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Abstract

The superconductor TmNi2B2C possesses a significant four-fold basal plane anisotropy, leading

to a square Vortex Lattice (VL) at intermediate fields. However, unlike other members of the

borocarbide superconductors, the anisotropy in TmNi2B2C appears to decrease with increasing

field, evident by a reentrance of the square VL phase. We have used Small Angle Neutron Scattering

measurements of the VL to study the field dependence of the anisotropy. Our results provide a

direct, quantitative measurement of the decreasing anisotropy. We attribute this reduction of the

basal plane anisotropy to the strong Pauli paramagnetic effects observed in TmNi2B2C and the

resulting expansion of vortex cores near Hc2.

PACS numbers: 74.25.Uv,74.70.Dd,61.05.fg
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I. INTRODUCTION

The vortex lattice (VL) symmetry and orientation in clean type-II superconductors de-

pends sensitively on the host material anisotropy, vortex density and temperature, frequently

leading to rich phase diagrams. As a result, VL studies can be used as a sensitive probe of

the anisotropy of the superconducting state.

In superconductors with a sufficient four-fold basal plane anisotropy, either due to the

pairing symmetry or the Fermi velocity, the VL undergoes a successive series of generic

symmetry and orientational transitions as the vortex density is increased:1,2 At low fields a

distorted hexagonal VL is observed, oriented with the unit cell diagonal along a crystalline

high symmetry direction. As the field is increased the VL undergoes a first-order reorien-

tation and symmetry transition to a rhombic phase with the unit cell diagonal rotated 45◦

with respect to the hexagonal VL phase. Finally, upon further increase of the field, the

rhombic VL continuously transforms into a square symmetry. The transitions are driven

by the growing importance of the four-fold anisotropy of the vortex-vortex interaction as

the vortex density increases, explaining why further changes of the VL structure are usually

not observed once the square phase has been reached. There exists, however, two striking

exceptions to this behavior as seen in the superconductors TmNi2B2C and CeCoIn5.
3–7 In

both of these materials, the VL undergoes the normal progression of symmetry transitions

described above at low fields. However, the square phase VL is found to be reentrant, and

the VL undergoes the same sequence of transitions but in the reverse order as the field is

further increased. This indicates a reduction of the superconducting basal plane anisotropy

in these materials at high fields and is the main objective of this report.

In both TmNi2B2C and CeCoIn5 the superconducting state is strongly affected by Pauli

paramagnetic effects.5,7–9 Briefly, there is a significant spin-polarization of the unpaired

quasi-particles in the vortex cores, resulting in an increased amplitude of the modulation of

the magnetic field.10–13 With increasing field the vortex cores are also predicted to expand

and become more isotropic, leading to the reverse sequence of VL transitions.14,15

Here we present the results of small-angle neutron scattering (SANS) experiments to

directly measure the evolution of the basal plane anisotropy in the high-field square, rhombic

and hexagonal VL phases. This is possible by measuring a large number of higher order VL

reflections in a manner analogous to our previous study of non-magnetic LuNi2B2C (no Pauli
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paramagnetic effects and no reentrance of the square VL phase).16 Our measurements allow

a quantitative determination of the four-fold basal plane anisotropy and show a monotonic

decrease with increasing field.

II. EXPERIMENTAL

The sample was a single crystal of TmNi2B2C of mass 387 mg and dimensions 9.0 ×

8.0 × 1.0 mm3 with the c axis along the thin direction, grown by a high temperature flux

method and using isotopically enriched 11B to reduce neutron absorption.17 TmNi2B2C has

a superconducting critical temperature Tc = 11 K and a Néel temperature TN = 1.5 K below

which the Tm moments order antiferromagnetically (AFM).18–21 The sample was mounted on

an aluminium plate with the crystalline a axis vertical. The c axis is horizontal and rotated

by an angle Ω with respect to the applied magnetic field and the incoming neutrons as shown

in the inset to Fig. 1(a). The rotation (Ω) can favor a single VL domain orientation, thus

reducing complications to the data analysis resulting from overlapping peaks from different

domains while measuring higher orders of Bragg reflections. The SANS experiment was

carried out at the 30 m NG7 instrument at the NIST Center for Neutron Research, using a

neutron wavelength λn = 0.55 nm and a spread ∆λn/λn = 11% FWHM. A horizontal field

cryomagnet was used to reach the desired fields and temperatures. Measurements were done

at a temperature of 1.6 K and in a field range 0.2 ≤ µ0H ≤ 0.6 T. Preliminary measurements

were also carried out at the NG-2 SANS instrument at Oak Ridge National Laboratory and

at the D11 SANS at Institut Laue-Langevin.

Comparing the field dependence of the VL form factor (see Sect. III) for the first-order re-

flections to our previous measurements showed a perfect agreement,9 confirming that T > TN

as the AFM ordering of the Tm moments significantly affects the VL form factor and sup-

presses the Pauli paramagnetic effect.3 Vortex lattices were prepared by cooling through Tc

in a constant field (FC) and, in some cases, followed by a damped small-amplitude field oscil-

lations (FCO). Background measurements were measured at 14 K and were subtracted from

the foreground measurements. The diffracted neutrons were detected by a two-dimensional

3He position-sensitive proportional counter.
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III. RESULTS

Examples of the square, and the high-field rhombic and hexagonal VL phases observed in

TmNi2B2C are shown in Fig. 1. In this material the low-field hexagonal and rhombic lattices

occur below the convenient field range for SANS experiments. However, a hexagonal VL

have been observed at 2 mT by Bitter decoration.3,22 For all three cases shown in Fig. 1 the

measurements were extended to include as many higher-order reflections as possible within

reasonable count times. The square VL diffraction pattern in panel (a) was obtained at

0.2 T and shows Bragg reflections with scattering vectors given by qhk = (h2 + k2)1/2 q0,

where q0 = 2π(B/φ0)
1/2 and φ0 = h/2e = 2068 T nm2 is the flux quantum. Fig. 1(d) shows

the indexing of the peaks in one quadrant, with the remaining obtainable by symmetry.

The diffraction pattern in Fig. 1(a) was obtained with Ω = 10◦. Due to the very modest

ac-anisotropy of the extrapolated orbital upper critical field Γ = H⊥c
c2,orb/H

‖c
c2,orb ≈ 1.2 in

TmNi2B2C,
23 no distortion of the VL due to the rotation of the field away from the c axis

is detectable.

Increasing the field to 0.35 T causes the VL to change to a two-domain rhombic structure

as shown in Fig. 1(b) with the corresponding indexing in panel (e). The rhombic VL has

an opening angle β = 73.0◦ and scattering vectors qhk = (h2 + k2 + 2hk cos β)1/2 q0, where

q0 = 2π(B/φ0 sin β)
1/2. These measurements were done with Ω = 17◦, chosen to favor

one of the two VL domain orientations while at the same time keeping the distortion due

to the ac-anisotropy small. For this Ω the minority domain (red circles) is sufficiently

suppressed to allow a reliable measurement of the intensity of the higher order majority

domain (black circles) reflections. No measurable difference in the VL opening angle β was

observed between the two domains.

Finally, as the field is increased to 0.5 T, a distorted hexagonal VL was observed as

shown in Fig. 1(c) with the indexing in panel (f), and with an opening angle β = 56.1◦. The

magnitude of the scattering vector is given by the same expression as in the rhombic phase.

Note that equivalent scattering vectors were chosen as the unit vectors, leading to q11̄ being

slightly shorter than q10 as β < 60◦. However, this is merely a naming convention and will

not affect the analysis of the scattered intensity. The measurements were performed at a

field rotation Ω = 10◦. For the hexagonal VL orientation the two domains are orientated

equivalently with respect to the field rotation axis and are thus equally populated. A
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distorted hexagonal VL was also observed at 0.6 T (not shown) with an opening angle β =

56.3◦. However, at this field, no higher-order peaks were measurable due to the decreasing

scattered intensity with increasing scattering vector and applied field.

The diffraction patterns in Fig. 1 were obtained following a preparation method chosen

to produce the most ordered VL. Depending on the level and strength of vortex pinning

in the host material relative to the vortex-vortex interaction, the optimal preparation may

either be a field cooling (FC) procedure or a FC followed by a damped small-amplitude

field oscillation (FCO).24 While we found no difference between VLs prepared by the two

different methods at 0.2 T, the FCO procedure provided a substantially better ordered VL

at higher fields. This is seen in Fig. 2, which compares FC and FCO VL diffraction patterns

obtained at 0.5 T. It is likely that the VL disordering observed above 0.2 T in the FC

case is due to the crossing of VL symmetry phase transitions while cooling from T > Tc

to the measurement temperature of 1.6 K.3,22 Based on these findings, measurements were

performed following a FC at 0.2 T and following a FCO for 0.35 T and above. In all cases

where a FCO procedure was used, the initial amplitude of the damped field oscillation was

5% of the final field.

We now turn to measurements of the VL form factors which are the main focus of this

study. The form factor F (qhk) is the Fourier transform, at scattering wave vector qhk, of

the two-dimensional magnetic field modulation due to the VL. It is related to the integrated

reflectivity R, which is obtained by rotating and/or tilting the cryomagnet and sample such

that the VL scattering vectors cut through the Ewald sphere. Examples of rocking curves

obtained in this fashion are shown in Fig. 3. In contrast to other members of the borocarbide

superconductors such as LuNi2B2C,
16 the rocking curves in TmNi2B2C are found to be broad

and with asymmetric line-shapes, necessitating multi-function fits to accurately obtain the

integrated scattered intensity as shown for the (10)-peak. For the higher-order reflections

the line-shapes appear more regular, as seen for the (03)-peak, and can be fitted by a single

Lorentzian, although this may also be a result of poorer signal-to-noise. Broad VL rocking

curves, but with regular line shapes, were also found in other work, using TmNi2B2C single

crystals from a different source.25 It is possible that the present sample have more mosaicity

which can explain the asymmetric lineshape. Nonetheless, the current rocking curves are

still narrow enough to be easily measurable as shown in Fig. 3 and thus, the total scattered

intensity can be precisely determined for each VL reflection.
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With the strong scattering from the VL in TmNi2B2C it is necessary to consider whether

multiple scattering is affecting the measured intensities. This was discussed in detail by

Densmore et al. in the case of LuNi2B2C,
16 where it was shown that multiple scattering did

not pose a problem. In the case of TmNi2B2C, the integrated intensity is even stronger, but

since the rocking curve is also significantly broader, the fraction of the incident neutrons

scattered by the VL is ≤ 0.4%, which is almost identical to LuNi2B2C. We thus conclude

that the error in the measured intensities due to multiple scattering is insignificant.

The integrated intensity is divided by the incident neutron flux to yield the integrated

reflectivity

Rhk =
2πγ2λ2

nt

16φ2
0qhk

|F (qhk)|
2 , (1)

where γ = 1.913 is the magnetic moment of the neutron in nuclear magnetons and t is

the average sample thickness (differences in t due to the change in Ω are ≤ 3% and thus

insignificant). The intensity for each reflection is corrected for the angle at which it cuts

the Ewald sphere during the measurement of the rocking curve (Lorentz factor). Fig. 4

summarizes the measured VL form factors for all reflections and fields of 0.2, 0.35 and

0.5 T. For the two higher fields the intensities of equivalent reflections for the two domains

have been added to obtain scattering from all the vortices in the sample in order to compare

it directly to the square VL at 0.2 T.

IV. DISCUSSION

We will now discuss how the measured VL form factors can be used to study the evolution

of the superconducting basal plane anisotropy in TmNi2B2C. Qualitatively, a reduction of

the anisotropy with increasing field is directly evident from Fig. 4. For the square VL at 0.2 T

the form factors do not fall on a single curve, as expected for an isotropic superconductor, but

rather lie on or between two curves going through |F (qh0)|/H and |F (qhh)|/H , respectively.

As these two limiting curves are 45◦ apart, their separation is a measure of the four-fold basal

plane anisotropy. With increasing field we see that the separations between the form factors

along different directions decrease, indicating that the superconducting state becomes more

isotropic. However, the situation is complicated by the change in the VL symmetry, which

changes the position of the reflections with respect to the crystalline axes.

The curves in Fig. 4 are fits to the London model, extended by a Gaussian cutoff to take
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into account the finite vortex core size,16,26

FL(q) =
H

1 + (qλ)2
e−c(qξ)2 (2)

where λ and ξ are, respectively, the penetration depth and the coherence length while c is

a constant typically taken to be between 1/4 and 2.26 Using c = 1/2, the fitted values of

λ and ξ for the curves in Fig. 4, which correspond to crystalline high-symmetry directions,

are given in Table I. It is important to stress that the primary objective of the fitting is to

obtain an analytical expression for the VL form factor for each field and direction, and the

coefficients are not to be taken as accurate determination of λ and ξ. Nonetheless, Table I

shows that increasing the field from 0.2 to 0.5 T both the fitted values for the penetration

depth and the coherence length along the crystalline [110] direction increases, consistent

with a reduction of the field modulation and an expansion of the vortex core. The same is

seen for λ and ξ along [100] as the field is increased from 0.2 to 0.35 T.

At 0.2 T, a measure of the superconducting basal plane anisotropy is obtained from the

ratio (λ110/λ100)
2 = 1.34. We note that a very similar value is found for the coherence

length ratio (ξ110/ξ100)
2 = 1.31. At the higher fields however, the changing VL symmetry

causes the reflections to move. Notably, at the two higher fields there are only VL Bragg

peaks along one of the two crystalline high-symmetry directions ([100] for the rhombic VL

at 0.35 T; [110] for the hexagonal VL at 0.5 T). As a result it is not possible to directly

extract the superconducting basal plane anisotropy at the higher fields. In the following we

present a more careful analysis of the field dependence of the anisotropy.

As shown by Densmore et al.,16 a conceptually simple and model-independent method to

obtain a measure of the basal plane anisotropy is by a real space magnetic field reconstruction

using

B(r) =
∑

hk

F (qhk) e
iqhk·r. (3)

Since the SANS measurements only measure the absolute magnitude of the form factors,

this requires an assumption about the relative sign of the Fourier components F (qhk). In the

case of LuNi2B2C, a comparison to muon spin-rotation measurements showed that for fields

below ∼ Hc2/3 the form factors all have the same sign,16 in agreement with the prediction

of the London model as well as numerical results based on the Eilenberger equations.27 In

the case of TmNi2B2C the measured Hc2 = 0.75 T at 1.6 K is severely Pauli limited.28

Instead, we use the extrapolated orbital upper critical field Hc2,orb = 4.3 T,23 yielding
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an estimated upper limit of 1.4 T for the all-equal sign scheme. This is thus expected

to be valid for all the measurements in this report. Fig. 5(a) shows the real space field

reconstruction obtained from the measured form factors in an applied field of 0.2 T. The

accuracy of the reconstruction depends on the number of reflections included in the sum in

Eq. (3). In the present case, the magnitudes of the form factors for the (30), (31) and (32)-

reflections, which were the highest order peaks which could be measured, are less than 1 mT

and do not change the reconstruction to any significant degree. We note that the vortex

spacing d = 2π/q10 can be determined from the magnitude of the VL scattering vector,

which allows for a determination of the magnetic induction B = φ0/d
2 = 0.216 T in good

agreement with earlier reports.9 That B > µ0H is due to the paramagnetism of TmNi2B2C

for T > TN . The magnitude of the field modulation ≈ 130 mT or 0.6B is much larger than

the 10% observed in non-magnetic LuNi2B2C in an applied field of 0.5 T. Extrapolating the

LuNi2B2C form factors to a field of 0.266 T yields a modest estimate for the increase of

the field modulation: exp[2π2(8.22 nm)2 (0.5 T − 0.266 T)/φ0] = 1.16.16 This is still much

smaller than the 60% observed here for TmNi2B2C. This difference is a manifestation of the

strong Pauli paramagnetic effects, which leads to a significant polarization of the unpaired

quasi-particle spins in the vortex cores of TmNi2B2C and creates a periodic magnetization

that adds significantly to the field modulation from the circulating supercurrents.

From the field reconstruction, one can calculate the current distribution by µ0J = ∇×B,

which contains contributions from both the supercurrents and the periodic magnetization and

which can not be easily deconvoluted.10,12 Fig. 5(b) shows |J(r)| as a function of the distance

from the vortex core along the VL nearest neighbor direction ([100]) and the unit cell diagonal

([110]). The distance from the vortex center to the peak of the current density provides a

measure of the core size ξJ ,
27,29 which is seen to differ for the two directions shown. The inset

to Fig. 5(b) shows the vortex core size in the plane perpendicular to the field, which displays

a clear four-fold anisotropy. Specifically, we find ξ110J = 12.4 nm and ξ100J = 11.7 nm. The

ratio between these two values is 1.06, slightly smaller than the 1.08 found for the square VL

in LuNi2B2C.
16 Since the VL at 0.2 T is close to the onset of the square-to-rhombic transition

in TmNi2B2C, the measured anisotropy provides an estimate of the critical value necessary

for stabilizing a square symmetry. Comparing the values for ξJ to the London model fits at

0.2 T listed in Table I, one finds a substantial difference, unlike our earlier measurements on

LuNi2B2C where the two were found to be in excellent agreement.16 A theoretical analysis
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of the interdependence of the superconducting and magnetic properties of TmNi2B2C by

Jensen and Hedeg̊ard gives an estimate of the orbital critical field Hc2,orb = 4.3 T at 1.6 K,23

yielding a zero-field coherence length of 8.75 nm. However, this ignores the contribution to

the core size from the spin-polarized quasi-particles in the vortex core and we thus expect

that ξJ obtained from the field reconstruction to be a more accurate measure of the actual

vortex core size. It should also be noted that the anisotropy of ξJ is smaller than the ratio

from Table I, again illustrating that while ξ and ξJ are related they are not identical.

While a field reconstruction at higher fields would be desirable, it is not possible to

measure enough higher-order reflections necessary to obtain this with satisfactory accuracy.

This is the case particularly in the hexagonal VL phase. Instead we return to the London

model fits in Fig. 4 to obtain a quantitative, symmetry independent measure of the field

dependence of the superconducting basal plane anisotropy in TmNi2B2C. The fits indicate

that the VL form factor along any direction in the basal plane may be parameterized by

F (φ)

H
=

1

1 + [q λ(φ)]2
e−c[q ξ(φ)]2 , (4)

where φ is the angle relative to the crystalline [110]-direction. This yields an expression for

the φ-dependence of λ and thus an angle dependent anisotropy ratio

(

λ110

λ(φ)

)2

=
λ2
110 q

2 F (φ)

e−c[q ξ(φ)]2 − F (φ)
. (5)

This ratio is expected to exhibit a four-fold symmetry

(

λ110

λ(φ)

)2

= 1 + a
1− cos 4φ

2
, (6)

where the parameter a is the anisotropy amplitude. As noted earlier, the fitted values for λ

and ξ given in Table I show (λ110/λ100)
2 ≈ (ξ110/ξ100)

2, indicating that λ(φ) and ξ(φ) have

the same anisotropy amplitude. From Eq. (6) we obtain

1

[λ, ξ]2(φ)
=

1

[λ, ξ]2110
+

(

1

[λ, ξ]2100
−

1

[λ, ξ]2110

)

1− cos 4φ

2
. (7)

In Fig. 6 we show the anisotropy ratio obtained by Eq. (5) using the measured VL form

factors at 0.2 T and ξ(φ) calculated using Eq. (7) and the values in Table I. The data are

well fitted by Eq. (6) yielding an anisotropy amplitude a = 0.368± 0.014 in good agreement

9



with the result based solely on the form factors corresponding the VL Bragg peaks on the

high symmetry [110] and [100] directions (Table I).

Having demonstrated that the approach above yields a consistent results for the anisotropy

we now apply it to the 0.35 and 0.5 T measurements. Here we simultaneously adjust the

value of a used to calculate ξ(φ) in Eq. (5) and the fitted value obtained by Eq. (6) to

ensure a self consistent result. This approach allows a determination of the anisotropy

amplitude even in cases where there are only VL Bragg reflections along a single crys-

talline high symmetry direction ([110] or [100]). Figure 6 shows the results of this analysis,

providing a quantitative measure of the monotonically decreasing superconducting basal

plane anisotropy with increasing field. This is in stark contrast to the behavior found for

non-magnetic LuNi2B2C, where a similar analysis on the data from from Ref. 16 yields

a = 0.456± 0.060 at 0.5 T increasing slightly to 0.492± 0.008 at 1.0 T.

Our results provide a direct confirmation of theoretical predictions that in superconduc-

tors with strong Pauli paramagnetic effects, paramagnetic depairing causes the vortex cores

to expand and also become more isotropic as one approach Hc2.
14,15 One would therefore also

expect that the anisotropy of TmNi2B2C will increase below the antiferromagnetic ordering

at TN = 1.5 K where the Pauli paramagnetic effects are known to decrease.3

V. CONCLUSION

In summary, we have investigated the field dependence of the superconducting four-

fold basal plane anisotropy of TmNi2B2C. We have observed and quantified the decreasing

anisotropy with increasing applied field, which provides an explanation of the reentrant

square VL phase. The decreasing anisotropy is attributed due to the strong Pauli para-

magnetic effects observed in TmNi2B2C, leading to an expansion of the vortex cores near

Hc2. We believe that a similar mechanism is responsible for the reentrance of the square VL

phase observed in CeCoIn5.
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FIG. 1. (Color online) SANS diffraction patterns showing the square, rhombic and hexagonal VL

phases in TmNi2B2C at 1.6 K for applied fields of 0.2 T (a), 0.35 T (b) and 0.5 T (c) respectively.

The images are obtained by summing measurements at multiple rotation and tilt angles to satisfy

the Bragg condition for the different reflections. The scattered intensity is shown on a logarithmic

false color scale to make strong and weak reflections simultaneously visible. The orientation of the

crystalline axes and the magnetic field is shown in the inset to panel (a), where Ω is the angle

between the field and the c axis. The indexing of the VL Bragg peaks are shown for one quadrant

in the schematics in panels (d) to (f) with the size of the circles indicating the intensity. For the

rhombic and hexagonal VL phases two domain orientations with an opening angle β are observed,

as shown by the black and red circles in (e) and (f). With increasing field the VL Bragg reflections

move to longer scattering vectors q and decrease in intensity, making fewer of them visible.
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FIG. 2. (Color online) Comparison of VLs at 0.5 T (Ω = 10◦) and 1.6 K. The diffraction patterns

were obtained directly following a field-cooling procedure (FC) and after the application of a

damped field oscillation with an initial amplitude of 25 mT (FCO). No higher order VL reflections

were observed due to shorter count times as compared to Fig. 1(c).
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FIG. 3. Rocking curves for the square VL (10) and (03) Bragg reflections at 0.2 T and 1.6 K

corresponding to Fig. 1(a) and (d). Note the different axes for the two reflections. Each angle was

counted for 9 min. For the (10) reflection the error bars are smaller than the symbol size. The (10)

reflection is fitted with a double Lorentzian function due to the irregular shape with a shoulder

left of the main peak. The (03) reflections is fitted by a single Lorentzian.
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FIG. 4. (Color online) VL form factor divided by the applied field versus scattering vector q for all

measured reflections at 0.2, 0.35 and 0.5 T. For all fields and reflections the error bars are smaller

than the symbol size. The curves are fits to the London model as described in the text. Full

and dashed lines correspond to VL Bragg peaks along the crystalline [100] and [110] directions

respectively.
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FIG. 5. (Color online) Real space magnetic field reconstruction from the measured VL form factors

at µ0H = 0.2 T and T = 1.6 K. (a) Contour plot of the magnetic field, showing four VL unit cells

with a vortex spacing of 98 nm, corresponding to a magnetic induction B = 0.216 T obtained from

the magnitude of the scattering vector. Note that the image is rotated 45◦ with respect to Fig. 1

such that {110} directions are horizontal/vertical. The lowest contour corresponds to B = 198 mT

and the contour spacing is 15 mT. (b) Current density as a function of distance from the vortex

center along the VL nearest-neighbor direction ([110]) and the unit cell diagonal ([100]). The inset

shows the value of ξJ (distance of maximum current) in the basal plane. To emphasize the fourfold

anisotropy, a circle with radius ξ100J is shown by the dashed line.
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FIG. 6. (Color online) (a) Angle dependence of the superconducting basal plane anisotropy ratio

calculated from the VL form factors as described in the text. For each field the curves show a fit

to the anisotropy function given in Eq. (6). (b) The same results in polar coordinates.

TABLES

[110] [100]

λ (nm) ξ (nm) λ (nm) ξ (nm)

0.2 T 64.1 6.28 55.3 5.49

0.35 T 59.3 6.34

0.5 T 74.5 6.73

TABLE I. Coefficients of London model fits (c = 0.5) shown in Fig. 4 in the case where the VL

Bragg peaks are along the crystalline [100] or [110] directions.
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