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We have studied the microwave response of a single Cooper-pair transistor (CPT) coupled to a
lumped-element microwave resonator. The resonance frequency of this circuit, fr, was measured
as a function of the charge ng induced on the CPT island by the gate electrode, and the phase
difference across the CPT, φB , which was controlled by the magnetic flux in the superconducting
loop containing the CPT. The observed fr(ng, φB) dependences reflect the variations of the CPT
Josephson inductance with ng and φB as well as the CPT excitation when the microwaves induce
transitions between different quantum states of the CPT. The results are in excellent agreement with
our simulations based on the numerical diagonalization of the circuit Hamiltonian. This agreement
over the whole range of ng and φB is unexpected, because the relevant energies vary widely, from
0.1K to 3K. The sensitivity of the CPT as an electrometer is peaked when the CPT excitation level
approaches that of the microwave resonator.

PACS numbers:

I. INTRODUCTION.

The Cooper-pair transistor (CPT) is a three-terminal device which consists of a mesoscopic superconducting island
connected to two leads by two Josephson tunnel junctions (JJs) (see, e.g.1,2 and references therein). The behavior
of this device is controlled by two energies: the charging energy per junction, EC≡e2/2CJ (CJ is the capacitance
of a single tunnel junction), and the Josephson coupling energy EJ . The energies EC and EJ could be made of
the same order of magnitude by reducing the tunnel junction in-plane dimensions (typically, down to 100 − 200nm
for Al − AlOx − Al junctions). The energies of quantum states of the CPT are 2e periodic in a continuous charge
ng = CgVg/e induced on the island by a capacitively coupled gate electrode. Here Cg is the capacitance of the
capacitor formed by the island and the gate electrode, Vg is the voltage applied to this capacitor. The sensitivity of
the CPT characteristics to the induced charge makes this device a very sensitive electrometer which, in particular, can
operate in a low-dissipation dispersive mode3–5. The interplay between the Josephson effect and Coulomb blockade
leads to a quantum superposition of charge states in the CPT, which forms the basis for quantum computing with
superconducting charge qubits6–8. Since the first demonstration of the coherent superposition of states in the CPT
more than a decade ago, the CPT has been used as a test bed for many novel experimental techniques employed in
the research on superconducting qubits.

The microwave experiments with CPTs can be broken down into two main categories. In the first type of mea-
surements, the CPT remains in its ground state because of a large mismatch between the probe signal frequency and
the excitation frequencies of the CPT. During this adiabatic operation, the CPT can be described by its effective
microwave impedance. This impedance, depending on the parameters of the Josephson junctions and the coupling of
the CPT to the readout circuit, could be predominantly inductive (the Josephson inductance, the second derivative
of the CPT energy in phase9) or capacitive (the quantum capacitance, the second derivative of the CPT energy in
charge10–12). If the CPT is coupled to a resonator and their levels are close in energy, the entanglement of the CPT
and resonator states affects the impedance of this circuit even if the microwaves do not induce transitions between
the CPT states. In the latter case, the impedance-based description of the CPT is insufficient, and the solution of the
quantum Hamiltonian of the system “CPT + read-out circuit” is required. In the second type of measurements, the
microwaves induce transitions between different quantum states of the CPT. This, in particular, enables the prepara-
tion and manipulation of coherent superpositions of the ground and excited states in the quantum-computing-related
applications of the CPT.

In this paper, we present the microwave spectroscopic study of a CPT which probes both the ground state and
excited states of the CPT over wide ranges of the charge ng and the phase difference across the CPT, φB . The phase
was controlled by the magnetic flux in the superconducting loop containing the CPT. The CPT microwave response
was analyzed by measuring the resonance frequency fr of the combined circuit containing a lumped-element microwave
resonator (referred below as an LC-resonator) and a CPT. When the detuning between the LC-resonator frequency
and the excitation frequencies of the CPT was large, the dependence fr(ng, φB) mostly reflected the variations of the
CPT Josephson inductance with ng and φB . On the other hand, an avoided crossing of the CPT and LC-resonator
levels was clearly observed when the CPT excitation frequency was tuned to the LC-resonator frequency by varying
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Figure 1: Schematics of the “CPT+LC-resonator” circuit. (a) The on-chip circuit layout. The superconducting shunting wire
(“shunt”) serves two purposes: it reduces the coupling of the CPT to the LC-resonator (and, thus, reduces external noises), and
it forms, in combination with the CPT, a superconducting loop. The magnetic flux in the loop controls the phase difference
across the CPT. (b) The circuit diagram used for modeling in Section 3.

ng and φB . The overall dependence fr(ng, φB) is in excellent agreement with the simulations based on the numerical
diagonalization of the circuit Hamiltonian. This agreement illustrates the accuracy of our numerical simulations that
can be applied to more complicated, multi-junction circuits in the quantum regime, including the superconducting
circuits envisioned as protected superconducting qubits13,14.

The paper is organized as follows. In Section II, we describe the samples and measurement techniques. The details of
numerical simulations of this circuit are provided in Section III. The experimental results are discussed and compared
with numerical simulations in Section IV.

II. DEVICE FABRICATION AND MEASURING TECHNIQUES.

A. Circuit Design and Device Fabrication

The schematics of the tested circuit is shown in Fig.1. The CPT is inductively coupled via a narrow Al wire (“shunt”)
to a lumped-element LC-resonator. The LC- resonator, which is strongly coupled to the microstrip line, consists of a
meandered 2-µm-wide Al wire with Lm = 5 nH and an interdigitated capacitor (2-µm-wide fingers with 2 µm spacing
between them) with C = 100 fF. The typical values of the internal and loaded quality factors for these LC-resonators
(not coupled to the CPT) were 50,000 and 20,000, respectively. High Q values enable sensitive measurements of
small changes in the microwave impedance of the tested device induced by the variations of ng and φB . Outside of
its bandwidth, the LC-resonator efficiently decouples the CPT from external noises. An additional protection of the
CPT from external noises is provided by the shunt: the kinetic inductance of this superconducting wire, Lsh = 0.5
nH, is more than 10 times smaller than the effective Josephson inductance of the CPT, and this significantly reduces
the phase fluctuations across the CPT. The LC-resonator is inductively coupled to a 2-port Al microstrip line with
a 50 Ω wave impedance. The gate electrode of the CPT is coupled to the central island of the CPT through a
capacitor Cg = 0.2 fF. A similar circuit (a CPT inserted in a superconducting loop which is inductively coupled to
an LC-resonator tank circuit) was proposed by Zorin15, and realized in experiments16,17. Note that the entanglement
between the CPT and LC-resonator levels was not observed in these works due to a relatively low resonance frequency
of the tank circuit (˜ 10 times smaller than in the present experiment).

The Cooper-pair transistor, the lumped-element LC resonator, and the microstrip line were fabricated within the
same vacuum cycle using multi-angle electron-beam deposition of Al films through a nanoscale lift-off mask (for details,
see Ref.14). The central island of the Cooper-pair transistor was always deposited during the first Al deposition, and
its thickness (20 nm) was smaller than that of the leads (60 nm); this is important for preventing quasiparticle
poisoning18. The spread of the resistances for the nominally identical JJs with an area of 0.15 × 0.15µm2 did not
exceed 10%. More than 10 devices with EJ/EC = 1.5 − 3 have been studied and the results have been successfully
fitted with the numerical simulations; below we discuss several representative samples.



3

B. Measurement Technique

The microwave response of the coupled system “ CPT + LC-resonator” was probed by measuring the amplitude and
phase of the microwaves traveling along a microstrip line coupled to the LC-resonator. Figure 2 shows a simplified
schematic of the microwave circuit, which is similar to the one used in Ref.19. The cold attenuators and low-pass
filters in the input microwave line prevented leakage of thermal radiation into the LC-resonator. On the output line, a
combination of low-pass filters and two cryogenic Pamtech isolators (˜18 dB isolation between 3 and 12 GHz) anchored
to the mixing chamber were used to attenuate the 5 K noise temperature from the cryogenic amplifier. The DC line
for the gate voltage control was heavily filtered with a combination of room temperature LC and low temperature RC
filters, followed by a stainless steel powder filter, and a 1:1000 voltage divider.

The probe signal at frequency ω2, generated by a microwave synthesizer, was coupled to the cryostat input line
through a 16 dB coupler. This signal, after passing the sample, was amplified by a cryogenic HEMT amplifier (Caltech
CITCRYO 1-12, 35 dB gain between 1 and 12 GHz) and two 30 dB room-temperature amplifiers. The amplified
signal was mixed by mixer M1 with the local oscillator signal at frequency ω1, generated by another synthesizer. The
intermediate-frequency signal a(t) = a sin(Ωt + ϕ) + noise(t) at Ω ≡ (ω1 − ω2)/2π = 30 MHz was digitized by a 1
GS/s digitizing card (AlazarTech ATS9870). The signal was digitally multiplied by sin(Ωt) and cos(Ωt), averaged over
many (typically, 106) periods, and its amplitude a (proportional to the microwave amplitude S21) and phase ϕ were

extracted as a =
√〈

a2(t) sin2 Ωt+ a2(t) cos2 Ωt
〉

and ϕ = arctan
(〈
a2(t) sin2 Ωt

〉
/
〈
a2(t) cos2 Ωt

〉)
, respectively (here

〈...〉 stands for the time averaging over integer number of periods). The value of ϕ randomly changes when both ω1

and ω2 are varied. To eliminate these random variations, we have also measured the phase ϕ0 of the reference signal
provided by mixer M2 and digitized by the second channel of the ADC. The phase difference ϕ− ϕ0 at fixed ng and
φB depends only on the electric length difference between the microwave lines inside and outside of the cryostat, and
is immune to the phase jitter between the two synthesizers. The measurements have been performed at microwave
excitation level down to -140 dBm which corresponded to sub-single-photon population of the tank circuit.

The sample was mounted inside an rf -tight copper box which provided the ground plane for the microstrip line and
LC-resonator. This box was housed inside another rf -tight copper box in order to attenuate stray infra-red photons20.
This nested-box construction was anchored to the mixing chamber of a cryogen-free dilution refrigerator with a base
temperature of 20 mK.

III. MODEL HAMILTONIAN AND NUMERICAL SIMULATIONS

We begin with the discussion of the theoretical model of a more general circuit which contains an arbitrary Josephson
device coupled via a superconducting “shunt” to a microwave LC-resonator. The generalized circuit shown in Fig.
1b includes two loops: the long meandering wire, the shunt, and a large capacitor C form one loop (referred below
as the LC-resonator loop), and the device and the shunt form another loop (referred as the device loop). The only
limitation on the device parameters is that all characteristic energies of the device are much smaller than the effective
inductive energies of all superconducting wires in the device loop, ELi

= ~2/
[
(2e)2Li

]
. The resonance frequency of

the LC-resonator might be of the same order or even very close to the device excitation energies, which would lead to
the level repulsion. To simplify the notations, we shall use below the units ~ = 2e = 1 (e.g., in these units V = dφ/dt)
and restore the physical units at the end, where we apply this model to the specific case of a device that consists of
two Josephson junctions and one superconducting island, i.e. the CPT.

The generalized circuit is characterized by the inductance of the meander (shunt), Lm (Lsh), and the phase difference
across this element, φm (φsh). The difference between the device phase φ0 and the shunt phase φsh is due to the
time-independent magnetic flux Φ in the device loop: φ0 − φsh = φB , where φB = 2πΦ/Φ0, Φ0 is the flux quantum.
The voltage differences across the meander, device, and shunt are Vm, V0, and Vsh, respectively (V0 = Vsh). The
whole circuit is described by the Lagrangian

L = Tsh(Vsh) + Tm(Vm) +
C

2
(Vsh + Vm)2 − 1

2
Eshφ

2
sh −

1

2
Emφm

2 (1)

+ LD(φ0, V0).

Here Tm(Vm) (Tsh(Vsh)) is the generalized kinetic energy part of the response of the meander (shunt), Em (Esh) is
the inductive energy of the meander (shunt), and LD(φ0, V0) is the device Lagrangian which also depends on the
internal degrees of freedom (phases) of the device. In the BCS theory, the energy of a superconducting wire remains
practically equal to its value at ω = 0, EL, at all frequencies ω . ∆ where ∆ is the superconducting gap. Its small
frequency-dependent part is a function of the dimensionless parameter V/∆:

T = ELf(V/∆) = (1/16)(V/∆)2 +O((V/∆)4)
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Figure 2: Simplified circuit diagram of the measurement setup. The microwaves at ω2 are transmitted through the microstrip
line coupled to the “LC-resonator + CPT” circuit. This signal is amplified, mixed down to an intermediate frequency ω1 − ω2,
and digitized by a fast digitizer (ADC). The second channel of the ADC is used to digitize the signal from an additional mixer
(M2), which provided the reference phase ϕ0 (see the text). The gate voltage Vg is applied to the capacitor Cg using a heavily
filtered DC line.

This equation implies that at low frequencies, the wire impedance acquires, in addition to the kinetic inductance, a
small capacitive component C ′ = EL/(8∆2) (these capacitances are shown in Fig. 1b by dashed lines). At relevant
frequencies (˜10 GHz), the capacitive part of the wire impedance is 100 times greater than its inductive part. However,
we cannot ignore this capacitance because it determines the frequency of the second mode in the LC-resonator loop
(see below).

We shall assume that the device Lagrangian is given by the sum of the Josephson and electrostatic energies:

LD(φ0, V0) =
1

2

∑
i,j

CijViVj +
∑
i,j

Jij cos(φi − φj − Φij) (2)

Here phases φi and corresponding potentials Vi describe both the internal degrees of freedom of the device and the
shunt phase, Cij and Jij are the matrices of capacitive and Josephson couplings between superconducting wires,
respectively.

Because the potential energy of the shunt is much greater than that of the device, the effect of the device on the
LC-resonator loop can be treated as a small perturbation. In the absence of the device, the LC-resonator loop has two
modes: the harmonic oscillation of the total phase φsh + φm with frequency ω0 =

√
1/L′C where L′ = E−1

m + E−1
sh ,

Eshφsh = Emφm, and the second mode with φm+φsh ≈ 0. Because the large capacitance C does not participate in the
second mode, the frequency of this mode, ωp, is determined by the superconducting gap, the only energy scale in this
case: ωp ∼ ∆. We shall assume that ∆� ω0 so both real and virtual excitations of this mode can be neglected as well
as the contribution of the capacitances C ′sh and C ′m to the effective capacitance C of the first mode. Note, however,
that the virtual processes involving the second mode are small only in ω0/∆ and might not be completely negligible
in a realistic situation. Another important constraint on the experimental parameters comes from the condition that
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the zero point phase fluctuations of the second mode have to be small:
〈
δφ2
〉

= ωp/2Esh = (ωp/∆)Rsh/RQ where

Rsh is the shunt resistance in the normal state and RQ = h/e2 is the resistance quantum. This translates into a
bound on the weakness of the LC-resonator - device coupling. In the case of the device studied in this work, these
fluctuations were

〈
δφ2
〉
≈ 0.05 � 1. If the effects of the second mode can be neglected, there is only one relevant

degree of freedom, the phase across the device φ0. The effective Lagrangian that describes the remaining degrees of
freedom is reduced to

Leff =
CL
2
V 2

0 −
1

2
EL(φ0 − φB)2 + LD(φ0, V0) (3)

with CL = C(1 + Esh/Em)2 and

EL = Esh(1 + Esh/Em). (4)

Fluctuations of the phase φ0 in the low-energy states of the oscillator mode are very small:〈
(φ0 − φB)2

〉
= A2(2n+ 1)� 1

A2 =
ω0

2EL

where n is the quantum number of the oscillator states. This allows one to replace the solution of the full problem by
the solution of the simplified model in which we expand the interaction term in small phase fluctuations.

It will be more convenient to use the Hamiltonian formalism in which the conjugated degrees of freedom are phases
and charges (e.g. the charge q0 is conjugated to the phase φ0). The total Hamiltonian is the sum of three parts, the
Hamiltonians of the LC-resonator (HR), device (HD), and interaction between them (Hint) :

HR =
ω2

0

2EL
q2
0 +

1

2
EL(φ0 − φB)2 (5)

Hint = C−1
L

∑
i,j>0

q0C0jC
−1
ji (qi − ni)−

∑
i

Ji0 cos(φ0 − φj − Φ0i) (6)

HD =
1

2

∑
ij>0

(qi − ni)C−1
ij (qj − nj)−

1

2

∑
ij>0

Jij cos(φi − φj − Φij) (7)

Here ni are the offset charges on superconducting islands, Φij are phases induced by the magnetic flux Φ,
∑

Φij =

2πΦ/Φ0. The coupling to the inductor charge fluctuations contains the inverse of the capacitance matrix (∼ C−1
L )

and thus is very small. Thus, even though the charge fluctuations across the shunt are not small,〈
q0

2
〉

=
1

4A2
(2n+ 1)� 1,

their effect on the coupling can be treated perturbatively. In the leading order in the interaction, we need to keep
only two types of terms. The first type is quadratic in phase φ0 and diagonal in the basis of resonator states. The
second type is linear in φ0 and off diagonal in this basis. The quadratic terms in the inductor charge are absent, so
the charge coupling appears only due to the off diagonal terms that are linear in q0. The Hamiltonian equivalent to
(3) becomes

Heff = (ω0 + 2A2Ξ)(a†a+ 1/2) + (AJ +
1

4A
Q)a+ h.c. (8)

Here a† (a) is the creation (annihilation) operator for the harmonic oscillations of the mode φ0 of the circuit, J, Q
and Ξ are operators acting on the device whose forms are obtained by expanding the interaction Hamiltonian

J =
dL

dφ0

∣∣∣∣
φ0=0

= −
∑
i

Ji0 sin(φj + Φ0i) (9)

Q = C−1
L

∑
i,j>0

C0jC
−1
ji (qi − ni) (10)

Ξ =
1

2

d2L

dφ2
0

∣∣∣∣
φ0=0

=
1

2

∑
i

Ji0 cos(φj + Φ0i) (11)
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Figure 3: (color online) Panel a shows the frequencies of three lowest-energy levels for the coupled system“CPT + LC-resonator”
plotted as a function of ng at a constant phase φB = 0.97π. The model parameters are EJ = h× 17.2 GHz, EC = h× 8.6 GHz
and EL = h×5650 GHz. In this very frustrated regime, the lowest level of the CPT crosses the lowest level of the LC-resonator
with approaching the charge degeneracy point ng = 0.5; this results in the avoided level crossing. Panel b shows the blow-up
of the theoretical curves in the region of avoided level crossing (black curves), together with the dependence of the color-coded
microwave amplitude S21 on the microwave frequency f and ng measured for one of the tested CPTs at φB = 0.97π. The
dependence of S21(f) at the charge degeneracy point ng = 0.5 is shown in Panel c.

We now estimate the scale of the frequency deviations induced by these perturbations. In the natural units of the
LC-resonator frequency ω0, the scales of the perturbing operators are AJ/ω0 ∼ EJ/

√
ω0EL, A−1Q/ω0 ∼

√
ω0/EL

and A2Ξ/ω0 ∼ EJ/EL. The operator Ξ is diagonal in the oscillator states, so it directly results in the frequency shift
δωΞ/ω0 ∼ EJ/EL. Because the non-diagonal elements affect the level of the LC-resonator only in the second order of
the perturbation theory, the effect of the J and Q operators depends on the gap between the levels in the combined
device+LC-resonator circuit. Far away from the full frustration and charge degeneracy point (φB = π, ng = 0.5), the
device is characterized by large EJ � ω0 and the energy levels are separated by large gaps, so the smallest gap is
due to the LC-resonator: δE = ω0. In this case the frequency shifts are δωJ/ω0 ∼ E2

J/(ω0EL) and δωQ/ω0 ∼ ω0/EL
respectively, which implies δωJ � δωΞ � δωQ. The effect induced by the phase and charge coupling grows when
the gap between the levels coupled by these operators becomes small, but the phase coupling remains larger than the
charge coupling for the devices with EJ � ω0. This increase of the frequency shift occurs, for instance, when the
device level crosses the first LC-resonator level.

We now write down the explicit equations for the Cooper pair box. In this case, the internal degrees of freedom are
limited to one phase, φ1, and the conjugated charge, q1. Assuming equal capacitances and Josephson energies of the
CPT junctions, we have

HCPT = 4Ec(q1 − ng)2 − EJ [cos(φ1) + cos(φ1 + φB)] (12)

J = −EJ sin(φ1 + φB) (13)

Q =
2C

CL
Ec(q1 − ng) (14)

Ξ =
1

2
EJ cos(φ1 + φB) (15)

Here we restored the physical energy units Ec = e2/2CJ . For practical computations it is sufficient to retain the first
few levels of the LC-resonator (a†a ≤ nmax = 3) and some number, nQ, of the charging states. The Hamiltonian
(8) becomes 3nQ × 3nQ matrix. Because the wave function of the charge decreases exponentially at large charges,

Ψ(q) ∼ exp(−
√
Ec/EJq

2), it is sufficient to consider nQ ∼ 10 for accurate computations. The straightforward
numerical diagonalization of the Hamiltonian (8) leads to the theoretical predictions that can be compared with the
data.

Our experimental situation corresponds to Ec ∼ 2}ω0 and EJ ∼ 4~ω0. In the absence of frustrations, the frequency
of the lowest CPT level is very high: ωp =

√
8EcEJ ∼ 10ω0. The frequency of the lowest CPT level decreases as the

magnetic field frustrates the Josephson coupling and/or with approaching the charge degeneracy (ng = 0.5). Figure
3a shows three low-energy levels of the system “CPT+LC-resonator” with the parameters typical for our experiment.
Note that for the studied circuits, only the combined effect of flux- and charge-induced frustrations brings the frequency
of the first device level below that of the LC-resonator, otherwise the device resonance frequency significantly exceeds
that of the LC-resonator even at full flux frustration (e.g. ω = 2Ec > 4ω0 at ng = 0).
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Figure 4: Dependence of the resonance frequency fr(ng = 0, φB) on the magnetic flux Φ, which controls the phase difference
across the CPT, φB = 2πΦ/Φ0. The solid curve shows the numerical simulation with the fitting parameters discussed in the
text. The inset shows the dependence of the microwave amplitude S21 on the frequency near the resonance at φB = 0 and
ng = 0.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Below we present the measurements of the amplitude S21 of the transmitted microwaves (unless otherwise specified)
at the base temperature T = 20 mK. Most of the data (with the exception of the data in Fig.3b,c and Fig.6) are
shown for only one representative device. The resonant dependence of S21 on the microwave frequency f = ω2/2π ,
measured for this device at φB = 0 and ng = 0, is shown in the inset to Fig. 4. The resonance frequency depends
periodically on ng and φB ; for example, the dependence fr(ng, φB) measured at ng = 0 is shown in Fig. 4. The
period in charge is ∆ng = 2e at the base temperature (see Fig.5); it changes from 2e to e at higher temperatures
(>300 mK) due to the presence of thermally excited quasiparticles (data not shown). Note that the total time of
acquisition for the data shown in Fig.3b was approximately 20 minutes; over longer time intervals, the periodicity of
fr(ng, φB) might be disrupted by the motion of non-equilibrium quasiparticles to/from the CPT island (the so-called
“quasiparticle poisoning”18) or other types of charge fluctuations21. The high stability of the charge on the CPT island
indicates that (a) the combination of a larger superconducting gap of the CPT island and its relatively large charging
energy protects the CPT from quasiparticle poisoning, and (b) the double-wall rf -tight sample box shields the device
from stray high-energy photons. The microwave photon energy Eph ≈ h × 7 GHz is insufficiently large to excite the
CPT at ng = 0: indeed, according to our simulations, the lowest excitation frequency for this device exceeds 30 GHz
even at full flux frustration (Φ/Φ0 = 0.5). In this case the variation of the resonance frequency fr with magnetic flux
reflects the φB-dependence of the CPT impedance in its ground state.

The dependences of the resonance frequency on ng are illustrated by Figs. 5(a-e), where the color-coded microwave
amplitude S21 is plotted versus f and ng for several values of the magnetic flux in the device loop. The black curves
in Fig. 5 show the results of fitting the experimental data with our numerical simulations. All these curves were
generated with the same set of fitting parameters: EC = h × 16 GHz, EJ = h × 32 GHz and EL = h × 5720 GHz
(note that not only the amplitude of the resonance frequency modulation, but also the absolute values of fr are
pre-determined by these parameters). The fitting procedure is very sensitive to the choice of these parameters: we
believe that they are determined with an accuracy better than 10%. The extracted charging energy coincides (within
5% accuracy) with an estimate of EC based on the junction area, the specific geometrical capacitance for Al tunnel
junctions (50 fF/µm2, see e.g,.22), and the electronic capacitance of Josephson junctions, Ce = 3/16(RQ/R)e2/∆ (0.3
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fF at R = 3 kΩ)23,24. The Josephson energy estimated on the basis of the Ambegaokar-Baratoff relationship25 using
the normal-state resistance of a test junction fabricated on the same chip is approximately 40% greater than the fit
value of EJ .

Generally, one expects that Josephson circuits can be accurately described by the Hamiltonian consisting of Joseph-
son and charging energies (cf. Eq.2) only if all energy scales are much smaller than ∆. For frequencies ω ∼ ∆/~
the Josephson coupling becomes frequency dependent, whilst at higher frequencies ω > 2∆/~ it is purely dissipative.
This should significantly affect the quantum processes with energies ω ∼ ∆/~ and even more so - the virtual processes
involving higher energy excitations (such as charge fluctuations on the CPT island by values greater than 2e). Away
from full frustration, the energy of the CPT excited state is of the order of Josephson plasma frequency ≈ 3.2K, which
is comparable to ∆. Thus, the excellent agreement between the experimental data and numerical modeling, observed
over the whole range of ng and φB , is quite surprising.

It is worth noting that the circuit modeling based on the numerical diagonalization of the circuit Hamiltonian is
essential for fitting the data for devices with EJ/EC ∼ 2. For example, the analytical solution for the Josephson
inductance in the CPT ground state, calculated within the two-level approximation (cf. Eq. 4 in Ref.9), overestimates
the amplitude of the fr (ng) dependence at small flux frustrations by almost an order of magnitude. The latter solution
provides more accurate fitting of the experiment at larger frustrations (φB ∼ (0.8 − 9)π), but becomes inadequate
again at φB > 0.94π when the avoided level crossing is observed.

The evolution of these dependences reflects the modification of the CPT spectrum with ng and φB . For a small
phase difference φB (Figs.5a-b), the lowest CPT excitation frequency well exceeds the microwave frequency (which is
close to the resonance frequency of the LC-resonator), and the CPT remains in its ground state for all ng including
the charge degeneracy point (ng = 0.5). In this regime, the dependences S21(f, ng) mostly reflect the variations of the
CPT impedance with ng in the CPT ground state. With an increase of frustrations, the shape of the fr (ng) curves
becomes more complicated. Our numerical simulations show that the entanglement of the device and resonator states
becomes important when the lowest CPT level approaches the lowest resonator level at ng = 0.5 even if it has not
crossed it yet (cf. Fig.5c at φB = 0.9π). Two comments are in order here. First, although the fr (ng) dependence in
Fig. 5c qualitatively resembles the solution within the two-level aproximation9, the quantitative agreement even at
this strong frustration is absent. Second, the fr (ng) dependence similar to the one shown in Fig. 5c was observed
at full frustration in experiment17 for much lower resonance frequencies of the tank circuit. The authors of work17

interpreted their result as the evidence for non-equilibrium quasiparticles. In contrast, we were able to quantitatively
describe the data by numerically solving Hamiltonian (8,12) that does not involve quasiparticles.

Finally, with further approach to full frustration (φB ≥ 0.94π, Figs. 5d,e), the CPT excitation frequency becomes
smaller than the resonance frequency of the LC-resonator, and the shape of the fr (ng) dependences abruptly changes:
they are strongly affected by the avoided level crossing. The S21(f, ng) plots in this regime consist of two sets of
curves. The lower set of curves corresponds to the lowest energy level of the combined system “CPT + LC-resonator”
(this level coincides with the CPT lowest level when approaching the charge degeneracy points, i.e. far away from the
resonance frequency of the LC-resonator). The upper set of curves corresponds to the first excited level of the system
“CPT + LC-resonator”: when approaching the charge degeneracy point, this level descends from higher energies to its
lowest position at ng = 0.5. The visibility of the upper set of curves depends on the proximity between the CPT and
LC-resonator levels. Indeed, if the energy of the CPT resonance at ng = 0.5 is much lower than the first LC-resonator
level, the upper-curve “cone” is very sharp, and the corresponding microwave resonance is smeared even for small
deviations of ng from 0.5 (this case is illustrated by Figs. 5d,e). On the other hand, the “cone” becomes broader when
the intersecting CPT and LC-resonator levels are close to one another: in this case illustrated by Fig. 1b, we were
able to follow the upper set of curves over the frequency range of ˜15 MHz.

For both devices, whose dependences S21(f, ng) are shown in Figs. 3 and 5, we observed a double-resonance
structure at full frustration and charge degeneracy (Figs. 3b,c and 5e). The second (lower-frequency) resonance
appears as a “shadow” of the resonance observed at ng = 0. The appearance of this resonance, much weaker than that
at ng = 0, implies that there are fluctuations of the island offset charge ±e which are fast at the measuring time scale
˜0.1 s. These fluctuations change the effective ng from 0.5 to 0. We attribute these fluctuations to the non-equilibrium
quasiparticles moving between the CPT island and the leads. At ng = 0.5, the energy of a quasiparticle on the island
exceeds the energy of quasiparticles in the leads by δ∆− (1/2)EC . Here δ∆ is the difference between superconducting
gaps in the island and the leads due to the difference in the thicknesses of these Al films; we estimate δ∆ to be
˜kB × 0.3K. In our devices, the probability of these fluctuations is small (the amplitude of the ng = 0 resonance is
much greater than that of its “shadow” at ng = 0.5), which suggests that the quantity δ∆ − (1/2)EC in our devices
is positive (albeit small).

To evaluate the charge sensitivity δQ of the CPT we used the method developed in Ref.26. In addition to applying
a DC gate voltage to tune the CPT to an optimal operating point, a sinusoidal signal at frequency 2 MHz was applied
to the gate electrode; its amplitude corresponded to the charge variations of 0.07erms on the CPT island. Due to
the amplitude modulation of the transmitted probe signal, two satellite peaks separated by 2 MHz from the main
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Figure 5: The color-coded plots of the microwave amplitude lS21l versus the microwave frequency f and the charge ng induced
on the CPT island by the gate voltage. The phase difference across the CPT was controlled by the magnetic flux Φ in the
device loop: (a) Φ/Φ0 = 0.29 , (b) Φ/Φ0 = 0.375, (c) Φ/Φ0 = 0.45, (d) Φ/Φ0 = 0.47, (e) Φ/Φ0 = 0.5. The solid curves show
the numerical simulations with the fitting parameters discussed in the text.

probe-frequency peak appeared on the transmitted microwave spectrum. The probe signal frequency was set at or
near the CPT + LC resonance. The signal-to-noise ratio (SNR) of the satellite peaks obtained with a resolution
bandwidth of 122 Hz is shown as a function of the magnetic flux in Fig. 6. The SNR maximum is observed when the
CPT excitation frequency approaches the LC resonance; this regime corresponds to the ng-dependence of the CPT +
LC resonance shown in Fig. 5a. Though the avoided crossing between the lowest CPT and LC resonator levels results
in a larger amplitude of the fr(ng) variations near full frustration (Figs. 5c-e), the SNR drops in this regime because
of a significant broadening of the resonances. We observed that, similar to the results of Ref.26, the SNR reaches its
maximum at a probe microwave power of –76 dBm (the inset in Fig. 6), and drops at higher powers where the rf-
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amplitude exceeds the gap voltage of the CPT. The maximum charge sensitivity in our set-up is δQ = 7×10−5e/
√
Hz

; it is limited by the preamplifier noise and thus can be further improved by using a quantum-limited preamplifier.

Figure 6: Dependence of the signal-to-noise ratio (blue circles) and the resonance frequency of the coupled CPT + LC resonator
fr(ng = 0) (red squares) on the magnetic flux Φ measured at a microwave power of -80 dBm. A 2-MHz signal with amplitude
corresponding to 0.07erms charge variations on the CPT island was applied to the gate of the CPT. Solid curves are guides for
the eye. The inset shows the signal-to-noise ratio (blue circles) and charge sensitivity (red squares) as a function of microwave
probe power.

The CPT can be used to probe charge fluctuations in its local environment. Figure 7b shows the time dependence
of the phase ϕ of transmitted microwaves when the microwave frequency is tuned to the resonance of the “CPT
+ LC-resonator” circuit. The telegraph noise was measured at full flux frustration (φB = π) when an avoided
crossing between the CPT and LC-resonator levels was observed, but relatively far from the charge degeneracy point
(ng = 0.17). The amplitude of the observed telegraph noise corresponds to the charge fluctuations ∆q ≈ 0.05e due to
coupling of the CPT island to a single charge fluctuator in its environment. The time resolution of these measurements
is limited by the responce time of the LC-resonator, approximately 1 µs.

V. CONCLUSIONS.

We have performed a detailed analysis of the microwave response of Cooper pair transistors with EJ/EC ∼ 1.5− 3
coupled to an LC-resonator as a function of the magnetic flux and the gate voltage. Away from the full frustration in
flux and charge the excitation frequencies of the Cooper pair transistor are far away from the LC-resonator frequency.
In this regime the modulation of the resonance frequency of the coupled system induced by the CPT can be described
in terms of the modulation of the effective CPT inductance. Close to the full frustration the excitation level of the
Cooper pair transistor approaches and eventually crosses the LC-resonator excitation level; this results in a complex
dependence of resonance frequency of the coupled system on the flux and gate voltage. In all regimes the dependence
of the resonance frequency of the system “CPT + LC-resonator” on ng and φ is very well described by the results
of the numerical diagonalization of the full Hamiltonian of the coupled system. High sensitivity of the resonance
frequency to ng provides a tool to measure charge fluctuations in the environment with high accuracy and short time
resolution.

We would like to thank J. Aumentado and V. Manucharyan for helpful discussions. We acknowledge the support
from the DARPA (under grant HR0011-09-1-0009), ARO (W911NF-09-1-0395), and NSF (NIRT ECS-0608842).
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Figure 7: Panel a: Dependence of the phase ϕ of the transmitted microwaves on the microwave frequency near the resonance of
the “CPT + LC-resonator” circuit. The CPT is in a strongly frustrated regime (φB = π, ng = 0.17), when an avoided crossing
between the CPT and LC-resonator levels is observed. The measurement time for each experimental point is 24 ms. Panel b:
The microwave phase measured with the same averaging time (24ms/point) at a fixed microwave frequency f = 6.9905 GHz
over a time period of 100 s. The full range of phases from −150 to +150 corresponds to the offset charge variation by 0.05e.
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