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A method for calculating hydrodynamic added mass within the framework of time-dependent
bosonic density functional theory (DFT) for superfluid *He is developed. As a calibration of the
model, it is shown to reproduce the classical hydrodynamic limit for purely repulsive interactions.
To model real systems for which experimental data is available, the following ions were considered:
Be™, KT, Ca™, Sr™ and Ba™ cations as well as the F~, CI7, I and Br~ anions. The DFT
model requires the ion - helium pair potential data as input, which were obtained from electron
structure calculations by employing coupled clusters theory. Resultant static liquid density profiles
as calculated by DFT, were found to be in good agreement with previously published quantum
Monte Carlo data. The calculated added masses for the positive ions correlated directly with
the experimentally observed ion mobility data, by which the ions could be separated into two
different categories based on the degree of the first solvent shell following the ion. The calculated
added masses for the negative ions were found to be in disagreement with the existing experimental
data, suggesting the possibility that other negatively charged species were observed in previous
experiments. The negatively charged ions are predicted to have mobilities (u) within the range 0.8
-1.0 em® V7' 7! in superfluid helium at 1.3 K with the order x(I17) > p(Br™) > u(Cl7) > u(F7).

PACS numbers: 67.25.bf, 67.25.D-, 67.25.du

I. INTRODUCTION

Characterization of ion mobilities in bulk superfluid helium has been a subject of numerous experimental studies
where an external electric field is employed to drift the ions through the liquid, resulting in a time-of-flight spectrum
for the species’ *. The simplest of such ions is an electron, which forms a relatively large solvation cavity size (bubble
radius R, ~ 18.5 A) that can be attributed to the repulsive nature of the electron - helium interaction and the
large zero-point spread of the electron due to its light mass>®. Due to this large volume occupied, electrons exhibit a
relatively low ion mobility in the bulk (0.54 cm?V~1s~! at 7' = 1.3 K)”. Indeed most positive ions at this temperature,
such as He; (0.88 cm?V~1s71)7 K* (0.85 cm?V s~ 124 RbT (0.78 ecm?V~1s71)2 CsT (0.78 ecm?V~—1s71)2 Be®
(0.81 ecm?V—1s71)8 Cat (0.98 cm?V~1s71)2 Srt (1.01 em?V—1s71)% and Ba® (1.12 em?V~1s71)2 possess a higher
mobility than the electron, indicating that they have a smaller effective mass in the liquid. Due to the relatively
attractive interaction between the positive ions and helium, most cations are thought to form Atkins’ “snowball”
structures in the bulk, where the first solvent shells consist of rigid layers of helium with densities near or above that
in the solid phase. The Atkins’ snowball model for K™ predicts an effective ion mass of 45 x mass of helium atom
and a radius of 6 A?. Ton mobility in superfluid helium is essentially determined by the following aspects'?: 1) the
number of helium atoms dragged with the ion, 2) dissipation of energy through emission of sound when the ion is
accelerated in the liquid, 3) roton emission when the Landau critical velocity is exceeded, 4) vortex nucleation when
the corresponding critical velocity is exceeded and 5) interaction with thermal excitations when 7' > 0 K. The first
effect is independent of the bubble radius (R};) and does not depend strongly on temperature provided that the rigidly
bound solvent atoms remain attached to the ion. The second effect depends on R;, through ion acceleration (phonon
emission) and for an inviscid liquid it is given by %Vpo where V' is the bubble volume and pg is the bulk liquid
density. In hydrodynamics, the combined effect of 1) and 2) leads to the concept of added mass (mgqq). The third
and fourth processes depend on temperature, slightly, as the bulk dispersion relation changes somewhat as a function
of temperature in the superfluid phase. The last process is strongly temperature dependent as the thermal phonon
and roton densities increase as a function of temperature. Note that at temperatures above ca. 1 K, the ion-roton
scattering process dominates over phonons. The scattering process is sensitive to the effective ion size in the liquid as
the ion-roton scattering cross-section is proportional to the ion radius squared. For example, a solvated electron in
liquid helium predominantly exhibits repulsive behavior towards helium and hence the contribution of the first effect
(i.e., dragging of helium with it) to its overall mobility is vanishingly small. Furthermore, the typical velocities in the
ion drift experiments were well below the superfluid critical velocity, which leaves the electron mobility to be mainly
determined by roton-ion scattering and to a minor extent to emission of sound. Based on the experimentally observed
ion mobilities, the positively charged ion snowball structures appear to have smaller effective bubble radii than the



electron.

Mobilities of negatively charged ions at 1.3 K, such as CI= (0.46 cm?V~1s™H! F~ (0.47 em?V~ts~H) 1~ (0.45
em?V=1s7H) Ba~™ (0.41 em?V~1s71)! and Ga™ (0.41 em?V~1s71)! have been measured to have lower mobilities
than the electron. Due to the negative charge, it is expected that the interaction between these ions and helium also
exhibit significant binding due to the charge induced polarization interaction and therefore they should form similar
snowball structures as the positive ions discussed above. Thus the difference in mobilities between the positive and
negative ions should be related to the difference in their solvation cavity size and the accompanying solvent shell
structure (i.e., the overall effective ion size in the liquid). Previous theoretical investigations of the ion solvation
structures in superfluid helium have relied on the well-known semi-empirical bubble model'’ '3 or more accurate
quantum Monte Carlo (QMC) based methods!* '®, whereas the low temperature ion mobility has been discussed
mostly in terms of the ion-roton collision model®!'?:2° or in terms of the Stokes’ law?!:?2. However, since the ion-roton
collision cross-section depends on the square of the ion radius in superfluid helium, the use of Stokes’ law is not
justified in this case.

In this study, we have carried out theoretical modeling of C1=, F~, 17, and Br~ anions as well as KT, Be™, Ca™, Sr+
and Ba™ cations in superfluid helium by bosonic Density Functional Theory (DFT). The main motivation is to develop
a reliable theoretical model to estimate the ion mobilities and to investigate the origin of the experimentally observed
difference between the positive and negative ion mobilities. The present calculations can be used to characterize
the effective ion sizes based on the experimental mobility data. The paper is organized as follows: the employed
DFT formalism is delineated, followed by relevant electron structure calculations of the pair potentials between the
given ions and a ground state helium atom. The validity of the applied DFT approach, which incorporates the ion-
He pair potential, is validated against previous QMC results. Finally, mobilities of these ions is analyzed through
time-dependent DFT calculations.

II. THEORY

The bosonic DFT model applied to describe superfluid *He and the corresponding numerical implementation have
been described in detail previously??2°. All calculations included the kinetic energy correlation term present in the
original Orsay-Trento (OT) functional as well as the solid helium penalty term?®27. The ground state solution for the
ion-liquid system were obtained by the imaginary time propagation method. For both the imaginary and real time
propagation, the applied time step ranged from 0.2 to 5 fs with a cylindrical spatial grid consisting of 4096 points
along the z coordinate and 2048 points along the radial dimension. A fixed 0.1 A step size was employed along both
coordinates. The large grid was chosen in order to minimize possible boundary reflections of long wavelength phonons
created during the ion drift dynamics. Rather than performing an analytic calculation to eliminate the angular depen-
dency from the OT functional with subsequent direct numerical integration for the remaining degrees of freedom?®,
we employed a mixed Fourier(along z)-Hankel(along r) transformation, which can be used to calculate the underlying
convolution integrals with greater efficiently in 2-D. Furthermore, only minimal changes to the existing 3-D numerical
implementation of the OT functional are needed with this approach. Note that a full 3-D calculation employing the
grid size required in this study would need nearly 5 TB of memory, which clearly exceeds the capacity of modern
supercomputers. In 2-D, the same calculation requires only ca. 1 GB of memory, which means that the calculations
can be executed with very modest memory requirements. In addition, the 2-D Fourier-Hankel transformation provided
a significant improvement in efficiency as compared to its 3-D equivalent. The terms containing dot products in the
OT Hamiltoninan (i.e., the kinetic energy correlation and the backflow) can also be evaluated using this method by
carrying out the integrations in cylindrical coordinates, while retaining the Cartesian form for the dot products. Both
the 2-D and 3-D versions of OT have been implemented in the libdft library and the underlying parallel grid library
libgrid2?%-39. The bulk liquid calculations implemented the continuous liquid edge by a Neumann boundary condition
whereas the helium droplet calculations implied a Dirichlet boundary. During the imaginary time iterations, the bulk
density was maintained in the liquid at the simulation boundary by rescaling to the fixed bulk value and by conserving
the number of He atoms during the iterations for the droplet calculations. The ion zero-point spread inside the bubble
was not included in the model as the species considered are sufficiently heavy that they are localized in the middle
of the solvation cavity (estimated full width at half height < 0.1 A for the ion wavefunction). The ion drift in an
external electric field directed along the z-axis was included in the calculation through the additional potential term:
V(z) = —qE, x z where q is the ion charge and E, denotes the external electric field strength along the z-axis (10~7
a.u.) and z is the ion position z coordinate. Thus the ion movement occurs along the z-axis, whereas only sound
propagation may occur along the radial direction. The classical degrees of freedom for the ion were propagated by
using the velocity Verlet algorithm?®' alongside with the time-dependent DFT equation for the liquid. These two
equations were included in a predict-correct scheme to improve the numerical stability of the method.

At T = 0 K, the number of helium atoms dragged with the ion as well as dissipation of energy due to phonon



emission can be calculated from the instantaneous added mass (in units of He atoms and excluding the ion mass):

(1)

Ez Mion
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where Fio . is the total force acting on the ion (i.e., combined external electric field and liquid response) and mjon
and my, are the ion and helium masses, respectively. The total force acting on the ion is given by:
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where r = (x,y,2), ¥ = (¢/,y',2"), Vion—me is the ion-helium pair potential and p denotes the time-dependent liquid
density. To achieve numerically stable results, the derivative appearing on the right hand side of Eq. (2) was evaluated
analytically and the resulting function was then mapped on a spatial grid by using linear interpolation. To further
improve the stability, the integral form of Eq. (1) was used (in units of mpye):

(3)
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where Az is the ion displacement along the z-axis and v, is the z component of the ion velocity. The added mass can
be related to the hydrodynamic radius R}, through (assuming a spherical object):
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where R}, represents an effective ion radius, which accounts for the movement of displaced liquid by the ion (the first
line in Eq. (5)) and dragging of liquid with the ion (the second line in Eq. (5)). For a spherical object with no binding
and a Heaviside liquid density profile, this reduces to the familiar expression from hydrodynamics:
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The key observable in the experiments is the ion mobility u, which is defined as the ratio between the observed ion
velocity (vion) and the applied external electric field strength (E.):

Vion
n=E (7)
In the limit of zero temperature, the mobility can be obtained from time-dependent DFT calculations by observing
the long-time limit for the added mass (Eq. (3)). Note that at 0 K the ion terminal velocity is limited by phonon
(sound) and eventually by roton/vortex (critical behavior) emission.

When T > 1 K, the present formulation of the time-dependent DF'T cannot be used to directly obtain the reduction
of ion mobility that occurs through thermal phonon/roton scattering. In this regime, the ion mobilities are usually
taken to be proportional to the inverse of the ion-roton collision cross-section squared: p oc (R + d)~2 where
d corresponds to the effective roton (quasiparticle) radius. Since for electron bubbles R, >> d (d corresponds
approximately to the size of a single helium atom in the liquid; ca. 4 Alo), the mobility is often taken to be
proportional to just R, 2. However, for smaller ions R, and d may be comparable and in this case d must be included
in the estimate. Provided that the ion-roton cross-sections follow this simple geometric proportionality, we can obtain
relative ion mobilities310:32:

p_ (Rop+d)? ®)
p2 (Roa+d)?



where the indices 1 and 2 refer to the two different ions under consideration. Note that in the limit of the Stokes’
law, the relative mobility would just depend on the ratio between the two radii. In the temperature region of the
relevant experiments (T > 1.2 K)?2, the mobilities are dominated by roton rather than phonon scattering as the roton
number density quickly outpaces phonons above 1 K and thus the mobilities are expected to be inversely proportional
to R? rather than Ry as given by the Stokes’ formula®3. However, previously the application of the Stokes’ formula
has provided excellent agreement with the experimentally observed electron mobility data when used together with
the semi-empirical charge mobility model of Aitken et al.?'22.
Previously, the spherical bubble radius R, has been defined as the mass barycenter of the bubble interface3*:

Ry 0o
/0 p(r)dr = / (po — plr) &r, (9)

Ry

where pg corresponds to the bulk liquid density. It is apparent that this definition would fail when distinct solvation
shells around the impurity are present (e.g., for charged ionic species). The formula based on the concept of added
mass (i.e., Eq. (5)) is thus more general as it can account for the presence of bound solvent layers appropriately.
However, as elaborated in the next section, the radius R, appearing in Eq. (8) may not necessarily correspond to
that used in Eqgs. (4) and (5) due to the fact that the roton scattering process may be sensitive to the solvent shell
structure far away from the ion.

By increasing the ion velocity from the typically accessed linear regime (i.e., where Eq. (7) holds), critical phenomena
can be observed?. There are two possibilities for such behavior: 1) roton emission and 2) vortex nucleation by the
ion. At T'= 0 K, the first process may act as a limiting factor dictating the terminal velocity for the ion whereas the
second is observed at high velocities (i.e., high external electric field strengths). Both phenomena can be modeled
with time-dependent DFT simulations by determining the abrupt changes in the ion velocity vs. its added mass,
Madd- When a new dissipation channel becomes active, a sudden increase in mgqq should occur.

IIT. RESULTS AND DISCUSSION

The ion-helium pair potentials were calculated by using the restricted coupled clusters theory with single, double and
perturbative connected triple excitations (CCSD(T)) as implemented in the MOLPRO code:3%. When this approach
is employed together with a large augmented basis sets (e.g., aug-cc-pV5Z), it has been shown to typically produce
a wavenumber accuracy in the van der Waals region®”38. Smaller basis sets, such as the ones used here for KT, Srt
and Ba™ may have, as discussed later, a limited ability to fully recover the dispersion interaction with He atoms. All
the calculated pair potentials were corrected for basis set superposition error (BSSE) by the counterpoise correction
method of Boys and Bernardi®®. For most species (F40:41 C142) Br*3, Ga®?, Be**), an augmented correlation consistent
basis set aug-cc-pV5Z (AV5Z) was applied whereas cc-pV5Z (V5Z) was used for Ca and Ga, and a quadruple zeta
level Def2-QZVPPD basis set was used for K¥4° Sr+4% and Bat4%. The Sr and Ba basis sets include the inner
core electrons through the effective core potential approach, which reduces the number of electrons requiring explicit
treatment of electron correlation. All ions considered in this study were spherically symmetric with the exception of
Ga~, which has a 3P ground state. The two possible He atom approaches towards Ga~ produce ¥ and IT molecular
states, which were calculated separately as the standard CCSD(T) method can be applied to get the lowest root
in each irreducible representation within a given point group (i.e., C,). To provide the pair potential data in a
functional form, the calculated data was fitted to the following equation:

As Az Ay As

RY T RS RS RO (10)

where Ay through As are constants for a given pair potential. Despite the fact that this equation bears the exact same
form as is typically applied in describing atom - atom long range interactions, it should be stressed that the parameters
given here merely provide a way to parametrize the potential and that the individual values of the parameters should
not be interpreted to have any physical significance (e.g., 4; are not to be interpreted as dispersion coefficients). The
least squares fitting process of the ab initio data to Eq. (10) is often plagued by the existence of local minima and
problematic behavior high in the repulsive wall. The latter issue is typically evidenced as a rapid turn over of the
function at short distances after which it tends towards —oco. For this reason, the pair potential parameter set must
also specify the minimum distance where the potential is still valid on the repulsive wall (R )-

The calculated pair potential data for the anions and cations are shown in Figs. 1 and 2, respectively. A comparison
of the current pair potentials with the previous literature values is summarized in Tables I and IT and the potential
parameters according to Eq. (10) are given in Table ITI. For the halogen anion - helium pair potentials, the well-depths
and the minima are in good agreement with the previously published results using a similar level of theory; generally
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FIG. 1: (Color online) Calculated pair potentials for halogen anions interacting with a ground state helium atom are shown.
Note that Ga™ is non-spherical as two possible electronic states (X and II) arise from the outmost atomic s and p orbitals on
He and Ga, respectively.

within 5 K for energy at the potential minima and less than 0.1 A for the position of the minima. For the cations, there
is a larger variation between the current and the previously published data. For KT - He, for example, the previous
calculations have either relied on lower level ab initio methods (e.g., the configuration interaction with single and
double excitations method (CISD)) to obtain the van der Waals attraction (dispersion) or on the Hartree-Fock (HF)
method to approximate the form of the repulsive wall combined with a dispersion series derived from experimental
data?6 %9, Note that since the standard CISD method is not size-consistent, the counterpoise-type BSSE correction
cannot be applied. Depending on the basis set employed, this can introduce significant inaccuracy into the pair
potentials, which should ideally vanish in the limit of complete basis set. Note that the CCSD(T) method applied
in the present study is size-consistent, which allows BSSE correction. The above semi-empirical technique, based
on using HF repulsion and dispersion determined by experimental data, is not a straight forward approach for two
reasons: 1) the dispersion coefficients must be known accurately based on the available experimental data and 2) there
is a delicate balance between the HF derived repulsive wall and the van der Waals interaction, which can amplify
the error in the overall pair potential and especially near the van der Waals minimum. For the K+ - He interaction,
we considered two different basis sets (Def2-QZVPPD and ¢VQZ; see Table I), which produced identical potential
minima positions but the well depths differed by 8 K. For consistency, we employ the Def2-QZVPP basis results in this
study as this basis set is also available for the heavier nuclei. However, it appears that this basis set underestimates
the well depth by 15% for Be™ - He and one would expect this level of accuracy to extend to the heavier ions as
well. However, by comparing the performance of this basis set for Ca™ against the unaugmented V5Z, they appear
to provide similar level of accuracy. Hence it is expected that the error would be less than the worst case estimate
of 15% based on Be™ - He. The non-spherical Ga~ - He pair potential data is only given for reference as it was not
employed in the following DFT calculations.

The present form of the OT functional has been successfully applied earlier to describe solvation of Be™ as well as
the liquid-solid phase transition?%27. To verify that it can be used to describe solvation of the relatively strongly bound
ions, a comparison between QMC and the present OT-DFT calculations is given in Fig. 3 for K*. The agreement is
excellent for the helium droplets, whereas for the bulk, there is a noticeable difference in the first solvation shell, with
OT-DFT predicting slightly higher density than QMC. This difference is rather surprising since the changes in the
nearest solvent layers appear to saturate after ca. 128 He atoms and, in this sense, it appears that there is even such
a discrepancy between the two QMC methods used for the droplet and the bulk calculations. The static OT-DFT



Ton Method D. (K) Rm (A) Source

KT CCSD(T)/Def2-QZVPPD 225 2.9 Present work
CCSD(T)/cVQZ 217 2.9 Present work
CI 255 2.85 Ref.*®.
HF+dispersion 246 2.87 Ref.?.
Exp-repulsion+disp 237 2.90 Ref."7.
CI/Huzinaga 212 2.91 Ref. .

Ca™ CCSD(T)/V5Z 39 44 Present work.
CCSD(T)/Def2-QZVPPD 44 44 Present work.
CISD/See Ref. 42 4.4 Ref.?.
Exp-repulsion+disp 73 4.1 Ref."".

Bet CCSD(T)/AV5Z 187 2.9 Present work.
CCSD(T)/Def2-QZVPPD 157 3.0 Present work.
CCSD(T)/d-AV5Z 192 2.92 Ref.52.
QCISD/Be:6-311++G(3df,3dp) /He: AVQZ 178 2.96 Ref.5.
MP4/6-311G(2df/2pd)//MP2/6-31G** 100 3.13 Ref.?.

Srt CCSD(T)/Def2-QZVPPD 36 4.6 Present work.

Ba® CCSD(T)/Def2-QZVPPD 26 5.1 Present work.

TABLE I: Overview of positive ion - He pair potentials: CCSD(T) = coupled clusters theory with single, double and perturbative
triples; CI = configuration interaction; Exp-Repulsion+disp = exponential repulsive wall combined with dispersion series;
HF+dispersion = Hartree-Fock for the repulsive wall combined with the standard dispersion series; MP4 = 4th order Mgller-
Plesset perturbation theory. The basis sets are described according to the standard notation, for details see the given reference.
D, and R,, denote the dissociation energy and the potential minimum, respectively.

Ton Method D. (K) R (A) Source

F~ CCSD(T)/AV5Z 104 3.3 Present work
CCSD(T)/AVQZ 108 3.25 Ref..
CCSD(T)/AV5Z 107 3.26 Ref.?C.
CCSD(T)/VTZ + mid bond 106 3.27 Ref.?".

Cl™ CCSD(T)/AV5Z 60 4.0 Present work.
CCSD(T)/AVQZ 60 4.0 Ref.?.
CCSDT(T)/AVQZ 57 4.0 Ref.?®.
CI/Huzinaga 63 4.1 Ref.*6.
Exp-repulsion+disp 114 3.5 Ref.4".

Br~ CCSD(T)/AV5Z 50 4.2 Present work.
CCSD(T)/AVQZ-PP 47 4.30 Ref.?.
Exp-repulsion+disp 58 4.0 Ref.47.

I~ CCSD(T)/AV5Z-PP 39 4.6 Present work.
CCSD(T)/AVQZ-PP 36.2 4.70 Ref.?

TABLE II: Overview of halogen ion - He pair potentials: CCSD(T) = coupled clusters theory with single, double and per-
turbative triples; CI = configuration interaction; Exp-Repulsion+disp = exponential repulsive wall combined with dispersion
series. The basis sets are described according to the standard notation, for details see the given reference. D. and R, denote
the dissociation energy and the potential minimum, respectively.

Ton Ao A1 A2 A3 A4 A5 Rmin
Ca™ 4.83692 1.23684 0.273202 59.5463 1134.51 0.0 5.0
K+ 140.757 2.26202 0.722065 1.44039x 1073 356.303 1358.98 4.0
Be™ 4.73292 1.53925 0.557845 26.7013 0.0 0.0 3.4
Srt 3.64975 1.13451 0.293483 99.0206 693.904 0.0 5.0
Ba™ 10.5807 1.24428 0.695007 31.9518 2087.89 0.0 7.3
Cl1™ 11.1909 1.50971 0.721860 17.2434 0.0 0.0 4.2
F- 5.16101 1.62798 0.773982 1.09722 0.0 0.0 4.1
I~ 13.6874 1.38037 0.696409 37.3331 0.0 0.0 4.1
Br™ 12.5686 1.45686 0.714525 24.1140 0.0 0.0 5.0

TABLE III: Pair potential parameters for the ion - helium interaction (atomic units) according to the parametrization given
in Eq. (10).
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FIG. 2: (Color online) Calculated pair potentials for the cations K, Bet, Ca™, Sr™ and Be' interacting with a ground state
helium atom are shown.

Ao (Hartree) A (A) Az (A) Ry (A) Maaq (units of mee)
3.8003 x 10° 1.6245 -4.2 12.0 86.5

3.8003 x 10° 1.6245 -2.6 10.2 46.2

3.8003 x 10° 1.6245 -1.6 9.0 28.6

3.8003 x 10° 1.6245 0.0 7.1 11.8

3.8003 x 10° 1.6245 1.6 5.3 3.6

3.8003 x 10° 1.6245 2.1 4.8 2.2

TABLE 1IV: Parameters for exponentially repulsive potential: Agexp (—A;(r + A2)) along with the center of mass for the
interface (Ry) and the calculated added mass (mqaq)-

density profiles for the other cations considered are shown in Fig. 4. With the exception of Be™, these ions are much
less bound than K and the variations in the liquid density are significantly less pronounced. The calculated density
profiles for Bet and Ca™ also compare favorably with respect to the first solvent shell structure obtained in previous
QMC calculations for clusters with 70 He atoms'. As shown for the anions in Fig. 5, however, the comparison
between the static density profiles obtained from OT-DFT and QMC is not as straightforward. For F~, the QMC
calculations predict a higher density in the first solvent shall as compared to OT-DFT, but the situation appears to
be opposite for the rest of the ions. For F~ there is also a significant difference in the second solvation shell density.
Unfortunately, the QMC data is only available for small He clusters forbidding a more detailed analysis. Based on
the overview given in Table III, the observed difference cannot be explained in terms of different pair potentials being
applied in the calculations, but the origin must lie between the applied theoretical approaches for describing superfluid
helium.

To demonstrate the applicability of Eq. (3) in calculating the added mass within the DFT framework, a set of
purely exponential spherical potentials (see Table IV) with a varying radii was used. Note that for such exponentially
repulsive potentials, there is no rigid solvent shell around the impurity and hence the added mass should be strictly
related to the bubble volume. The calculated added mass is plotted in Fig. 6 as a function of the interface barycenter
(Rp; Eq. (9)) along with the classical added mass (see Eq. (6)). The results obtained from these two models
correlate well. A perfect match was not expected as the bubble structures from DFT exhibit a finite interface width.
Peculiarly, the DFT calculations exactly match an expression that depends directly on the displaced liquid volume
with an artificial shift of the interface barycenter to the region where the liquid density increases rapidly from zero
(ie., Ry —C, C =22 A; cf. Eq. (6)). It is expected that the offset C' depends on the interface width and in the limit
of a Heaviside profile, this constant should converge towards zero to recover the classical result.

Next, the actual ionic systems, which include the pronounced solvent layer structure, are considered. After an initial
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FIG. 3: (Color online) Comparison between the calculated liquid density profiles from DF'T (continuous black line) and previous
QMC calculations (dashed red line) is shown!®16-27.

Ton Madd (Maaa QMC) Ry (A) (Eq. (5)) Ry (Eq. (8)) Ry, (Stokes) p (cm?V—ts™h)
Be™ 19.7 5.9 14.4 12.7 0.81
Kt 17.2 (17.4) 5.6 13.9 12.1 0.85
Srt 4.1 4.3 12.5 10.2 1.01
Ca™ 4.3 4.4 12.7 10.5 0.98
Ba™ 4.0 4.7 11.6 9.0 1.12
F- 13.0 6.9 20.1 21.4 0.47
Cl- 9.0 4.5 20.4 21.9 0.46
I~ 4.5 4.5 20.6 22.4 0.45
Br~ 4.8 4.3 - - -
e~ 170 18.5 - - 0.54

TABLE V: Ion added masses as obtained from time-dependent DFT calculations using Eq. (3), the derived bubble radii
according to Eqs. (4) and (5) and experimental mobilities x4 at 1.3 K are shown™**"8. Note that the added mass Mmadq
excludes the ion mass and is given in units of mg.. The electron bubble radius and its added mass were approximated based
on the previously published data®!° and the QMC referebce data for K* was taken from Ref.!>. The calculated values of Rj
by using both Eq. (8) and the Stokes’ law are also shown for comparison (electron mobility and radius as the reference).
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FIG. 4: (Color online) Calculated ground state liquid densities as obtained from DFT calculations for Be™, Ca™, Sr™ and Ba™
are shown.

ion acceleration period (typically ca. 3 ps) in the time-dependent DFT calculations, the calculated instantaneous ion
added mass converges to approximately a constant value, which is then taken as mgyq4. However, we have observed that
small amplitude periodic oscillations persist (typically & 0.3 xmp.) even at long times, which appear to correspond
to acceleration/deceleration events of the ion in the liquid. These in turn appear to be related to the ion dropping
off and picking up small amounts of liquid as it travels in the superfluid. As in classical hydrodynamics, this leads to
dissipation of energy through emission of sound. This process persists for several hundred picoseconds and therefore
appears to be part of the actual long-time ion propagation dynamics. A summary of the calculated added masses
using Eq. (3) are shown in Table V (averaged over the small amplitude oscillations), along with the derived spherical
bubble radii R, obtained from Egs. (4) and (5). The current DFT calculations reproduce the previous QMC derived
added mass for K*1° with a very good accuracy considering that the two calculations did not even use exactly the
same KT - He pair potential. Note that Atkins’ estimate of Ry ~ 6 A for KT predicts that the second solvation
shell would also follow the ion. For the other ions considered, the calculated added masses indicate either a complete
following of the first full solvent shell (e.g., Be™, K¥) or only partial following of the first solvent shell for the less
bound ions (e.g., Cat, Sr*, Ba™ and most of the halogen ions). In the current calculations, the ion velocities reach
ca. 1 m/s at maximum and therefore the dynamics is mostly sensitive to the phonon response of the liquid. For such
small velocities, hydrodynamic approximations are also able to reproduce the correct ion added masses, provided that
liquid density profiles are available computed by some other method®®. In the present case, however, DFT is used to
calculate both the initial stationary liquid density profile as well as the time evolution in the presence of the external
electric field, which allows the method to be used without any external data and it can also be used for studying
critical phenomena at higher electric fields.

Table V also includes estimates for R, by using Eq. (8) and the Stokes’ law. Since the Stokes’ law should not be
applicable in the present case, we concentrate on comparing the R; derived from the added mass calculation with
the Ry from the ion-roton scattering formula. It is clear that there is a significant difference between the two radii,
approximately 8 A. The radii derived using Eq. (8) appear to correlate with the position near the weak 4th - 5th
solvent shells (cf. Fig. 4). The density oscillations in this region have very small amplitude, ca. 2% from the bulk
density, but these may still be sufficient to trigger roton scattering from the bubble. Based on this interpretation,
it would then appear that the definitions given by Eqgs. (4) & (5) and Eq. (8), correspond to different R, with the
former related to the immediate first solvent shell location and the latter to the much weaker solvent layer structure
farther away from the ion. This also means that there should not be an exact relationship between the added mass
and the radius R;, derived from Eq. (8) because the added mass is not necessarily a direct measure of the solvent
shell structure far away from the ion. However, a fairly good correlation between the ion added mass and the ion
mobility can be obtained as demonstrated in Fig. 7 (the data point for the solvated electron is off the scale). The
ions can be clearly divided into two different groups: 1) heavy ions where the 1st solvent shell follows the ion and
2) light ions where only partial first solvent shell following takes place. Note, however, that the electron impurity is
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FIG. 5: (Color online) Comparison of the calculated liquid density profiles for halogen anions in helium clusters is shown. The
continuous black line corresponds to present DFT calculations and the dashed red line to previous QMC calculations®.

different with this respect as its added mass arises solely from Eq. (6). The behavior of halogen anions is also shown
in Fig. 7 where it can be seen that they do not appear to belong to either category. When this fact is combined
(see also Table V) with the static liquid density profile calculations, it appears highly unlikely that the experimental
halogen ion mobility data is due to these ions but rather some other negatively charged species. Their mobilities
should be approximately twice as high as reported in the literature to correlate with the positive ion data (see the
arrows in Fig. 7). Furthermore, the mobilities were reported to be below that of the solvated electron, which has
no bound central potential and thus should be the largest ionic object possible in the liquid (excluding the possible
multi-electron bubbles with a large number of electrons and some molecular ions). In contrast, halogen atoms have
high electron affinities (ca. 3 eV), which causes the electron spatial extent to be much smaller than for the solvated
electron, and they also have a significantly smaller spatial zero-point spread inside the cavity than the electron due
to their larger masses. It therefore appears that the laser ablation method!, which was used to produce the ions
above the superfluid, forms some other negatively charged species that are then observed in the subsequent ion drift
experiment. While at first it would be tempting to assign these just to solvated electrons, there appears to be small
variation of the observed ion mobility depending on the atomic precursor! and therefore these ions may be more
complex than just electrons. The predicted halogen ion mobilities based on the present calculations are in the range
of 0.8 - 1.0 cm? V=1 s7! at 1.3 K and should have the following order: p(I7) > u(Br~) > p(Cl7) > u(F™).

Future work based on the developed method will concentrate on the study of critical phenomena in superfluid
helium (e.g., roton and vortex emission) when ions are accelerated to higher velocities? and to elucidate the origin of
the well-known exotic ion signals in a similar time-of-flight measurement, where it will be essential to understand the

relationship between mobilities and the bubble sizes3.
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FIG. 7: (Color online) Relationship between calculated added mass and experimental ion mobility data. The positive ions can
be divided into two categories: fast and slow ions. The halogen anions appear separate from the positive ion data and their
expected mobilities are indicated by arrows. The line connecting the positive ion mobility data is drawn as a guide to the eye.
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