formalism. This approach
has later been revisited by Hershfield in the con-
text of transport through quantum dot systems.26

The main problem with these, in principle ex-
act formulations, is that they cannot be readily
applied because they require the solution of the
Lippmann-Schwinger equation27 for the scatter-
ing states, which amounts to knowing the full
solution itself. Some efforts have been made
to directly implement Hershfield’s density matrix
within finite-order perturbation theories28–30, but
they have proven quite cumbersome to be ex-
tended to infinite orders. There have been other
attempts to tackle this problem by utilizing ad-
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vanced nonperturbative tools of quantum many-
body theory like Bethe ansatz31 or an extension of
Wilson’s numerical renormalization techniques.32

However, the former approach could only be ap-
plied to a very specific model, while the latter may
lack a thorough foundation regarding the proper
steady-state limit.33

In the present manuscript we focus on a dif-
ferent way to extend the theoretical framework
of equilibrium quantum mechanics to steady-state
nonequilibrium for quantum impurity models via
an imaginary-time theory. We especially dis-
cuss the possibility to deform the complex time
contour for physical observables in equilibrium
to the Keldysh contour appropriate for nonequi-
librium, as proposed by Doyon and Andrei34.
One fundamental problem that arises in any
such attempt stems from the fact that the non-
equilibrium steady-state Boltzmann factor and
the time-evolution operator now have a funda-
mentally different structure, and thus a straight-
forwardWick rotation is not possible. As an alter-
native procedure, we show that, by introduction
of Matsubara voltage35, the problem of the dual
operators can be resolved and a consistent theory
for steady-state non equilibrium based on auxil-
iary statistical mechanical problems formulated.
As the first step we need to properly define in

what sense we achieve a steady state in a quan-
tum impurity model. This is done in section II
together with a discussion of the general struc-
ture for Keldysh perturbation theory, the prob-
lem of analytical continuation and the idea of the
Matsubara voltage formulation. The equivalence
of the Keldysh real-time and the Matsubata volt-
age perturbation theory for the steady state will
be shown in section III for the single-impurity An-
derson model. In section IV we derive expressions
for calculating static observables on the impurity
via an analytical continuation procedure from the
Matsubara voltage description. As summary, sec-
tion V will conclude the paper.
Since many details are rather technical and not

really necessary to understand the main line of ar-
gument, we included them in a series appendices,
which will be referred to when necessary.

II. MANY-BODY THEORY OFF
EQUILIBRIUM

A. Convergence to steady-state
nonequilibrium

To establish a steady-state nonequilibrium, one
requires the system to be in the infinite-size limit.

In mesoscopic systems, such as quantum dots, this
requirement means that the size of the reservoirs,
L, should be the largest scale and this limit should
be taken before any others. The time tW for the
wake of the perturbation occurring in the quan-
tum dot region to reach the edge of the reservoir
with the Fermi velocity vF (tW = L/vF ) should
be greater than any time scale used for the turn-
on of the perturbation or measurements. This
ensures that the reflected wave does not inter-
fere with the formation of the steady-state and its
measurements. Alternatively, the reciprocal vF /L
also represents the level spacing of the continuum
states, which sets the smallest energy scale in the
model.
As in conventional many-body theory, we start

with a perturbation which we turn on infinitesi-
mally slow with a rate η−1 as

V̂ (t) = V̂ eηt (1)

for the time interval t ∈ [−T, 0], where T is some
initial time which eventually will be sent to infin-
ity. For t > 0, the perturbation remains constant
at the full strength, V̂ (t) = V̂ . The above discus-
sions lead to the relation between the three energy
scales (we set ~ = 1)

vF
L

≪ 1

T
≪ η. (2)

In his original proposal9, Hershfield assumed the
presence of an external relaxation process to de-
rive the time-independent density matrix in the
limit T → ∞. Recently Doyon and Andrei34

have shown that for mesoscopic systems infinite
reservoirs provide a relaxation process and any
assumption of an additional external relaxation
source is not necessary. This suggests that we can
do away with the adiabatic factor eηt in a time-
dependent theory as long as the limit L → ∞ is
taken first. Here we show through an explicit cal-
culation that the adiabatic factor eηt is not nec-
essary for the steady-state if local measurements
are made near the quantum dot36, henceforth ab-
breviated as QD.
Our model system consists of a QD connected

to two fermionic reservoirs labeled by α = L,R (or
±1, respectively, when the reservoir index is taken
numerically). We include the single-particle tun-
neling between the leads and the QD into the non-
interacting part of the Hamiltonian, which then
becomes the resonant level model (RLM)

Ĥ0 =
∑

αkσ

ǫαkσc
†
αkσcαkσ + ǫd

∑

σ

d†σdσ

−
∑

αkσ

tα√
Ω
(d†σcαkσ + h.c.) . (3)
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Here, c†αkσ is the creation operator of conduction
electrons for the reservoir α with energy ǫαkσ at
the continuum index k and spin σ; d†σ creates an
electron on the QD orbital and tα is the tunneling
integral. Ω is the normalization due to the volume
of the reservoirs. This Hamiltonian can be diag-

onalized by the scattering state operators ψ†
αkσ

given by the formal Lippmann-Schwinger opera-
tor equation,

ψ†
αkσ = c†αkσ − tα√

Ω

1

ǫαkσ − L0 + i0+
d†σ, (4)

with the Liouville operator acting on the operator
space as L0O = [Ĥ0,O]. This equation can be
easily solved as

ψ†
αkσ = c†αkσ − tα√

Ω
gd(ǫαkσ)d

†
σ

+
∑

α′k′σ

tαtα′

Ω

gd(ǫαkσ)c
†
α′k′σ

ǫαkσ − ǫα′k′σ + i0+
, (5)

with the bare retarded Green’s function for the
QD, gd(ω) = (ω − ǫd + iΓ)−1. Here, Γ =
π(t2L + t2R)N(0) is the hybridization broadening,
and we assume for simplicity a flat density of
states (DOS) N(0) for both reservoirs. With this
simple DOS, we suppress the reservoir and spin
indices in ǫαkσ unless necessary.
In the Hamiltonian (3), we represent the QD

by a single level under the assumption that the
QD level spacing is large enough that the inter-
level transition does not alter strong correlation
physics of single-level QD transport in a fun-
damental way. As the QD becomes large, the
multi-orbital nature of the QD becomes important
and we need to introduce the inter-level physics.
Orbital-fluctuation physics of a QD is an impor-
tant problem for inelastic transport process, but
the full many-body treatment of such physics has
so far been quite limited37,38. The range of va-
lidity of the imaginary-time theory has been dis-
cussed in Ref. 39 regarding the level-connectivity,
and we limit our discussion here to single-orbital
QD with on-site Coulomb interaction, namely, the
Anderson impurity model.
According to Hershfield9, the nonequilibrium

steady-state created by a shift of chemical poten-
tial on the source (drain) reservoir by Φ/2 (−Φ/2)
can be described by a density matrix

ρ̂0 = exp[−β(Ĥ0 − ΦŶ0)], (6)

with the so-called Y -operator defined as

Ŷ0 =
1

2

∑

kσ

(

ψ†
LkσψLkσ − ψ†

RkσψRkσ

)

. (7)

Since Ŷ0 is diagonal in the eigen-operator basis,
[Ĥ0, Ŷ0] = 0 and ρ̂0 is time-independent. It is im-
portant to realize that the convergence factor i0+

in the denominator of the Lippmann-Schwinger
equation determines that the one particle states

c†αkσ originate from the infinite past inside the
reservoir of infinite size. Thus the limit L → ∞
has already been taken implicitly before the per-
turbation is turned on.

B. Real-time theory for open system

In addition to the noninteracting part H0, the
full Hamiltonian H of the system will in general
also contain an interaction we will denote as V̂
in the following. For a general observable Â, we
define its nonequilibrium expectation value as

lim
T→∞

〈Â(T )〉 = lim
T→∞

Tr
(

eiĤT Âe−iĤT ρ̂0

)

Trρ̂0
, (8)

where Â has been evolved with the full Hamilto-
nian Ĥ during the time interval −T < t < 0. Un-
like Eq. (1), here we take V̂ (t) = V̂ for −T < t <

0. Defining the time-dependent operator Â(t) in

the Heisenberg picture, Â(t) = eiĤtÂe−iĤt, Â(t)

satisfies d
dt Â(t) = i[Ĥ, Â(t)] and

Â(t) = Â+ i

∫ t

0

dt′[Ĥ, Â(t′)]. (9)

One can now form the average with respect to ρ̂0,
to obtain

〈Â(T )〉 = 〈Â〉0 + i

∫ 0

−T

dt′〈[Ĥ, Â(t′)]〉0

= 〈Â〉0 + i

∫ 0

−T

dt′〈[V̂ , Â(t′)]〉0. (10)

For the existence of a well-defined limit 〈Â(∞)〉,
one must show that36

∫ 0

−∞

dt〈[V̂ , Â(t)]〉0 < +∞ . (11)

To this end one argues that as long as V̂ and Â are
operators local to the quantum dot,40 the time-
evolution of Â(t) will decay as electrons travel
away and the integral is finite.
To make the argument concrete, we consider as

example the usual on-site Coulomb interaction

Ĥ = Ĥ0 + V̂ with V̂ = Und↑nd↓, (12)
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and Ĥ0 defined in Eq. (3), and measure the cur-

rent through the dot, Â = Î. With the require-
ment that the current through the L/R leads,

IL/R, is the same, the current operator Î can be

symmetrized as Î = (t2RÎL + t2LÎR)/(t
2
L + t2R) and

〈Î〉 =
−itLtR√
Ω(t2L + t2R)

∑

kσ

[〈d†σ(tRcLkσ − tLcRkσ)〉 − h.c.] (13)

=
tLtR
t2L + t2R

i

Ω

∑

kk′

(g∗d(k)− gd(k
′))

×
[

tLtR〈ψ†
LkψLk′ − ψ†

RkψRk′ 〉

−(t2L − t2R)〈ψ†
LkψRk′ + ψ†

RkψLk′〉
]

.(14)

We evaluate Eq. (10) using Wick’s theorem.
Due to the commutator inside the expectation
value, only connected contractions between any
V̂ and Î(t) will contribute. Therefore any
non-vanishing Wick’s contractions must have an
even number of contractions connecting V̂ and

Î(t) and contain factors of 〈ψαkσ(0)ψ
†
αkσ(t)〉0 or

〈ψ†
αkσ(0)ψαkσ(t)〉0. More specifically, the first or-

der perturbation involves factors like

〈[V̂ , Î0(t)]〉0 ∝ 1

Ω2

∑

kk′

[g∗d(k)− gd(k
′)]gd(k)g

∗
d(k

′)

×[fL(k)− fL(k
′)]e−i(ǫk−ǫ′k)t + · · · . (15)

Here fα(k) = [1 + eβ(ǫk−αΦ/2)]−1 (α = L,R or
+1,−1, respectively) is the Fermi-Dirac function
within the α reservoir. Summation over the con-
tinuum variables k, k′ leads to terms of the form

〈d†(t)d(0)〉 =
1

Ω

∑

kα

t2α|gd(k)|2fα(k)e−iǫkt

≤ 1

Ω

∑

k

t2α|gd(k)|2e−iǫkt

∝ e−Γ|t|. (16)

Note that the inequality holds both for equilib-
rium and nonequilibrium. Therefore, the follow-
ing expression

〈[V̂ (sk), [· · · , [V̂ (s1), Î0(t)] · · · ]〉0
∝ e−Γ·min{|s1−t|,··· ,|sk−t|} (17)

holds to any order of the perturbative expansion
in V , and the integral over t, Eq. (11), becomes
convergent. This shows that the steady-state limit
of the nonequilibrium is well-defined due to the
built-in exponential time-dependence e−Γ|t| and

the physics is invariant regardless of the adiabatic
factor eηt in Eq. (1).
We stress here that the above conclusion on the

adiabatic rate η holds on the condition that the
many-body interaction V̂ and the observable Â
are short-ranged from the QD. Generally, the two
different limits of adiabatic (η ≫ 1/T ) and sudden
(η ≪ 1/T ) switching of interaction lead to differ-
ent global quantum states. However, the main
difference in the wave-functions in the two limits
is located at the front of the propagating wave
from the QD region and local observables near
the QD reach the same steady-state values. As
pointed out by Doyon and Andrei34, the infinite
reservoirs [Eq. (2)] absorb excess energy in the
switching process and carry it away from the QD.
We caution that, although the convergence fac-

tor eηt is not necessary for a time-dependent the-
ory, such adiabatic factor should be treated care-
fully in a time-independent theory, like the steady-
state nonequilibrium. Such situation arises in par-
ticular when we perform a Fourier transformation
to represent a steady-state quantity in a spectral
representation with sinusoidal basis. For instance,
let us express a steady-state quantity A as an in-
tegral over a time-dependent function F (t),

A =

∫ 0

−∞

F (t)dt, (18)

where the integral is absolutely convergent with-
out any adiabatic factor eηt. We write F (t) in a
spectral representation as

F (t) =

∫ ∞

−∞

dω

2π
F̃ (ω)e−iωt , (19)

with the Fourier component F̃ (ω), and the quan-
tity A becomes

A =

∫ 0

−∞

dt

[
∫ ∞

−∞

dω

2π
F̃ (ω)e−iωt

]

. (20)

If we now want to express A via a spectral rep-
resentation, we need to change the order of in-
tegrals. However, e−iωt is an oscillatory function
and we have to insert a regularization factor eηt to
unambiguously allow the integral exchange. Then

A =

∫ ∞

−∞

dω

2π
F̃ (ω)

[
∫ 0

−∞

dte−i(ω+iη)t

]

=

∫ ∞

−∞

dω

2π

iF̃ (ω)

ω + iη
, (21)

where the limit η → 0 has to be taken after the
integral has been evaluated.
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t = 0

t = −iβ

t = −T

t = −T − iβ

t = 0

t = −iβ

(a) (b)

FIG. 1: (a) Keldysh contour for real-time di-
agrammatics. If the time-evolution along the
dashed line does not contribute an extra factor,
the whole contour can be deformed to one along
the imaginary-time from t = −iβ to t = 0 as

shown in (b).

Thus, the regularization factor iη appears ex-
plicitly in time-independent theories. A possible
way to avoid it is to use an imaginary-time formu-
lation, which is built on a finite contour cut off by
a finite temperature and therefore does not need
such a regularization factor. It is thus one of our
goals to clarify under what conditions a regular-
ization is not necessary and justify the use of an
imaginary-time theory.

C. Conventional analytic continuation

In this subsection, we discuss conventional ar-
guments of the analytic continuation of a real-
time theory to an imaginary-time theory. We fur-
thermore illustrate why such deformation of time-
contour fails for a steady-state nonequilibrium,
closely following the argument by Doyon and An-
drei34.
In equilibrium, the thermal average of an ob-

servable Â is given as

〈Â〉 = lim
T→∞

TrS(0,−T )ρ̂0S(−T, 0)Â
TrS(0,−T )ρ̂0S(−T, 0)

, (22)

with the time-evolution operator S(t1, t2) =

e−itH(t1−t2) with the full Hamiltonian Ĥ and the
non-interacting density matrix ρ̂0 = e−βĤ0 . We
consider that the limit T → ∞ exists as discussed
in the previous section. In the interaction picture

with V̂I(t) = eitĤ0 V̂ e−itĤ0 , the above relation can
be rewritten as

〈Â〉 = lim
T→∞

TrSI(0,−T )ρ̂0SI(−T, 0)Â
TrSI(0,−T )ρ̂0SI(−T, 0)

, (23)

with

SI(t2, t1) = T exp

[

−i
∫ t2

t1

dsV̂I(s)

]

, (24)

with the time-ordering operator T defined as the
time moving in the direction from the right argu-
ment t1 to the left argument t2. Using the rela-
tion,

SI(b, a) = e−icH0SI(b+ c, a+ c)eicH0 , (25)

one can write

SI(0,−T )ρ̂0 = ρ̂0SI(−iβ,−iβ − T ), (26)

in the similar manner as Ref. 34. Then 〈Â〉 is
written as

〈Â〉 = lim
T→∞

Trρ̂0SI(−iβ,−iβ − T )SI(−T, 0)Â
Trρ̂0SI(−iβ,−iβ − T )SI(−T, 0)

= lim
T→∞

〈SI(−iβ,−iβ − T )SI(−T, 0)Â〉0
〈SI(−iβ,−iβ − T )SI(−T, 0)〉0

(27)

If we can insert the factor SI(−iβ − T,−T )
[denoted as dashed line in Fig. 1(a)] between
SI(−iβ,−iβ−T ) and SI(−T, 0), one can close the
time-contour and analytically continue to the con-
tour along the imaginary-time (0,−iβ) [Fig. 1(b)].
Using the Wick’s theorem and the linked-

cluster theorem, the perturbation terms con-
tributing to 〈Â〉 are of the type

〈VI(s1)VI(s2) · · ·VI(sn)Â(0)〉0,connected , (28)

where the time s = 0 for Â and the interac-
tion times {s1, · · · , sn} are all interconnected by

Wick’s contractions. When the interaction V̂ and
the observable Â are operators local to the QD,
one can use the relation Eq. (16). We consider

a case that one of sk in 〈VI(s1) · · ·VI(sn)Â〉0,con
belongs in the interval [−T,−iβ − T ]. In its con-

nected Wick’s contractions the operators in Â
may be eventually linked to sk via a forward se-
quence {s′0 = 0, · · · , s′p−1, s

′
p = sk} and a back-

ward sequence {s′′0 = sk, · · · , s′′q−1, s
′′
q = 0}. For

the forward sequence {s′0 = 0, · · · , s′p−1} with the
times on the real-axis, we can use Eq. (16),

e−Γ
∑p−1

n=1
|s′n−s′n−1

| ∼ e−Γmax{|s′
1
|,··· ,|s′p−1

|}. (29)

Similar expression holds for the backward se-
quence. For the last term involving sk ∈
[−T,−iβ − T ], we have a contraction of
〈d(s′′1 )d†(sk)〉〈d(sk)d†(s′p−1)〉. For −β <
Im(sk) < 0, the two factors remain fi-
nite and give a contribution proportional to

e−Γ(|T+s′p−1
|+|T+s′′

1
|). Therefore, when one

of the interaction events occurs on the contour
[−T,−iβ − T ], the corresponding term becomes
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exponentially small. When traced with local op-
erator Â, the factorization of the time-contour34

holds

SI(−iβ,−iβ − T )SI(−T, 0) → SI(−iβ, 0). (30)

This shows that the Wick rotation between real-
time and imaginary-time theory is valid in equi-
librium and

〈Â〉 = 〈SI(−iβ, 0)Â〉0
〈SI(−iβ, 0)〉0

. (31)

Next we ask whether the same argument can be
extended to the steady-state nonequilibrium with
the initial density matrix at time t = −T given by

ρ̂0 = e−β(Ĥ0−ΦŶ0). In order to move ρ̂0 in Eq. (22)

to the leftmost position in the trace, we write Ĥ =
ĤΦ+V̂ Φ with ĤΦ

0 = Ĥ0−ΦŶ0 and V̂
Φ = V̂ +ΦŶ0.

Defining V Φ
I (t) = eitĤ

Φ

0 V̂ Φe−itĤΦ

0 , we can utilize
the same argument as before to write

〈Â〉 = lim
T→∞

〈SΦ
I (−iβ,−iβ − T )SΦ

I (−T, 0)Â〉0
〈SΦ

I (−iβ,−iβ − T )SΦ
I (−T, 0)〉0

.

(32)
However, unlike in equilibrium, we cannot use
Eq. (16) for a contraction containing V Φ

I (s) since

V̂ Φ = V̂ +ΦŶ0 contains spatially extended opera-

tors c†αkσcα′k′σ′ with contributions well away from

the QD. Furthermore, V Φ
I (s) = eisĤ

Φ

0 V̂ e−isĤΦ

0 +

ΦŶ0 with a constant of motion Ŷ0 with respect
to ĤΦ

0 , and V Φ
I (s) would never lead to an ex-

ponential decay for the interactions occurring on
the dashed contour in FIG. 1(a). This shows
that a straightforward analytic continuation of the
nonequilibrium Keldysh contour to an imaginary-
time one is not possible.

D. Matsubara voltage

Recently, one of the authors and Heary35 pro-
posed that, by introducing a Matsubara term to
the source-drain voltage, one can extend the equi-
librium formalism such that the perturbation ex-
pansion of the imaginary-time Green function can
be mapped to the Keldysh real-time theory. The
unperturbed Hamiltonian is written as

K̂0(iϕm) = Ĥ0 + (iϕm − Φ)Ŷ0, (33)

with the Matsubara voltage ϕm = 4πm/β with

integer m. We take the many-body interaction V̂
as perturbation.
The non-interacting Hamiltonian appears in the

perturbative expansion in two ways: first in the

thermal factors e−βK̂0, and second in the time-

evolution e−τK̂0 for the imaginary-time variable
τ ∈ [0, β). The main trick of this formalism is
that in the thermal factor iϕm-dependence drops

out as follows. Since [Ĥ0, Ŷ0] = 09, e−βK̂0 =

e−β(Ĥ0−ΦŶ0)e−iϕmβŶ0 . Since, with respect to the
non-interacting scattering state basis, Ŷ0 is diago-

nal and has (half)-integer eigenvalues, e−iϕmβŶ0 =
1, and we have the important identity

e−βK̂0(iϕm) = e−β(Ĥ0−ΦŶ0) = ρ̂0 . (34)

Therefore, the equivalence of the imaginary-time
and real-time formalism crucially rests on how the
double analytic continuation iϕm − Φ → 0 and
τ → it is performed. Since the iϕm-dependence
in the thermal factor completely drops out, the
analytic continuation only concerns the time-

evolution. For τ ∈ [0, β), e−iϕmτŶ0 6= 1 and iϕm-
dependence does not drop out. Thus, one could
argue that as iϕm − Φ → 0 and τ → it are taken
in that order,

e−τ [Ĥ0+(iϕm−Φ)Ŷ0] → e−τĤ0 → e−itĤ0 . (35)

However, as we will point out in detail later, in-
tegrals over interaction times may create energy
denominators of the type (Kn − Km)−1 in the
perturbation expansions, with Kn being the n-th
eigenvalue of K̂0. In such cases, the details of
the path in the complex plane, along which the
analytic continuation ǫϕ ≡ iϕm − Φ → ±i0+ is
taken, become relevant. On the other hand, in
the real-time theory, the convergence factor iη in
the energy denominators determines what poles
should be chosen.

III. PERTURBATION EXPANSION

A. Real-time expansion

In this section, we investigate under what con-
ditions the role of the regularization factor η of the
time-independent real-time theory becomes unim-
portant. We assume that a perturbation expan-
sion of Eq. (23) exists. To better illustrate the
mathematical structure we choose the fifth-order
contribution (as shown in FIG. 2) and introduce
a spectral representation with respect to the non-
interacting scattering state basis. For the partic-
ular time-ordering considered in FIG. 2(a), the
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(a) (b) (c)

Â Â Â

ρ0 t1t2

s1s2s3

FIG. 2: (a) Keldysh contour in forward direction. Crosses mark interaction points V̂ and the dot an observable

Â. (b) Reversed series of scattering points. (c) Backward Keldysh contour with scattering events equivalent to

(a) if Â is written in terms of QD operators.

expression reads

Sa = (−i)5Tr
[
∫ −∞

0

ds3

∫ s3

0

ds2

∫ s2

0

ds1

V̂I(s3)V̂I(s2)V̂I(s1)Â
∫ 0

−∞

dt2

∫ 0

t2

dt1V̂I(t1)V̂I(t2)ρ̂0

]

. (36)

Here we use the notation for intermediate times
such that ti are for the forward contour (−∞ →
0, upper time contour) and si for the backward
(lower) contour. We redefine the time as t′1 = t1,
t′2 = t2− t1, t′i = ti− ti−1 etc., and the upper part
of the Keldysh contour becomes

∫ 0

−∞

dt2

∫ 0

t2

dt1V̂I(t1)V̂I(t2)

=

∫ 0

−∞

dt′2

∫ 0

−∞

dt′1V̂I(t
′
1)V̂I(t

′
1 + t′2) (37)

=

∫ 0

−∞

dt′2

∫ 0

−∞

dt′1e
iH0t

′
1 V̂ eiH0t

′
2 V̂ .

For a spectral representation with respect to en-
ergy eigenstates, we introduce the convergence
factor eη(t

′
1
+t′

2
) for the reasons discussed in Sec-

tion IIA. Then with respect to the non-
interacting scattering-state Fock basis |n〉 and |p〉,

(−i)2〈p|
∫ 0

−∞

dt2

∫ 0

t2

dt1V̂I(t1)V̂I(t2)|n〉 =
∑

q

VpqVqn
(En − Ep + iη)(En − Eq + iη)

. (38)

One can do the same for the lower part of the Keldysh contour,

(−i)3〈n|
∫ −∞

0

ds3

∫ s3

0

ds2

∫ s2

0

ds1V̂I(s3)V̂I(s2)V̂I(s1)|l〉 =

∑

mk

VnmVmkVkl
(En − Em − iη)(En − Ek − iη)(En − El − iη)

. (39)

Therefore the above expression Sa can be written as

Sa =
∑

nmklpq

VnmVmkVkl
(En − Em − iη)(En − Ek − iη)(En − El − iη)

Alp
VpqVqn

(En − Ep + iη)(En − Eq + iη)
ρn. (40)

Note that all energy denominators consist of one energy anchored at |n〉 where ρ̂0 acts at t = −∞ and
the other energy of intermediate states |m, k, l, p, q〉. For the forward contour, the state |n〉 contributes
the energy En + iη in the energy denominator, and En − iη for the backward contour.
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We now consider a counter-time-ordering as depicted in FIG. 2(b) where the number of scattering
events on the lower and upper branches are swapped. After an explicit calculation by applying the
same rules as before, one gets

Sb =
∑

nmklpq

VnqVqp
(En − Eq − iη)(En − Ep − iη)

Apl
VlkVkmVmn

(En − El + iη)(En − Ek + iη)(En − Em + iη)
ρn. (41)

Starting with the state |n〉, the numerator
VnqVqpAplVlkVkmVmnρn in Eq. (41) represents
the reversed process of ρnVnmVmkVklAlpVpqVqn in
Eq. (40). The factor ρnVnmVmkVklAlpVpqVqn is
understood as the amplitude of the following pro-
cess

Sa : |n〉 V̂−→ |q〉 V̂−→ |p〉 Â−→

|l〉 V̂−→ |k〉 V̂−→ |m〉 V̂−→ |n〉. (42)

The many-body interaction can be written in
terms of four scattering state operators as V̂ =
∑

v1234ψ
†
1ψ

†
2ψ3ψ4. With the on-site Coulomb in-

teraction,

V̂ = U
∑

{α,k}

t1t2t3t4g
∗
1g2g

∗
3g4ψ

†
1↑ψ2↑ψ

†
3↓ψ4↓, (43)

where the shorthand notations ti = tαi
/
√
Ω, gi =

gd(ki) and ψ†
iσ = ψ†

αikiσ
have been used. Note

that any creation of a particle ψ†
i is associated

with the factor tig
∗
i , and the annihilation ψj with

tjgj . For the observable Â we consider a one-body

operator Â =
∑

a12ψ
†
1ψ2 for simplicity. The oper-

ator V̂ creates up to two particle-hole pairs of type
ψ, and for a non-zero matrix element 〈n|V |m〉,
|n〉 and |m〉 differ only by up to one particle-hole
pair per spin channel. Thus, in the above pro-
cess Eq. (42), which starts and ends with |n〉, the
product of creation operators ψ†

αkσ must match
the that of annihilation operators ψαkσ . There-
fore, the matrix element for the process Eq. (42)
must be of the form

Sa : |t1g1|2|t2g2|2 · · · tigiaijtjg∗j . (44)

Similarly, the process for Sb-term

Sb : |n〉 V̂−→ |m〉 V̂−→ |k〉 V̂−→

|l〉 Â−→ |p〉 V̂−→ |q〉 V̂−→ |n〉 (45)

must contain the same set of {ψ†, ψ} with the
same states, only in the reversed order. The ma-
trix element for the process then becomes

Sb : |t1g1|2|t2g2|2 · · · tjgjajitig∗i . (46)

If the operator Â satisfies the following property

gd(ki)aij [gd(kj)]
∗ = gd(kj)aji[gd(ki)]

∗, (47)

the matrix elements for counter-contours (a) and
(b) match, i.e.

VnmVmkVklAlpVpqVqn = VnqVqpAplVlkVkmVmn.
(48)

With this condition, Sa(η) = Sb(−η), and Sa+Sb,

inside the expression for 〈Â〉, is independent of the
sign of η and has a well-defined limit of η → ±0.
The above argument can be repeated for any order
of the perturbation expansion, i.e. the use of a
spectral representation is permitted and the result
independent of the convergence factor η provided
that the contour has itself as the counter-contour,
Sa(η) = Sa(−η).
Which of the physically interesting operators do

satisfy the above condition Eq. (47) respectively
(48)? It is easy to see that it is true for any oper-

ator Â which is a simple function of ndσ = d†σdσ.
The occupation number operator can be expressed

in terms of ψ†
αkσ as

n̂dσ =
∑

kk′,αα′

tαtα′

Ω
g∗d(ǫk)gd(ǫ

′
k)ψ

†
αkσψα′k′σ, (49)

and Eq. (47) is satisfied. A general two-body op-
erator

Â =
∑

1234

a1234ψ
†
1ψ

†
2ψ3ψ4

also falls into this class if it satisfies

gd(ki)gd(kj)aijnm[gd(kn)gd(km)]∗

= gd(kn)gd(km)anmij [gd(ki)gd(kj)]
∗. (50)

Unfortunately, the current operator Eq. (14) does
not satisfy the condition Eq. (47), and a direct
analytic continuation is not available, as we will
discuss shortly. Therefore, we have to resort to
the Meir-Wingreen formula,41 which relates the
current to the spectral function.
We have so far ignored coinciding energy de-

nominators in the perturbation expansion lead-
ing to overlapping δ-functions. For the sake of
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simplicity we consider a second-order contribu-
tion from Eq. (23). By expanding it into different
time-orderings, we obtain

∫ T

0

dt1

∫ T

t1

dt2ρ̂0V̂I(t2)V̂I(t1)Â

+

∫ 0

T

dt1

∫ T

0

dt2V̂I(t1)ρ̂0V̂I(t2)Â

+

∫ 0

T

dt1

∫ t1

T

dt2V̂I(t1)V̂I(t2)ρ̂0Â. (51)

We now introduce the convergence factor eηt and
take T → ∞ to obtain the expression

∑

nml

[

ρn
(En − Em + iη)(En − El + iη)

+
ρm

(Em − En + iη)(Em − El − iη)
(52)

+
ρl

(El − En − iη)(El − Em − iη)

]

VnmVmlAln.

which needs precaution when the two energies
in the denominators become equal, because the
contribution will be a product of two δ-functions
with the same argument. One must be careful
when one performs the limit T → ∞. To see
this let us go back to the time-dependent descrip-
tion. By keeping T finite, contributions of the
form δ(En − Em)2 will actually amount to terms
proportional to T 2 from the integrals. Combining
all three integrals we obtain the coefficient to the
T 2-term (i.e. δ2-term) proportional to

∑

nml

(ρn − 2ρm + ρl)VnmVmlAln×

δ(En − Em)δ(Em − El) . (53)

In equilibrium ρn = ρm = ρl for En = Em = El

and this term vanishes identically. The argument
can be easily extended to arbitrary orders in the
perturbation expansion.
In the case of nonequilibrium the situation is

more complex. Here we discuss in detail what
happens to Eq. (53). We consider the case |n〉 6=
|m〉 6= |l〉, while En = Em = El. Suppressing the
δ-functions, Eq. (53) has the form

e−βEn(eβΦY0n − 2eβΦY0m + eβΦY0l)VnmVmlAln .

In the matrix element VnmVmlAln, the transition
|n〉 → |m〉 → |l〉 → |n〉 involves a certain series of
particle-hole excitations. For instance, |n〉 → |m〉
is given by an exchange of two particle-hole pairs,

ψ†
α1k1σ

ψα2k2σψ
†
α3k3σ′ψα4k4σ′ in V̂ , and similarly

for |m〉 → |l〉 and |l〉 → |n〉. However, since any

creation of ψ†
αkσ should be matched by ψαkσ only

up to 6 indices are independent. Given a par-
ticular set of the 6 indices of wave-vectors and
spins {k1σ1, k2σ2, · · · , k6σ6}, different permuta-

tions of the above 6 pairs of {ψ†
kiσi

, ψkiσi
} in

V̂ V̂ Â determines the matrix element VnmVmlAln.
Now, we sum over all possible combinations of
reservoir indices {α1, · · · , α6} (while keeping the
k-indices unchanged) for the all twelve {ψ†, ψ}
operators. The matrix element VnmVmlAln ∝
∏

i=1,6 t
2
αi
|g(ǫki

)|2. Since the product of |g(ǫki
)|2

are invariant, we collect all possible reservoir
weights in

∏

i=1,6 t
2
αi
eβΦY0{n,m,l} and each of the

three sums in Eq. (53) become the same, i.e. the
whole contribution vanishes. A detailed discus-
sion of the mathematics can be found in Ap-
pendix A.

In summary, if the observable Â satisfies
Eq. (47), the energy integration in the pertur-
bation expansion can be interpreted as principal-
valued, similarly to equilibrium. In Appendix B,
we provide as an example the fourth-order contri-
bution to the QD-electrons self-energy and show
explicitly that the above properties are satisfied.
Since the structures appearing in higher order are
of the same type as discussed above, we may ac-
tually infer that this property holds in any order
of the perturbation expansion.

B. Imaginary-time expansion

Unlike the real-time theory, the imaginary-time
description is formulated on a finite time interval
of [0, β), and there is no need for a convergence
factor eηt. Therefore, the energy integrals appear-
ing in the equilibrium theory are always principal-
value integrals, which we confirmed in the previ-
ous section II C.

In nonequilibrium, with the imaginary-time ef-
fective Hamiltonian K̂(iϕm) = Ĥ0 + ǫϕŶ0 + V̂
(ǫϕ = iϕm −Φ), the thermal average is defined as

〈A〉 = Tre−βK̂A
Tre−βK̂

. (54)

The Boltzmann factor can be expanded as

e−βK̂ = e−βK̂0Tτ exp
[

−
∫ β

0

dτVI(τ)

]

, (55)

with VI(τ) = eτK̂0V̂ e−τK̂0V̂ and Tτ denoting the
time-ordering operator for τ ∈ [0 → β]. We con-
sider a second order expansion to understand its
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mathematical structure,

Tr e−βK̂0

∫ β

0

dτ

∫ τ

0

dτ ′VI(τ)VI (τ
′)Â

=

∫ β

0

dτ

∫ τ

0

dτ ′

∑

nml

ρne
τ(Kn−Km)Vnme

τ ′(Km−Kl)VmlAln

=
∑

nml

[

ρn
(Kn −Km)(Kn −Kl)

+
ρm

(Km −Kl)(Km −Kn)

+
ρl

(Kl −Kn)(Kl −Km)

]

VnmVmlAln. (56)

This expression has the same mathematical struc-
ture as in the real-time theory, Eq. (52). Even
though we considered only one time-ordering in
the imaginary-time theory, the upper and lower

integral limits in
∫ β

0
dτ

∫ τ

0
dτ ′ combine to create

the same permutation of terms as in the real-time
theory35.
We have seen earlier that, in the real-time the-

ory, energy denominators can be interpreted as
principal-valued since all δ-function contributions
from the energy poles vanish. Therefore, if we
interpret the energy denominators as principal-
valued as iϕm → Φ

1

Kn −Km
→ P

(

1

En − Em

)

(57)

the terms in the imaginary-time theory indeed
match those of the real-time approach.
In section IVA1, we calculate the double oc-

cupancy from continuous-time quantum Monte
Carlo method42, and numerically verify that the
analytic continuation procedure outlined so far
works accurately in all orders of perturbation
theory as well as for the resummed perturbation
series.

C. Single-particle self-energy

The analytic properties discussed so far can
be used to examine the single-particle self-energy
for the Anderson impurity model. To illustrate
how the imaginary-time theory is applied by us-
ing the conventional diagrammatic technique, we
compute the electron self-energy in second order
of the Coulomb interaction. The non-interacting
Green’s function can be easily obtained as

G0(iωn, iϕm) =
∑

αk

|〈ψαkσ |dσ〉|2
iωn − α

2 ǫϕ − ǫk
(58)

=
∑

α

∫

dǫ
(Γα/Γ)A0(ǫ)

iωn − α
2 ǫϕ − ǫ

,(59)

with Γα = πt2αN(0) as the hybridization broad-
ening from the α-reservoir. Using the stan-
dard imaginary-time perturbation theory for the
second-order of Coulomb interaction35,

Σ(2)(iωn, ǫϕ) =
U2

β2

∑

m,l

G0(iωn + iωm − iωl)G0(iωm)G0(iωl), (60)

which we rewrite as

Σ(2)(iωn, ǫϕ) =
∑

γ

∫

dǫ
σγ(ǫ)

iωn − γ
2 ǫϕ − ǫ

, (61)

with the spectral function

σγ(ω) = U2
∑

α1−α2+α3=γ

[

3
∏

i=1

∫

dǫi
Γαi

Γ
A0(ǫi)

]

[f1(1− f2)f3 + (1− f1)f2(1− f3)] δ(ω − ǫ1 + ǫ2 − ǫ3)

(62)

for the γ-branch cuts (γ = ±1,±3), where

A0(ǫ) =
Γ/π

(ǫ− ǫ0)2 + Γ2

denotes the non-interacting spectral function of
the QD level and fα = [1 + e−β(ǫ−αΦ/2)]−1 the
Fermi-Dirac factor for the α-th reservoir. The
branch index γ is the sum of reservoir indices for
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the three Green’s functions [Eq. (60)] represent-
ing a particle dressed by a particle-hole pair. The
identity, Eq. (34), manifests in the Fermi-Dirac
factor in

f
(

ǫk +
α

2
ǫϕ

)

= f
(

ǫk −
α

2
Φ
)

. (63)

Summation over γ for the self-energy spectral
function, Eq. (62), leads to the identical retarded
self-energy spectral function in the real-time the-
ory corresponding to the same diagram. There-
fore the procedure of ǫϕ = iϕm − Φ → 0 followed
by iωn → ω + iη results in the correct retarded
self-energy.

Recently, it has been proposed39 that an in-
clusion of higher-order contributions will mainly
modify the spectral function σγ(ǫ), leading to a
ǫϕ dependence like

Σ(iωn, ǫϕ) =
∑

γ

∫

dǫ
σγ(ǫ, ǫϕ)

iωn − γ
2 ǫϕ − ǫ

. (64)

Based on this expression, one can fit43 σγ(ǫ, ǫϕ)
to the numerical single-particle self-energy gener-
ated from quantum Monte Carlo calculations44,45.
However, in order to establish the existence of
an analytic continuation limit of the imaginary-
time self-energy, one should first show that the
real-time self-energy possesses the analytic prop-
erty discussed in the previous section, namely that
the energy poles are principal-valued. The rather
lengthy and technical argument is provided in
Appendix B for the fourth-order self-energy di-
agrams. It can be shown explicitly that contri-
butions involving products of δ-functions with
identical argument vanish identically, resulting in
the necessary analytic properties discussed in the
previous section.

Again, investigating the general structures ap-
pearing in the perturbation expansion of the self-
energy, we are confident that this property indeed
holds in any order and also survives the resum-
mation of the series. The latter aspect, however,
cannot be proven rigorously, but is strongly sup-
ported by the numerical evidence from our Monte-
Carlo simulations.

In a recent work by Dirks et al.46 and an ac-
companying paper to this work, a general analytic
continuation approach based on the multi-variable
complex function theory and its double analytic
continuation of (iωn, iϕm) have been systemati-
cally studied.

D. Forward and backward steady-state

We have seen in Section III A that we need
Eq. (48) for any sequence of matrix elements in
order to establish the equivalence of the real and
imaginary-time theory. In order to close the for-
mal discussions, let us re-examine the complex
conjugate of the matrix elements in relation to
the forward- and backward-in-time propagation of
scattering state density matrix.
Assume that we propagate a non-interacting

density matrix ρ0 = exp[−β(H0 −ΦY0)] from the
initial time t = −T to the present in the for-

ward direction. Then, according to Gell-Mann
and Goldberger47, we obtain

ρ̂out = η

∫ ∞

0

e−iLT
(

eiL0T ρ̂0
)

e−ηTdT

= η

∫ ∞

0

e−iLT ρ̂0e
−ηTdT

=
η

η + iL ρ̂0

= ρ̂0 +
1

−L+ iη
LV ρ̂0 , (65)

with LV the Liouvillian representing the interac-
tion parts not contained in L0. ρ̂out is the fully
interacting density matrix at t = 0 and ρ̂0 non-
interacting density matrix at t = 0. The mean-
ing of the above equation is that we unwind a
non-interacting density matrix to a remote time
t = −T and re-evolve it with full interaction to
the present time. By taking the average over the
remote time T , we filter out transient oscillations.
Alternatively, we can also consider a backward

propagation of density matrix evolving from the
remote future by writing

ρ̂in = η

∫ ∞

0

eiLT
(

e−iL0T ρ̂0
)

e−ηTdT

= ρ̂0 +
1

−L− iη
LV ρ̂0. (66)

If we initially choose ρ̂0 as the density matrix
of a quantum dot system of disconnected dot and
reservoirs, LV = Lt+LU with both the hopping to
the leads and the Coulomb interaction on the dot,
and we then consider the construction of scatter-
ing states as a two-step process. We first construct
the scattering states with respect to the hopping,
and then with respect to the Coulomb interaction.
After the first step, the scattering states become29

ψ†
αkσ,out = c†αkσ +

t√
Ω
gd(k)d

†
σ + · · · (67)

ψ†
αkσ,in = c†αkσ +

t√
Ω
gd(k)

∗d†σ + · · · , (68)
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and we can construct respective scattering-state
density matrices ρ̂0t,out and ρ̂0t,in. The coef-
ficients appearing in front of the dot operators
d†σ, dσ etc. for the out and in-scattering states are
the complex conjugate of each other.
As the second step, the matrix elements of the

interaction V̂ = Und↑nd↓, written in terms of

ψαkσ,{out,in}-basis, are complex conjugate to each
other, i.e. Vnm = V ∗

ñm̃ (with the tilde denoting
the in-scattering basis). We can now repeat the
arguments from Section IIIA for the backward
propagation of the density matrix as shown in
FIG. 2(c) and find

Sc =
∑

nmklpq

Vñq̃Vq̃p̃
(En − Eq + iη)(En − Ep + iη)

Ap̃l̃

Vl̃k̃Vk̃m̃Vm̃ñ

(En − El − iη)(En − Ek − iη)(En − Em − iη)
ρñ.

For observables satisfying Anm = A∗
ñm̃, this expression becomes identical to Sa in Eq. (40). The

same argument holds in any order of the perturbation expansion, and we have TrÂρ̂out = TrÂρ̂in and
〈Â〉 = 1

2 (〈Â〉out + 〈Â〉in). Therefore, from Eqs. (65,66), we have

〈Â〉 = 〈Â〉0 +
〈

Â
1

2

(

1

−L+ iη
+

1

−L− iη

)

LV ρ̂0

〉

= 〈Â〉0 +
〈

ÂP
(

1

−L

)

LV ρ̂0

〉

, (69)

i.e., the conditions for replacing the energy de-
nominators by their principal-values, as discussed
in section III A, correspond to a measurement pro-
tocol where the observable Â has the same ex-
pectation values with respect to the forward- and
backward-propagating density matrices.
It is interesting to note that the forward and

backward density matrices, Eqs. (65,66), have dif-
ferent signs in the time-evolution operator and
are related by a time-reversal (or more appro-
priately motion-reversal48), where the coefficients

to {d†σ, dσ, c†αkσ, cαkσ} are complex conjugates be-

tween ρ̂in and ρ̂out. For Â = d†σdσ, its expectation
value is not affected by the motion-reversal. The
same can be said for magnetization Â = nd↑−nd↓.
However, expectation value for current defined as

ÎL = itL(c
†
Lσdσ − d†σcLσ) is asymmetric with re-

spect to ρ̂in,out with the motion-reversal property,

〈c†Lσdσ〉in = 〈c†Lσdσ〉∗out,

etc. and Eq. (69) cannot be applied. As discussed
in Sec. III A below Eq. (48), the same conclusion

resulted regarding direct evaluation for Â = ndσ,
but not for the current observable ÎL,R.
It is interesting to note that, in Gell-Mann

and Low theorem49, the symmetry between the
forward- and backward-propagation of a ground
state has been used to deform the Keldysh contour
to a straight-line contour. Our work can be inter-
preted as an analogy to nonequilibrium steady-
state with limited scope, namely, that the theory
applies for scattering problems (i.e. quantum dots

coupled to open systems) and that the forward-
backward symmetry has a meaning with respect
to the expectation values of motion-reversal sym-
metric local observables.

IV. STATIC EXPECTATION VALUES

A. Theoretical background

We have shown that steady-state expectation
values of certain local observables Â can be ob-
tained from analytical continuation of expecta-
tion values calculated within the imaginary time
Matsubara-voltage formalism. As long as we
know the analytic structure of these objects, this
can be done easily. However, for a model with true
two-particle interactions, one eventually has to re-
sort to numerical evaluations, and an analytical
continuation in general requires a more involved
computational technique. We therefore want to
provide in the following a representation which
allows the use of standard tools from equilibrium
many-body theory.
A numerical method gives 〈Â〉(iϕm) and let

〈Â〉(zϕ) be its analytic continuation. We may
write formally

〈Â〉(zϕ) = 〈Â〉const + χA(zϕ) (70)

where the part χA(z) is holomorphic in the upper
and lower half plane, with singularities only on
the real axis. If one can furthermore show that
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the zχA(z) is non-singular in the limit z → ∞,
one can finally infer that a spectral representation
with respect to the jump function on the real axis
exists and hence

〈Â〉(iϕm) = 〈Â〉const +
∫

̺A(ϕ)

(iϕm − Φ)− ϕ
dϕ

(71)
Note that the latter property is not necessarily
guaranteed and has to be proven individually for
each observable.
Once the validity of the representation (71) is

established, one only needs to obtain the “spec-
tral function” ̺A(ϕ). One evident method to

calculate the Matsubara voltage data 〈Â〉(iϕm)

for the observable Â with respect to the effective
system with non-hermitian Hamiltonian at Mat-
subara voltage iϕm is via a QMC simulation.46

For such data with statistical noise, one then
typically employs a maximum-entropy approach
(MaxEnt).50 The implementation of a MaxEnt
estimator for the physical expectation value is
rather straightforward. The values for differ-
ent iϕm are truly statistically independent, and
only the variance and correlation between imagi-
nary and real parts of a single iϕm value play a
role. However, one still needs accurate and un-
biased measurements of imaginary-voltage data
over a large range of ϕm.46 This latter require-
ment makes the use of a continuous-time quan-
tumMonte-Carlo (CT-QMC)42 algorithmmanda-
tory. In particular, the necessary estimation of
the constant offset 〈Â〉const in Eq. (71) is possible
only with CT-QMC, because at present no direct
measurement algorithm for this quantity is avail-
able and one must determine it from the tail of
〈Â〉(iϕm) by fitting it to

〈Â〉(iϕm)
m→∞→ 〈Â〉const +

cA
iϕm

+
c̃A

(iϕm)2
+ · · · .

(72)
In practice, a weighted least-square fit yields reli-
able values and error bars for 〈Â〉const. Via Gaus-
sian error propagation it is then possible to incor-
porate the uncertainty of 〈Â〉const into the covari-

ance matrix of the quantity 〈Â〉(iϕm)−〈Â〉const.51
In general, the spectral function ̺A(ϕ) needs

not to be positive semidefinite, or show any sym-
metry relations with respect to ϕ. Since on the
other hand the MaxEnt method is only applica-
ble for the inference of positive definite functions,
a shift function ̺shift(ϕ) of the spectral function
̺A(ϕ) has to be introduced, which makes the to-
be-inferred ̺′A(ϕ) = ̺A(ϕ)−̺shift(ϕ) positive. We
also employ a symmetry condition

̺shift(ϕ) = ̺shift(−ϕ), (73)

because with respect to this choice, the physical
result

〈Â〉phys =
1

2

∑

α=±1

〈Â〉(Φ + αiη)

= 〈Â〉const − P
∫

dϕ
̺A(ϕ)

ϕ

(74)

is robust. In the following we want to prove
that the double occupancy or magnetization obey
this constraint, i.e. have a representation, where
〈Â〉const is a real number, and ̺A(ϕ) ∈ R is a
real-valued spectral function.

1. Double Occupancy

The double occupancy in Matsubara-voltage
representation is defined as

D(iϕm) := 〈nd,↑nd,↓〉K(iϕm) , (75)

where the expectation value is taken with respect
to the m-th effective equilibrium system.
We will first show that the representation (71)

holds for the double occupancy, i.e. that we have
indeed

D(iϕm) = D0 +

∫

dϕ
̺D(ϕ)

iϕm − Φ− ϕ
. (76)

We restrict the discussion to the case of particle-
hole symmetry and symmetric coupling to the
leads, ΓL = ΓR. Within the Matsubara-voltage
approach, one can – for fixed iϕm – employ the
standard techniques of equilibrium many-body
theory and obtains the standard result52

D(iϕm) =〈n↑〉〈n↓〉

+
1

βU

∑

ωn

Σ(iϕm; iωn)G(iϕm; iωn)e
iωnη .

(77)

Due to particle-hole symmetry, we have
〈n↑〉〈n↓〉 = 1/4. Furthermore, from the dis-
cussion in section III C we can infer that at
least the Green’s function decays like 1/iϕm

and hence allows for the existence of a spectral
representation (76), as long as there is only a
single branch cut at Im zϕ = 0.
The real-valuedness of spectral function and

constant offset remain to be shown. The general
relation G(−iϕm,−iωn)

∗ = G(iϕm, iωn) holds for
Green’s function and self-energy. Inserting this
into Eq. (77), we find

D(−iϕm)∗ = D(iϕm). (78)
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Consequently, the real part of D(iϕm)−D(−iϕm)
vanishes. Using the symmetric coupling to the
leads, we have an invariance of the Green’s func-
tion and self-energy under (iϕm −Φ) ↔ −(iϕm −
Φ). As a result, D0 is an actual constant which
is obtained for both, upper and lower half plane.
Due to the symmetry of ImD(iϕm), D0 is real.
By inserting the representation (76) into Eq. (78)
we also see that ̺D(ω) is real-valued.
For example, let us consider the equilibrium

setup, i.e. Φ = 0. At half filling and symmetric
coupling to the leads, the function

ReDΦ=0(iϕm) = ReDΦ=0(−iϕm), (79)

ImDΦ=0(iϕm) ≡ 0. (80)

This is compatible with a conventional bosonic
spectral representation

DΦ=0(iϕm) =

∫

dϕ
̺D(ϕ)

iϕm − ϕ
+D0, (81)

with an antisymmetric spectral function

̺D(ϕ) = −̺D(−ϕ); ̺D(ϕ > 0) < 0 (82)

and the offset D0 > 0. Eq. (80) is not evident for
asymmetric couplings or off particle-hole symme-
try, because here G0(iϕm, iτ) is not real.

2. Magnetic Susceptibility

An observable which is much more sensitive
to the Kondo effect is the magnetization M :=
(〈n↑〉−〈n↓〉) in the presence of a magnetic field B
in z-direction respectively the magnetic suscep-
tibility χ = M/B of the quantum dot, because
it directly probes the spin degree of freedom of
the dot electrons. In equilibrium, a strong depen-
dence on the temperature is observed, on the scale
of the Kondo temperature.53

As for the double occupancy, the validity of a
spectral representation

M(iϕm) =M0 +

∫

dϕ
̺M(ϕ)

iϕm − Φ− ϕ
(83)

can readily be confirmed. Starting from the sym-
metry G(−iϕm,−iωn)

∗ = G(iϕm, iωn), one can
again show that M(−iϕm)∗ = M(iϕm), and the
same arguments apply concerning the interchange
(iϕm − Φ) ↔ −(iϕm − Φ).

B. Numerical effective-equilibrium data

Let us now turn to the discussion of actual
numerical data for magnetization and double oc-

cupancy from the quantum Monte-Carlo simula-
tions. As the first step, we analyze these data
with respect to the auxiliary variable ϕm, and
want to argue that they have a physical interpre-
tation with respect to the actual voltage Φ. In
particular, the convergence of the numerical pro-
cedures described below implies full consistency
of the Matsubara-voltage formalism with regard
to the numerical data.

We find that effective-equilibrium data come
along with characteristic energy scales which – af-
ter analytic continuation – may translate almost
directly into energy scales with respect to the ac-
tual source-drain voltage Φ. It is therefore worth-
while to discuss the dependence of the effective-
equilibrium expectation values as a function of ϕm

for given physical parameters β, U , and Φ.

a. Dependence on Φ. The first thing to no-
tice is that the dependence of the shape of the
curves M(iϕm) and D(iϕm) on Φ, as shown in
figures 3 and 4a, is rather moderate: for the ex-
amples considered, we do not observe any new
characteristic energy scales with respect to the
Matsubara voltage ϕm emerging or disappearing
as a function of the physical voltage Φ. The most
striking influence of Φ is a change of the offset
of the curves D0 and M0. The offset is changed
monotonically as a function of Φ and cannot ex-
plain features such as dips and peaks which are
found in the analytically continued data (cf. next
section). This is the very reason of our claim
that low- to intermediate-energy scales with re-
spect to ϕm rather directly translate into low- to
intermediate-energy scales with respect to Φ, al-
though ϕm has no direct physical meaning itself.

Let us discuss the data plotted in Figs. 3
and 4a in more detail. In Fig. 3, effective-
equilibrium double occupancy curves are shown
over a wide range of values of the physical voltage
and Coulomb interaction. Each curve exhibits a
dip at ϕm = 0. As already pointed out above,
the dependence on Φ is rather mild, except for
the offset. The same behavior is observed for
the magnetization in Fig. 4a, i.e. the voltage Φ
merely introduces an overall shift and a moderate
smoothening of the structures.

b. Limiting behaviour ϕm → ±∞. For each
U and Φ a different limit D0 is obtained as ϕm →
∞. If the values β, U , Φ, and in particular ϕm

are large, the effective-equilibrium QMC simula-
tions start to suffer from a significant sign prob-
lem. This may result in particularly noisy tails
such as the ones for the data with largest Φ in
figure 3d. In these cases, the estimate of D0 is
subject to much uncertainty and limits the statis-
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FIG. 3: (color online) Real part of the effective-equilibrium double occupancy as a function of the
Matsubara voltage ϕm at several values of interaction strength U and bias voltage Φ.

tical accuracy of physical expectation values.

c. Dependence on U . As U is increased, the
depth of the dips in the double occupancy curves
also increases. On the other hand, neither the
width nor the shape change significantly. In par-
ticular, the emergence of a Kondo scale TK can-
not be inferred from these data. Interestingly, for
small U , the relative contribution of the constant
term D0 is large compared to the height of the
peak which emerges around ϕm ≈ 0. As the inter-
action increases, the central peak becomes more
pronounced, and the physical expectation value
increasingly depends on the structure of the peak.

For the magnetization in Fig. 4b, a similar
picture seems to emerge at first glance, namely
a strong increase of the offset M0 with U to-
gether with a more pronounced peak structure at
ϕm = 0. The strong increase of both is readily

understood as with increasing U the system forms
a local moment which is aligns with the external
field.

d. Kondo effect. Up to now there seems to
be no evidence whatsoever for the presence of the
Kondo scale TK in the data presented so far. On
the other hand, the generation of this many-body
scale is usually considered as crucial test for any
method proposed for studying the Anderson im-
purity model. As already pointed out, it is quite
apparent from the data in Figs. 3 that TK ob-
viously does not appear to be relevant for this
quantity; a fact that is already well known in equi-
librium. There the scale TK shows up only in a
very indirect way as renormalization of the zero
temperature value respectively the scale regulat-
ing the approach to it.54

The situation is different for the magnetization.
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FIG. 5: (color online) Kondo scaling analysis of effective-equilibrium magnetization data at µBB =
TK/2, eΦ = TK/4. The analysis makes use of the equilibrium Kondo temperatures kBTK(U = 5Γ) ≈
1
10Γ, kBTK(U = 8Γ) ≈ 1

20Γ, kBTK(U = 10Γ) ≈ 1
40Γ. The latter ratios are chosen to be approximately

identical to the results of Haldane’s scaling formula.55

Here, the Kondo scale plays a crucial role53 as it
determines the field-strength necessary to break
up the Kondo singlet. Hence it must show up in
the magnetization; in particular, one must actu-
ally expect a scaling behavior with TK for small
enough fields. Let us therefore plot the mag-
netization as function of Matsubara voltage in
the form M(ϕm/TK) for values of U beyond the
weak-coupling regime for fields and voltages much
smaller that the corresponding equilibrium Kondo
scales. The result is shown in Fig. 5. Evidently,
the width of the peak in the effective-equilibrium
magnetization data is nicely scaling with the equi-
librium Kondo temperature, i.e. for different val-
ues of U the peak structure is essentially left in-
variant at fixed values of B, Φ, and T .

C. Results for real voltages

In this section we will introduce the MaxEnt
procedure used to infer the spectral functions
̺D(ϕ) and ̺M (ϕ) from the effective-equilibrium
QMC data. Based on this analytical continuation,
we then will discuss the physical results obtained
from the auxiliary Matsubara voltage data.

1. MaxEnt procedure

Based on the effective-equilibrium data and the
exact relation (71), it is in principle possible to
uniquely reconstruct the spectral function ̺A(ϕ)

and the offset 〈Â〉const. This is almost completely
analogous to the conventional Wick rotation.
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However, because in practice a finite set of data
is considered, the inversion of equation (71) is
no longer unique. On top of this, the quantum
Monte-Carlo data are not exact but merely Gaus-
sian random variables. One may easily verify that
the noise associated to the variables is amplified
by the inversion of equation (71). As a conse-
quence, it will always be possible to find quali-
tatively very different functions ̺A(ϕ) which are
in agreement with the QMC data. In particu-
lar, these functions will yield physically different
predictions via equation (74). The problem to ob-
tain physical results from the effective-equilibrium
data is thus ill-posed.

Since essentially the same integral equation (71)
also relates imaginary-time and real-time proper-
ties of conventional Green’s functions, this issue is
well-known to the community.50 Although no so-
lution to the problem can be provided, Bayesian
inference provides a framework to systematically
incorporate a-priori information about a quantity
into an estimate. The estimate is most likely
with regard to the prior information at hand.
The resulting method is called Maximum Entropy
(MaxEnt).50

Let us consider the situation in which the offset
〈Â〉const has already been determined via a least-
square fit. Via error propagation it has been pos-
sible to determine the covariance matrix of the
quantity 〈Â〉−〈Â〉const, i.e. the imaginary-voltage
values of the quantity χA(zϕ) in equation (70).
The remaining task of the MaxEnt is to infer the
spectral function ̺A(ϕ). Let us furthermore as-
sume that the data have been sufficiently trans-
formed with a shift function, such that the func-
tion

̺′A(ϕ) = ̺A(ϕ)− ̺shift(ϕ) (84)

is positive (see section IVA).

The default model for ̺′A(ϕ) is then a posi-
tive definite function which in principle should
contain features which determine in particular
the high-energy behaviour, if known.50 In the
case of Green’s functions, perturbation theory or
higher-temperature solutions often give good de-
fault models.50 In our case, apart from that we
used a shift function to construct the positive
spectrum, nothing is known about the function,
so a flat default model is preferable. As conse-
quence, we use the shift function itself as the de-
fault model in the actual computation. For sim-
plicity, let us call the to-be-inferred spectrum ̺(ϕ)
and the default model ̺def(ϕ).

On the one hand, the default model gives rise

to a relative entropy50

S =

∫

dϕ

[

̺(ϕ)− ̺def(ϕ) − ̺(ϕ) log
̺(ϕ)

̺def(ϕ)

]

of the spectral function. On the other hand,
the (transformed) effective-equilibrium simulation
data with mean values āi and covariance Cij yield
the measure

χ2 =
1

2

NQMC
∑

i,j

(āi − yi)C
−1
ij (āj − yj). (85)

for the quality of the fit. Here yi are the fit val-
ues which result from transforming the considered
̺(ϕ) to the data space, and NQMC is the number
of QMC data points āi. Within the MaxEnt it fol-
lows that a functional Q = χ2 −αS must be min-
imized, where α > 0 is some hyperparameter.50

In order to determine α, there are several meth-
ods, for example the “historic” and the “classic”
MaxEnt.50 The former extracts information from
the Monte-Carlo data up to the point at which the
χ2 = NQMC , i.e. the MaxEnt regularization pa-
rameter is fixed to the value at which χ2 = NQMC .
The latter (“classic” MaxEnt) extracts informa-
tion from QMC data to a larger extent. Based
on the probability distribution implied by the de-
fault model and maximum-likelihood functionals,
a posterior probability of the MaxEnt regulariza-
tion parameter α is maximized. Because informa-
tion from the default model is again incorporated
rather explicitly, this strategy is particularly good
for default models which are close to the actual so-
lution. A rather general feature of “classic” Max-
Ent appears to be that the χ2 value of the inferred
estimate is generally much smaller than the “his-
toric” value of NQMC . Our feeling is that this
aspect makes the “classic” estimate more sensi-
tive to statistical fluctuations and vulnerable for
over-fitting, but on the same side, the estimate
is less biased. A similar increase in fluctuations
was pointed out in a recent study.56 At least if
Bayesian evidence coming from the data is weak,
the “historic” MaxEnt, on the other hand is more
biased towards the default model value, since its
estimate is more conservative with regard to the
χ2. In our case, the default-model estimate is
given by the constant offset D0, because our de-
fault models are chosen to be even functions with
respect to ϕ.
As shift functions, wide Gaussians with width

σ = 200
3 Γ were used, i.e.

̺shift(ϕ) = λ · e−ϕ2/2σ2

. (86)

The amplitude of the functions was varied in such
a way that positive functions could be inferred.
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The different values for differently scaled func-
tions give rise to a certain interval of expectation
values, which will be plotted as a result, in the
following. An example for the set of inferred func-
tions obtained for a single non-equilibrium system
is shown in figure 6. The left panel shows the ac-
tually performed MaxEnt for the shifted spectral
functions, using “historic” MaxEnt. Resulting
from a flat default model for the function ̺D(ϕ),
the shift function acts as default model here. In
this case, choosing a parameter λ < 0.01 yields ar-
tifacts in the physical solutions, because the neg-
ative regions of ̺(ϕ) cannot be represented any
more. The corresponding actual spectral func-
tions ̺(ϕ), obtained by subtracting the shift func-
tion (86) from the data in the left panel, are shown
in the right panel of Fig. 6. The flat default
model represents our lack of prior information
about the solution and the preference of a smooth
solution in case of uncertainty. In general, the dif-
ferent realizations of a flat default model with the
shift functions yields almost but not exactly the
same spectral functions. In case of limited QMC
data quality, it is well known50 that the usage of
a flat default model yields less accurate spectra
than an appropriately constructed more informa-
tive default model. For example, in case of con-
ventional equilibrium spectral functions of Fermi
or Bose systems, a default model should prefer-
ably obtain the correct low-order moments, which
can often be computed exactly. It can thus be ex-
pected that quantities that are calculated from
the spectra inferred using the flat default model
are biased towards a certain value. Nevertheless,
an increase in data quality will eventually reduce
the bias of the estimated quantity. We also expect
that the precision of our method can be increased
by the development of default models which con-
tain additional information like moments. How-
ever, at present such type of information is not
yet available.
In order to obtain a rough estimate on the error

of a physical estimate, we will plot the intervals
which are generated by computing the estimates
for different values of λ. Typically, a range from
λ = 0.01 to λ = 0.16 is imposed, unless the neg-
ative regions of ̺(ϕ) cannot be represented. For
the magnetic susceptibility, the same strategy is
used.

2. Double occupancy

We will now discuss the analytically continued
data of the double occupancy and compare it with
respect to zero-temperature second-order pertur-

bation theory.57 In figure 7 we show double oc-
cupancy data for different values of the Coulomb
interaction computed with the two different Max-
Ent estimators.

The complementary behaviour of the two esti-
mators may be well observed in Fig. 7. In the
large-bias limit, in which the perturbation theory
may be expected to be correct, the classic estima-
tor is closer, and the historic estimate is systemat-
ically too high. This is in agreement with our ex-
pectation that the historic estimate will be biased
from above in case of rather weak Bayesian evi-
dence from QMC data, because the ill-posed con-
tinuation problem is particularly severe at high
energies.50 Apart from some fluctuations in the
“classic” estimator, the same curves are predicted
for small voltages. It is important to note that
error bars in the figures do not denote statistical
errors (which cannot be estimated), but the range
of values which a given set of symmetric default
models generates.

As compared to the second-order perturbation
theory, we find that both methods agree per-
fectly for interaction strength U = 3Γ. Also both
methods predict a minimum in the double occu-
pancy at voltage eΦ ≈ 2Γ which slowly shifts to
larger values of Φ and becomes increasingly distin-
guished as the interaction is increased. There is,
however, a clear difference concerning the magni-
tude of this minimum, which appears much more
pronounced in the QMC data as in the perturba-
tion theory. Note that this seems to be the case
for both MaxEnt estimators. At present the ori-
gin of the deviation is not clear.

One of the issues related to the Φ dependence
of stationary non-equilibrium quantities is to what
extent they can be mapped onto an effective equi-
librium temperature dependence. To have an idea
whether this mapping works, we included in Fig. 7
also the corresponding curves for 〈n↑n↓〉(T ) as ob-
tained from an NRG equilibrium calculation, as-
suming eΦ = kBT . Quite apparently, the val-
ues at Φ → 0 nicely coincide, which also tells us
that the Matsubara voltage QMC reproduces the
proper low bias results even for strong coupling.
Note that perturbation theory here deviates sys-
tematically with increasing U . However, the de-
pendence of 〈n↑n↓〉(Φ) cannot be mapped even
qualitatively onto 〈n↑n↓〉(T ) by a simple ansatz
Φ=̂α ·T with some value α for any of the U values
considered here. From this observation we would
thus conclude that such a mapping is – at least for
the simplest possible quantity – not appropriate.
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FIG. 6: (color online) MaxEnt inference process for the double occupancy. Parameters are U = 5,
eΦ = 0.25Γ, β = 20Γ−1. Due to lack of prior knowledge, we use a flat default model, i.e. the shift
function ̺shift(ϕ), see Eq. (86). Remember that the actual spectral function ̺D(ϕ) was shifted to a
positive one, ̺′D(ϕ), via equation (84). One finds that the different equivalent ways of imposing a
flat default model for ̺D(ϕ) yield practically the same spectral function. Nevertheless, computing the
physical value (74) yields values which are distributed over a certain range. This range is displayed as

error bars in the results plots Figs. 7 and 8.
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perature dependence of 〈n↑n↓〉 in equlibrium as
obtained by NRG, assuming eΦ = kBT (see text).

3. Magnetic Susceptibility

Similarly, the magnetic susceptibility may be
computed as a function of the bias voltage by
analytical continuation of the QMC data. As
an example, we show the result for U = 8Γ at

0 5 10 15 20
eΦ/k

B
T

K

0
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4

6

8

(〈
n

↑
〉 

− 
〈n

↓
〉)

/Β
   

 [
1/

Γ
]

historic MaxEnt
classic MaxEnt
equilibrium value (CT-QMC)

Equilibrium NRG

scaling function

0 0.5 1 1.5 2
6

7

8

FIG. 8: (color online) Magnetic susceptibility as
a function of bias voltage in the Kondo regime
U = 8Γ at µBB = kBTK/2, T = TK/2. The dot-
dashed line represents an equilibrium NRG calcu-
lation for T ≥ TK/2, rescaled in both magnitude
and temperature to match the low-bias behavior
of historic MaxEnt (see inset). The double-dot-
dash curve finally is a fit of historic MaxEnt to

some scaling function (see text).

the temperature T = TK/2 and magnetic field
µBB = kBTK/2 in Fig. 8. When we compare
our continuation results at Φ → 0 to the ex-
act low-bias limit (i.e. the equilibrium value, dis-



20

played as a cross in Fig. 8), the historic MaxEnt is
again more strongly biased than the classic Max-
Ent, i.e. the deviation from the equilibrium value
is stronger. With insufficient QMC information,
the outcome is more biased towards the flat de-
fault model and from Eq. (74) the integral van-
ishes in such limit. The constant offset M0 lies
below the actual physical limit, and therefore, as
QMC quality improves, our estimate approaches
the correct limit from below. Again, the classic
MaxEnt is subject to stronger fluctuations.
In physical terms, the decay in magnetic sus-

ceptibility is because of the destruction of the
Kondo effect due to the decoherence introduced
by the bias voltage. This is in principle sim-
ilar to the equilibrium behaviour found as a
function of temperature.53 The scale on which
the decay of the magnetization takes place ap-
pears to be already visible within the imaginary-
voltage data shown in Fig. 5b. Apparently, this
is due to the rather weak voltage-dependence of
imaginary-voltage data (cf. figure 4a). Voltages
above 10kBTK were not accessible to the Max-
Ent, due to a strong sign problem occurring for
the QMC simulations of the effective-equilibrium
systems associated to the high-ϕm tails.
We again may compare the voltage dependence

of the stationary non-equilibrium magnetization
to the temperature dependence in equilibrium.
Since we here are at a finite temperature T =
TK/2, hence the magnetization is smaller than the
value at T = 0, the natural thing to look at is the
curve M(T ) · [M(TK/2)/M(0)] and rescale tem-
perature with an appropriate factor. The result
is shown as dot-dashed line in Fig. 8. Although
one can reach a reasonable match for low voltages,
a significant deviation occurs already at moderate
bias. Thus there does not seem to exist a simple
mapping Φ → T which will bring the curves to
overlap, .i.e. it again seems doubtful that one can
describe the effect of finite bias voltage by an ef-
fective temperature scale, at least beyond small
bias voltages of the order of the Kondo scale. It
is certainly possible that more complex concepts
of an effective
On the other hand, a rather good account for

all data can be achieved by the very simple ansatz

m(Φ)

B
≈ a

B

1
Φ̃2√
b2+Φ̃2

+ c

where Φ̃ := Φ/(2TK). The result of this fit with
a = 0.52, b ≈ 2 and c ≈ 3 is shown as the double-
dot-dash curve in Fig. 8. Note that this formula
gives the right behavior in the two limits Φ → 0,
vizM/B ∝ 1−cΦ̃2 with some numerical constant

c, and Φ → ∞, viz M/B ∝ 1/Φ. From scaling
analysis12 one would expect that, in particular
for large bias, additional logarithmic corrections
appear. Due to the limited data space available
we are of course not able to resolve those; fur-
thermore, it is not clear if these logarithmic cor-
rections will actually be visible in the intermedi-
ate coupling regime studied here, due to residual
charge fluctuations. We therefore view the above
formula as a reasonable description in the regime
of bias, temperature and field of the order of the
Kondo temperature for the intermediate coupling
regime of the SIAM.

V. SUMMARY

The present paper presents a detailed study on
how the imaginary-voltage formalism proposed in
Ref. 35 relates to Keldysh theory. Using series
resummations, we are able to show up to all or-
ders that static expectation values of observables,
which satisfy certain symmetry relations with re-
spect to the Keldysh contour, map exactly onto
the corresponding expressions in Keldysh pertur-
bation theory. In particular, it was pointed out
that in order to obtain a physical expectation
value, the limiting process iϕm → Φ has to be
taken as principal-value. This prescription en-
sures, that one generates the principal-value in-
tegrals which emerge in the proper real-time the-
ory. For dynamical correlation functions, this was
shown explicitly up to fourth order of perturba-
tion theory.
As one important novel result of the present

paper we were able to provide an exact spec-
tral representation for static expectation values
similar to a Lehmann representation. Based on
the representation, using unbiased numerical data
from continuous-time quantum Monte-Carlo sim-
ulations, we found that the evaluation of the lim-
iting procedure as principal-value expression does
indeed give real numbers as physical expectation
values. Consequently, the theory is found to be
fully consistent in this respect beyond the pertur-
bation arguments given. The double occupancy as
function of bias voltage computed this way shows
features similar to straight-forward second-order
perturbation theory, but we find them to be more
pronounced. For the magnetic susceptibility we
were able to give numerical estimates on the de-
struction of the Kondo effect. A comparison to
equilibrium NRG shows that the dependence on
bias voltage for both, the double occupancy and
the magnetic susceptibility, cannot be explained
by a simple effective-temperature interpretation.
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Appendix A: Cancellation of overlapping
δ-functions in Eq. (53)

With a set of {ψ†
αikiσi

, ψαikiσi
; i = 1, · · · , 6}

appearing for the matrix elements in Eq. (53),
we categorize the thermal factor eβΦY0{n,m,l} as
follows. (i) If Y0n = Y0m = Y0l, Eq. (53) van-
ishes. (ii) If only one of Y0n, Y0m, Y0l is differ-
ent from others, (Y0n, Y0m, Y0l) ∈ {(Y0, Y0, Y0 +
1), (Y0 + 1, Y0, Y0), (Y0, Y0 + 1, Y0), (Y0, Y0, Y0 +
2), (Y0 + 2, Y0, Y0), (Y0, Y0 + 2, Y0)} for some ref-
erence value Y0. If we take the case of
(Y0n, Y0m, Y0l) = (Y0, Y0, Y0 + 1), the terms
contributing for the matrix elements Vnm,

Vml and Aln are from ψ†

α̃1k̃1

ψ†

α̃2k̃2

ψα̃3k̃3
ψα̃4k̃4

,

ψ†
Rk1

ψLk2
ψ†

α̃5k̃5

ψα̃6k̃6
, and ψ†

Lk2
ψRk1

ψ†

α̃7k̃7

ψα̃8k̃8
,

respectively, where (k̃1, · · · , k̃8) is a some per-
mutation of (k3, k3, k4, k4, · · · , k6, k6). The reser-
voir indices should be chosen such that α̃5 = α̃6

and α̃7 = α̃8, and (α̃1, α̃2, α̃3, α̃4) should satisfy
Y0n = Y0m. The α̃i indices are summed over for
L/R. Then the term in Eq. (53) becomes propor-
tional to

(tLtR)
2(t2L + t2R)

4
∏

i=1,6

|g(ki)|2eβΦY0(1− 2 + eβΦ).

For other combinations of (Y0n, Y0m, Y0l) =
(Y0, Y0 + 1, Y0), (Y0 + 1, Y0, Y0) the thermal fac-
tor becomes (1 − 2eβΦ + 1) and (eβΦ − 2 +
1), respectively, and all three contributions sum
up to zero. With the case of (Y0, Y0, Y0 +
2), the contribution becomes (tLtR)

4(t2L +
t2R)

2
∏

i=1,6 |g(ki)|2eβΦY0(1−2+e2βΦ). The other

terms have factors of (1−2e2βΦ+1), (e2βΦ−2+1),
and these sum up to zero again.
(iii) When all of Y0n, Y0m, Y0l are different,

(Y0n, Y0m, Y0l) is a permutation of (Y0, Y0+1, Y0+

2). Since V̂ , Â are at most two-particle oper-
ators the difference of Y -values between states
cannot be greater than two. If (Y0n, Y0m, Y0l) =
(Y0, Y0+1, Y0+2), the factor in Eq. (53) becomes
proportional to

(tLtR)
4(t2L+t

2
R)

2
∏

i=1,6

|g(ki)|2eβΦY0(1−2eβΦ+e2βΦ).

Permuting (Y0, Y0+1, Y0+2) the sum of the ther-
mal factors can be easily shown to be zero.

Appendix B: Fourth order expansion of electron self-energy

We investigate the energy-pole structure in the real-time perturbation expansion to verify that the
δ-function residue disappears and the energy denominators can be interpreted as principal-valued.
In the following we consider the perturbation expansion for the self-energy in the fourth order of
Coulomb parameter U , Σ>

(4)(t, 0) according to the time-orderings along the Keldysh contour, FIG. 9(a-

d). Different types of time-orderings will be considered shortly. These time-orderings have one of the
intermediate time (marked as cross) within a finite time-interval fixed by time at 0 and t. Given a time-
ordering, a particular Wick’s contraction should be chosen. The chosen Wick’s contraction is according
to the diagrams in (g-h) which correspond to the most non-trivial vertex correction.
We can evaluate each contribution as follows.

Sa = f1f2f̄3f̄4f̄5f6f̄7

∫ 0

−∞

ds1

∫ t

0

ds2e
−i(ǫ1−ǫ4−ǫ5+ǫ6−iη)s1−i(−ǫ2+ǫ3+ǫ4−ǫ7)s2−i(ǫ5−ǫ6+ǫ7)t (B1)

Sb = f̄1f2f̄3f4f5f̄6f̄7

∫ 0

−∞

ds2

∫ t

0

ds1e
−i(ǫ2−ǫ3−ǫ4+ǫ7)s1−i(−ǫ1+ǫ4+ǫ5−ǫ6−iη)s2−i(ǫ1−ǫ2+ǫ3)t (B2)

Sc = f̄1f2f̄3f4f5f̄6f̄7

∫ −∞

t

ds1

∫ t

0

ds2e
−i(ǫ1−ǫ4−ǫ5+ǫ6−iη)s1−i(−ǫ2+ǫ3+ǫ4−ǫ7)s2−i(ǫ5−ǫ6+ǫ7)t (B3)

Sd = f1f2f̄3f̄4f̄5f6f̄7

∫ −∞

t

ds2

∫ t

0

ds1e
−i(ǫ2−ǫ3−ǫ4+ǫ7)s1−i(−ǫ1+ǫ4+ǫ5−ǫ6−iη)s2−i(ǫ1−ǫ2+ǫ3)t. (B4)



22

(a) (b)

(e)

(d)

t

0

0

t, τs1

s2

1

2

3

4

5

6

7

(g)

(c)

0 τ

s1

s2 β
(f)

s2

s1

s1

s2

s2 s1s2

s1 s1 s2

5

1

s2

s17

3

2

6

4

(h)

t, τ

FIG. 9: (a-d) Real-time Keldysh contour for self-energy Σ>

(4)(t, 0) in the fourth order perturbation when one

intermediate time is in the finite interval [0, t] and the other time in along the contour stretching to −∞. The
Wick’s contraction is taken as shown in (g-h). The dummy label of (g) is used for time-orderings (a,c,e) and
(h) used for (b,d,f). The cross represents the intermediate times s1 and s2 for interaction, in addition to the

creation/annihilation points 0 and t.

In these shorthand notation (as discussed in the main text), we omitted the expression
U4[

∏

i

∫

dǫi|gd(ǫi)|2] which is common to all Si terms. fi = [1 + eβ(ǫi−αiΦ/2)]−1 and f̄i = 1 − fi.
After some algebra, we get

Sa + Sd = − 2f1f2f̄3f̄4f̄5f6f̄7
(−ǫ2 + ǫ3 + ǫ4 − ǫ7)(ǫ1 − ǫ4 − ǫ5 + ǫ6)

[e−i(−ǫ2+ǫ3+ǫ4+ǫ5−ǫ6)t − e−i(ǫ5−ǫ6+ǫ7)t]. (B5)

The exponential terms cancel each other at the energy poles and (ǫ2−ǫ3−ǫ4+ǫ7)−1 and (ǫ1−ǫ4−ǫ5+ǫ6)−1

give well-defined principal-valued integral. This is a typical behavior since an integral within a finite
interval (0, t) does not need the convergence factor eηt and, accordingly, principal-valued integral is
enough. The same can be said for the combination Sb + Sc.
Now, we take the imaginary-time contours in FIG. 9(e-f). After straightforward calculations, we have

(ǫ̃i = ǫi − αiǫϕ/2)

Se = f1f2f̄3f̄4f̄5f6f̄7
e−(−ǫ̃2+ǫ̃3+ǫ̃4+ǫ̃5−ǫ̃6)τ − e−(ǫ̃5−ǫ̃6+ǫ̃7)τ

(ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6)(−ǫ̃2 + ǫ̃3 + ǫ̃4 − ǫ̃7)
(B6)

−f̄1f2f̄3f4f5f̄6f̄7
e−(ǫ̃1−ǫ̃2+ǫ̃3)τ − e−(ǫ̃1−ǫ̃4+ǫ̃7)τ

(ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6)(−ǫ̃2 + ǫ̃3 + ǫ̃4 − ǫ̃7)
. (B7)

Here (B6) corresponds to Sa of (B1) and (B7) to Sc of (B3). Similarly for Sf ,

Sf = f̄1f2f̄3f4f5f̄6f̄7
e−(ǫ̃1−ǫ̃4+ǫ̃7)τ − e−(ǫ̃1−ǫ̃2+ǫ̃3)τ

(ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6)(−ǫ̃2 + ǫ̃3 + ǫ̃4 − ǫ̃7)
(B8)

−f1f2f̄3f̄4f̄5f6f̄7
e−(ǫ̃5−ǫ̃6+ǫ̃7)τ − e−(−ǫ̃2+ǫ̃3+ǫ̃4+ǫ̃5−ǫ̃6)τ

(ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6)(−ǫ̃2 + ǫ̃3 + ǫ̃4 − ǫ̃7)
. (B9)
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FIG. 10: Different time-ordering with two intermediate interaction events extend to infinity. (a,d,e,g) use the
label in FIG.1(g) and (b,c,f,h) FIG.1(h).

At the energy poles at for ǫϕ → iη, Sf becomes identical to Se. Similarly to the real-time diagrams,
(−ǫ̃2 + ǫ̃3 + ǫ̃4 − ǫ̃7)

−1 has a well-defined principal-value integral regardless of the sign of η. Therefore
for diagrams Sa − Sf we have correct analytic continuation of imaginary-time results to those of the
real-time via

1

ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6
→ P

(

1

ǫ1 − ǫ4 − ǫ5 + ǫ6

)

. (B10)

In FIG. 10, we consider the remaining time-orderings with the two intermediate interaction points
extending to infinity. These are harder to deal with, as we discuss below, since the energy poles may
overlap.

Da = f1f̄2f3f̄4f̄5f6f̄7

0
∫∫

−∞

ds1ds2e
−i(ǫ1−ǫ4−ǫ5+ǫ6−iη)s1−i(ǫ1−ǫ2+ǫ3−ǫ5+ǫ6−ǫ7−iη)s2−i(ǫ5−ǫ6+ǫ7)t(B11)

Db = −f̄1f2f̄3f4f5f̄6f7
∫

e−i(−ǫ1+ǫ2−ǫ3+ǫ5−ǫ6+ǫ7−iη)s1−i(−ǫ1+ǫ4+ǫ5−ǫ6−iη)s2−i(ǫ1−ǫ2+ǫ3)t (B12)

Dc = f1f̄2f3f̄4f̄5f6f̄7

∫

e−i(−ǫ1+ǫ2−ǫ3+ǫ5−ǫ6+ǫ7−iη)s1−i(−ǫ1+ǫ4+ǫ5−ǫ6−iη)s2−i(ǫ5−ǫ6+ǫ7)t (B13)

Dd = −f̄1f2f̄3f4f5f̄6f7
∫

e−i(ǫ1−ǫ4−ǫ5+ǫ6−iη)s1−i(ǫ1−ǫ2+ǫ3−ǫ5+ǫ6−ǫ7−iη)s2−i(ǫ1−ǫ2+ǫ3)t (B14)

De = −f̄1f̄2f3f4f5f̄6f̄7
∫

e−i(ǫ1−ǫ4−ǫ5+ǫ6−iη)s1−i(−ǫ2+ǫ3+ǫ4−ǫ7−iη)s2−i(ǫ1−ǫ4+ǫ7)t (B15)

Df = f1f2f̄3f̄4f̄5f6f7

∫

e−i(ǫ2−ǫ3−ǫ4+ǫ7−iη)s1−i(−ǫ1+ǫ4+ǫ5−ǫ6−iη)s2−i(−ǫ2+ǫ3+ǫ4+ǫ5−ǫ6)t (B16)

After integrals over s1 and s2 it is easy to see that Da(iη) = Dc(−iη) and Db(iη) = Dd(−iη). For De

and Df , we can swap the dummy indices as 1 ↔ 7, 2 ↔ 6, and 3 ↔ 5, and it becomes De(iη) = De(−iη)
and Df (iη) = Df (−iη). Therefore, we obtain the desired result as (B10),

∑

k=a,··· ,f

Dk(iη) =
∑

k

Dk(−iη) =
∑

k

PDk(±iη). (B17)

In deriving these relations, no assumptions of L/R and particle-hole symmetry have been used. One
can rewrite Da as

Da = f1f̄2f3f̄4f̄5f6f̄7
e−i(ǫ5−ǫ6+ǫ7)t

ǫ2 − ǫ3 − ǫ4 + ǫ7

[

1

ǫ1 − ǫ2 + ǫ3 − ǫ5 + ǫ6 − ǫ7 − iη
− 1

ǫ1 − ǫ4 − ǫ5 + ǫ6 − iη

]

.

(B18)
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Here the +iη in the denominator will be cancelled by Dc and all fractions can be written as principal-
valued, unless the poles coincide.
We can now turn to the imaginary-time diagrams FIG. 10(g,h).

Dg =
f1f̄2f3f̄4f̄5f6f̄7

−(ǫ̃2 − ǫ̃3 − ǫ̃4 + ǫ̃7)

(

− 1

ǫ̃1 − ǫ̃2 + ǫ̃3 − ǫ̃5 + ǫ̃6 − ǫ̃7
+

1

ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6

)

e−(ǫ̃5−ǫ̃6+ǫ̃7)τ

− f̄1f2f̄3f̄4f5f̄6f7
(ǫ̃2 − ǫ̃3 − ǫ̃4 + ǫ̃7)

e−(ǫ̃1−ǫ̃2+ǫ̃3)τ

(ǫ̃1 − ǫ̃2 + ǫ̃3 − ǫ̃5 + ǫ̃6 − ǫ̃7)
+

f̄1f̄2f3f4f5f̄6f̄7
(ǫ̃2 − ǫ̃3 − ǫ̃4 + ǫ̃7)

e−(ǫ̃1−ǫ̃4+ǫ̃7)τ

(ǫ̃1 − ǫ̃4 − ǫ̃5 + ǫ̃6)
.(B19)

After swapping 1 ↔ 7, 2 ↔ 6, and 3 ↔ 5, the first two terms correspond to Da and Dc for ǫϕ →
iη and the third term to De. Using a similar technique in (B18), we can decouple the product of
energy denominators to a sum of simple poles of ǫϕ and then by taking the limit Eq. (B10), all energy
denominators become principal-valued, unless poles coincide.
Now we deal with the case when the δ-functions overlap. As discussed in section III A, the double-δ

terms manifest as terms proportional to T 2. The terms Da, Dc and De have double-δ terms cancelled
among themselves. At the energy-poles ǫ1 − ǫ4 − ǫ5 + ǫ6 = 0 and ǫ2 − ǫ3 − ǫ4 + ǫ7 = 0,

Da = Dc ∝ f1f̄2f3f̄4f̄5f6f̄7
T 2

2
e−i(ǫ5−ǫ6+ǫ7)t. (B20)

For De, we first rewrite

∫ T

t

ds1 =

∫ T

0

ds1 +

∫ 0

t

ds1, (B21)

and note that the second integral with a finite interval should not contribute a δ-function. So as long
as double-δ is concerned, we only consider the first interval,

De ∝ −f̄1f̄2f3f4f5f̄6f̄7T 2e−i(ǫ5−ǫ6+ǫ7)t → −f1f̄2f3f̄4f̄5f6f̄7T 2e−i(ǫ5−ǫ6+ǫ7)t. (B22)

where at the last step the dummy indices are swapped as 1 ↔ 5 and 4 ↔ 6. Therefore, the double-δ
terms disappear in Da+Dc+De. The same is true with Db+Dd+Df , and it shows that the all energy
poles for the fourth-order vertex corrections, FIG. 9(g-h), are interpreted as principal-valued.
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