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The paramagnetic spin-disorder resistivity (SDR) of transition-metal ferromagnets Fe, Co, Ni,
ordered transition metal alloys Ni3Mn and Fe3Si as well as Ni2MnX (X=In,Sn,Sb) Heusler alloys
is determined from first principles. SDR is evaluated similar to the residual resistivity by using
the disordered local moment (DLM) model combined with the Kubo-Greenwood linear response
calculation. The electronic structure is determined within the tight-binding linear muffin-tin orbital
method and the coherent potential approximation (CPA) applied to the DLM state. We also es-
timate the temperature dependence of the resistivity below the Curie temperature using a simple
model. The results agree well with the supercell Landauer-Büttiker calculations and, generally, with
experimental data. For the Ni2MnSb Heusler alloy it is necessary to include substitutional disorder
of B2-type to explain the experimental data.

PACS numbers: 71.23.-k,72.10.Di,72.15.-v,75.50.Bb,75.50.Cc

I. INTRODUCTION

Temperature dependence of the resistivity is one of the basic properties of a metal. In normal metals and alloys
without an external magnetic field, the dominant mechanisms contributing to the resistivity are (i) the residual
resistivity due to the scattering of conduction electrons on impurities and other structural defects ρimp, and (ii)
phonon scattering ρph. In ferromagnetic metals there is an additional scattering mechanism due to (iii) magnetic
fluctuations ρmag, which usually reach their maximum close to the Curie temperature (Tc).

1–3 The latter, spin-
disorder part of the resistivity is the subject of this paper. The well-understood resistivity due to phonon scattering4

depends linearly on temperature T above the Debye temperature and usually even below it down to fairly low
temperatures. The resistivity due to the phonon mechanism has been calculated from first principles for a number
of metals, and good agreement with experiment was obtained.5 On the other hand, first-principles calculations of the
spin-disorder part of the resistivity have not been attempted until recently. Theoretical treatment6–9 based on the s-d
model Hamiltonian predicts a quadratic temperature-dependence of the resistivity ρ for low temperatures, a constant,
temperature-independent ρ above Tc, and a ρ ∝ [1−M2(T )/M2

0 ] behavior at intermediate temperatures (M(T ) and
M0 denote the magnetization at temperatures T and zero, respectively).
The above simple desciption of the temperature-dependent resistivity is often used in the experiment. The resistivity

can be written more generally as

ρ(T ) = ρimp + ρee(T ) + ρph(T ) + ρmag(T ) + ρmix(T ) , (1)

where ρimp, ρph, and ρmag were discussed above. The second term, ρee, the contribution due to electron-electron
correlations is neglected here as in the most other first-principles studies. In some cases, e.g. in rare-earth metals,
the electron correlations are relevant to the electronic structure and modifications are needed. We refer the reader to
our recent paper on the subject.10 Electron correlations are also important in transport studies for low-dimensional
systems and at low temperatures (weak localization and conductance fluctuations).11 The last term, ρmix, contains
deviations from the Matthiessen rule, i.e., from the simple sum of above described contributions. For example, it
can contain interference terms such as magnon-phonon scattering. Also, the temperature dependence at intermediate



2

temperatures can be affected by deviations from Matthiessen’s rule due to the presence of two spin channels for
conduction.12 The spin-disorder part of the resistivity can also depend on magnetic short-range order, particularly
in the critical region around Tc.

9 We mention that we have also neglected the effect of temperature on the electronic
structure which, due to smearing out of the Fermi distribution, may slightly reduce values of local moments and
thus the spin-disorder scattering strength. A good agreement between the theory and experiment justifies, at least a
posteriori, the neglect of ρee and ρmix contributions for systems studied here.
The saturated magnetic resistivity above Tc corresponds to the limit of vanishing spin-spin correlations and it is

usually called the spin-disorder resistivity (SDR). It can often be cleanly extracted from experimental measurements
taken to sufficiently high temperatures, where the temperature dependence is linear and largely due to phonons.
Extrapolation of the phonon contribution to T = 0 and subtraction of the residual resistivity gives a reasonable
estimate of the experimental value of the SDR to which the theory can be compared.13

Quantitative description of the SDR using first-principles calculations requires a consistent averaging procedure.
One option is to perform a direct averaging of the Landauer-Büttiker (LB) conductance over spin configurations in
supercells; this has been done for Fe and Ni16,17 and for heavy rare-earth metals10. Another option is to use the
disordered local moment (DLM) method,14 which approximates the paramagnetic state as an uncorrelated ensem-
ble of randomly oriented spins and solves the electronic structure problem in the coherent potential approximation
(CPA). The Kubo-Greenwood linear response calculation, with proper inclusion of vertex corrections, can then be
performed.19,20 A semi-empirical approach18 to calculate the SDR was implemented by assuming a quadratic tem-
perature dependence and calculating the parameters from first principles.
In Ref.15 the SDR was calculated using a hybrid method, in which the electronic structure is described by DLM, and

the SDR is calculated in a multilayer geometry as an extrapolation from large values of the imaginary part of energy
(1 and 2 mRy) without including vertex corrections. The resulting SDR of Fe and Co was strongly overestimated.
In this paper the SDR is calculated using the DLM method and the standard linear response technique applied

in the bulk unit cell with the inclusion of vertex corrections. We consider the transition metals bcc-Fe, fcc-Ni, and
fcc-Co, the ordered Ni3Mn (Cu3Au structure) and Fe3Si (D03 structure) as well as the Heusler alloys Ni2MnX, where
X=In, Sn, and Sb. The results are compared with experiment and, when available, with first-principles calculations
using direct averaging over spin-disordered supercells. Excellent agreement is found between the DLM and supercell
methods, as well as with experimental SDR values. The coefficient of the empirical T 2 term for the total resistivity
is also calculated for Fe and Ni2MnSn and is found to agree well with fits to experimental measurements.

II. FORMALISM AND COMPUTATIONAL DETAILS

The electronic structure calculations were performed using the scalar-relativistic tight-binding linear muffin-tin
orbital (TB-LMTO) scheme21 and the local density approximation (LDA). For the parametrization of the local
density functional the Vosko-Wilk-Nusair exchange-correlation potential23 was used. The effect of disorder (the DLM
model) is described by the CPA formulated in the framework of the TB-LMTO Green’s function method.22 The same
atomic sphere radius was used for all the constituent atoms in the case of ordered and Heusler alloys, and lattice
constants were taken from experiment.
In fcc Ni, the DLM moment collapses to zero while the moment in a real material is expected to persist due to

longitudinal spin fluctuations.24–27 In this case we use the fixed-spin moment (FSM) approach28 and treat the local
magnetic moment as an adjustable parameter to recover the experimental value of the SDR, as it was done in Ref.17.
Note that this moment is observable and can be measured experimentally using neutron scattering. This approach is
also used for Co.
The residual resistivity is determined by the linear-response theory as formulated in the framework of the

TB-LMTO-CPA method using the Kubo-Greenwood (KG) formula19 applied to the DLM state, including vertex
corrections.20 (See Appendix A for the justification of the binary alloy analogy for the KG formula.) This approach
allows us to include both the substitutional and magnetic disorder on an equal footing, which is necessary for Heusler
alloys.
For Fe we also evaluate the SDR using the fully-relativistic (Dirac) version of the KG formula (DKG-DLM) which

was implemented recently.29 Some comments are needed, however, concerning the DLM method in the relativistic
theory. In the scalar-relativistic case, the spins are decoupled from the lattice, and angular integration for the
paramagnetic state can be performed analytically (see Appendix A). In the relativistic case this is no longer true,
and the averaging has to be done numerically. In the present case of cubic lattices (bcc, fcc), we have replaced
the isotropic spin distribution by a discrete set of 26 directions: six [100] directions along cube edges, twelve [110]
directions along face diagonals and eight [111] directions along body diagonals. The weights of these directions were
chosen as c[100] = 1/21 ≈ 0.0476, c[110] = 4/105 ≈ 0.0381 and c[111] = 9/280 ≈ 0.0321. With this choice, the averages

of the spherical harmonics Yℓm(n) over the isotropic distribution of unit vectors n, 〈Yℓm(n)〉 = δℓ,0/
√
4π, are exactly
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reproduced for all |m| ≤ ℓ ≤ 7. This approach represents an alternative to the numerical integration over the angles.30

The present choice is restricted to high symmetry directions of the lattice, which guarantees that the local moments
are strictly parallel to the local exchange fields, so that no constraining magnetic fields have to be introduced.31

To summarize the present approach: the SDR is the resistivity of the completely disordered spin state, which
is described by the CPA in the framework of the KG-approach. This is an approximation but is justified by a
direct comparison with the more general LB approach. Another problem is the choice of potentials of the randomly
disordered spin state used in the KG calculations. The degree of localization and thus the stability of the local magnetic
moment increases in the series Ni-Co-Fe-Mn. The conventional DLM potentials are good for rigid moments, i.e. Fe
and in particular Mn-based Heusler alloys. If the DLM approach fails like in fcc-Ni, we employ the FSM approach
and/or construct the DLM state from potentials of the ferromagnetic state as it was suggested and succesfully used
in Refs. 10,16,17.

III. RESULTS AND DISCUSSION

In this section we present results for the SDR of transition-metal ferromagnets and selected ordered and Heusler
alloys.

A. Transition metal ferromagnets

1. bcc Iron

For bcc Fe we performed KG-DLM calculations with both spd and spdf basis sets, as well as a fully-relativistic
DKG-DLM calculation. The results are summarized in Table I. The magnitude of the local moment in KG-DLM and
DKG-DLM is almost the same, and it agrees well with other theoretical calculations and experimental measurements
(also listed). The local moment is slightly reduced if the spdf basis set is used, as well as in the self-consistent
DLM state, in agreement with previous studies.14 The KG-DLM and DKG-DLM results for SDR agree well with
experiment. They also agree well with the LB supercell method of Ref.17; the small difference is mainly due to the
small difference in the local moments. In contrast, SDR obtained in the hybrid approach of Ref.15 for the experimental
lattice constant is about twice as large.
The effect of vertex corrections in bulk KG calculations (KG-DLM or DKG-DLM) is only a few percent. The

main reason for this is the large exchange splitting in Fe. The SDR in DKG-DLM is slightly larger compared to
scalar-relativistic KG. A somewhat analogous enhancement was found for some ferromagnetic random alloys, such as
Ni-Co or Ni-Fe, where the residual resistivity is appreciably enhanced due to the spin-orbit coupling. In those alloys
the relatively large effect stems from the weak disorder in the majority spin channel.41 In paramagnetic Fe the effect
of spin-orbit interaction is weak, because the conduction channels are already strongly mixed by spin disorder.

2. fcc Nickel and Cobalt

In fcc Ni the static local moment in the DLM state is unstable, and the calculation of SDR can not proceed in the
usual way. However, electrons are still expected to be scattered by fluctuating local moments.24–27,32 In Ref.27 the
local moment in fcc Ni near Tc was estimated to be 0.42 µB. In previous supercell LB calculations16 the local moment
was used as an adjustable parameter, and it was found that agreement with experiment requires the local moment
of about 0.35 µB. Here we follow the same logic without attempting to evaluate the effective local moment in the
paramagnetic state. The atomic potentials are prepared using the FSM method by constraining the local moment to
several values: 0.6, 0.45, and 0.3 µB.

34 (The self-consistent values in the ferromagnetic state are 0.628 (0.604) µB for
the spd (spdf) basis set.)
The results for fcc Ni are summarized in Table II, which also includes the supercell LB results from Ref.17 and

the experimental value. The KG-DLM calculations agree well with the LB results for all chosen values of the local
moment, including the reduction in the SDR when the spdf basis set is used. The experimental SDR is reproduced
using a local moment value close to 0.35 µB for the spd-basis and closer to 0.4 µB for the spdf -basis.
We have calculated the SDR for fcc Co, which is the stable phase near Tc. (The hcp-phase is stable up to ∼ 800 K).

There is some controversy regarding the experimental SDR for Co. Two different values were reported: 50 µΩcm
(Ref. 35) and 31 µΩcm (Ref. 13). The discrepancy is likely due to the insufficient number of data points above Tc

13

and the proximity of the melting point Tm=1768 K to the Curie temperature Tc=1400 K.
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The self-consistent local moment of Co in the DLM calculation is 0.964 µB for the spd-basis and the corresponding
SDR is 38.1 µΩcm. The lower experimental value of 31 µΩcm can be reproduced with a FSM moment of 0.85 µB;
the FSM moment of 1.1 µB results in the SDR of 46.2 µΩcm, which is close to the higher experimental estimate of
50 µΩcm. As for Ni, the SDR calculated using the spdf basis set are somewhat smaller. For example, for the FSM
local moment of 0.9 µB the SDR is 34.3 (30.1) µΩcm for the spd (spdf) basis set, respectively. Note that the value of
SDR obtained in the hybrid approach of Ref.15 is 100-180 µΩcm depending on the value of the lattice constant.

B. Ordered metallic alloys Ni3Mn and Fe3Si

In this section we calculate the SDR for more complicated alloys, including Cu3Au-ordered Ni3Mn and D03-ordered
Fe3Si. It should be mentioned that e.g. Fe3Si exhibitis a complex pressure-dependent metamagnetic behavior.36 Here
we limit ourselves to ambient pressure where studied systems are conventional ferromagnets.
The Cu3Au lattice is formed by four interpenetrating simple cubic sublattices occupied by Ni and Mn atoms; the

three Ni sublattices are equivalent. The experimental SDR value of 72 µΩcm was extracted from Fig. 7 of Ref. 1 by
subtracting the phonon part. The experiment also shows a non-zero residual resistivity (about 20 µΩcm) which may be
due to chemical disorder or off-stoichiometry. As in pure fcc Ni, the local moments on Ni atoms collapse to zero in the
DLM state. We made two calculations, one based on the self-consistent DLM potentials (spd basis) with spin disorder
limited to Mn atoms (their local moment is 3.179 µB), and another one with the DLM potentials constructed from the
collinear ferromagnetic ground state17 (the local moments on Ni (Mn) sites are 0.467 (3.183) µB). The local moment
of Mn is rigid and essentially independent on the magnetic state. The calculated SDR values for the two calculations
are, respectively, 23.6 µΩcm and 58.9 µΩcm. The latter value, which accounts for the additional spin disorder on Ni
atoms, agrees reasonably well with experiment, considering the fact that we assumed ideal stoichiometry.
As mentioned above, in some Ni-based alloys, such as fcc NiCo and NiFe, the spin-orbit coupling has a pronounced

effect on the resistivity due to the mixing of the weakly-disordered majority and strongly-disordered minority-spin
channels, which gives rise to an additional contribution to the resistivity.29 The situation in the DLM state of Ni3Mn
is different, because both channels are disordered. We have calculated the SDR using DLM potentials constructed
from the ferromagnetic state and including the spin-orbit coupling perturbatively.29 The resulting SDR of 62.0 µΩcm
is only slightly larger compared to the scalar-relativistic case (58.9 µΩcm). These results suggest that the Ni atoms
in Ni3Mn retain effective local moments above Tc as in the known case of fcc Ni (see Section IIIA 2).
The calculations for D03-ordered Fe3Si were also performed using the spd basis. Due to symmetry, there are two

inequivalent Fe sites in this alloy. The sites (Fe1) surrounded by eight Fe atoms have a large and robust local moment
of 2.555 µB, while sites (Fe2) surrounded by four Fe and four Si atoms have a significantly reduced moment of 1.320 µB.
There is also a small local moment on the Si sites (−0.095 µB). In the DLM state, the Fe1 local moments remain
essentially the same (2.719 µB), but the Fe2 local moments collapse to zero. The Si local moments are also zero in the
DLM state. As above for Ni3Mn, we performed two calculations, one based on self-consistent potentials in the DLM
state with spin disorder only on Fe1 sites, and another one with the DLM potentials taken from the ferromagnetic
ground state. The resulting SDR values are 146.7 µΩcm and 181.9 µΩcm, respectively. These results compare well
with the experimental value of about 170 µΩcm.37

C. Heusler alloys Ni2MnX, X=In, Sn, Sb

Heusler alloys is another group of magnetic metals with a complex lattice structure for which experimental data are
available in the literature. These alloys have L21-structure formed by four interpenetrating fcc sublattices mutually
shifted along the body-diagonal with the sublattice occupation Ni-Mn-Ni-X. We employ the spdf basis and the DLM
model for the Mn sublattice. Small induced magnetic moments on the Ni and Sb atoms in the ferromagnetic state
collapse in the DLM state, and their effect is neglected. The number of the valence electrons increases in the series
from In to Sn to Sb.
The calculated KG-DLM SDR are summarized in Table III together with the experimental data. The SDR for

Ni2MnSn was also calculated using the supercell LB approach.17 (See Appendix B for details.) The KG-DLM and
LB calculations for Ni2MnSn agree again very well.44

There is good agreement with experiment for Ni2MnSn (see also Ref. 18) and Ni2MnIn, but not for Ni2MnSb, where
the calculated SDR is more than twice larger. The origin of this discrepancy in Ni2MnSb can be traced back to the
fact that the structure of some Heusler alloys depends sensitively on the sample preparation and annealing. This can
be clearly seen from the residual resistivities at T=0 K, which are negligible for Ni2MnSn and Ni2MnIn and rather
large (65-68 µΩcm) for Ni2MnSb.38,39
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We have considered Mn-Sb swapping (B2 disorder) as a likely source of the residual resistivity, which is typical for
some Heusler alloys like e.g. Ni2MnAl alloy.45 Corresponding theoretical calculations favor the antiparallel orientation
of Mn[Mn] and Mn[Al] moments.46 Possible short-range effects due to a chemical disorder are neglected here due to
the use of the CPA. These effects can be included, however, in the framework of the LB approach. It is not anticipated
that short-range interactions would have a noticable effect on the electronic band structure of the Heusler alloys.48

The present total energy calculations also confirm the antiparallel orientations of Mn[Sb] moments with respect to
Mn[Mn] moments (ferrimagnetic state). As before, only Mn atoms were treated within the DLM method, but now
on both Mn and Sb sublattices. The difference between the resistivities in the DLM and the ground state (with
antiparallel alignment of Mn local moments on the “wrong” sublattice) corresponds to the measured SDR. From the
data of Ref.38 and the fact that the Curie temperature ranges from 344 K38 to 360 K,39 we estimated the SDR as
30.5-36 µΩcm. This value can be compared with the calculated values of 55.1 µΩcm and 44.0 µΩcm for 15% and 20%
Mn-Sb swapping, respectively. Thus, the Mn-Sb swapping strongly reduces the calculated SDR. As a result, there is
a fair agreement between theory and experiment considering the uncertainties of the accurate extraction of the SDR
from measured T -dependent resistivities and of the assumptions about the source of the residual resistivity.

D. Remark on the resistivity of bcc-Fe below Tc

The theoretical determination of the T -dependent resistivity is a difficult problem. One approach to this problem is
to construct supercells and average the conductance over the real-space spin configurations modeled either by a mean-
field distribution or by Monte-Carlo simulations for the classical Heisenberg model. Although the latter approach
includes a number of approximations, it is particularly suitable for including magnetic short-range order (MSRO)
effects.17

A simpler approach can be used for systems with weak MSRO, such as bcc Fe17 or some Heusler alloys.18 As
mentioned in the Introduction, for very low and intermediate temperatures the resistivity varies with temperature as
ρ ∝ T 2 and ρ ∝ [1 − M2(T )/M2

0 ], respectively. The temperature dependence of the total resistivity appears to be
well approximated by ρ(T ) = ρo + AT + CT 2 in some Heusler alloys.38 Here ρo is the residual resistivity, the linear
term A is extracted from the high-temperature region of the resistivity and subtracted (together with ρo) from the
total resistivity. The remaining magnetic contribution can then be fitted to CT 2.
It should be emphasized that such dependence represents only an empirical observation for some ferromagnets. From

the theoretical point of view, it is interesting that in such cases the coefficient C = ρ(Tc)/T
2
c . If one identifies ρ(Tc)

with ρ(DLM) evaluated in the KG-DLM or DKG-DLM approaches, and Tc is also determined from first principles,
one can estimate the T -dependence of resistivity and compare it with experiment. Such a program was successfully
tested for Ni2MnSn and Pd2MnSn Heusler alloys,18 and here we apply it to bcc Fe.
Using the spdf basis and the DLM state as a reference for constructing the Heisenberg Hamiltonian, we obtained

Tc = 1105 K in the random-phase approximation (see Ref. 47 for computational details.) The experimental value is
1040 K. The calculated SDR is 71.5 (75.2) µΩcm for KG-DLM (DKG-DLM), respectively. We thus estimate C=0.586
(0.616) ×10−4 µΩcm/K2.
To compare with experiment, we used the electrical resistivity data for Fe from Ref. 13 and subtracted the phonon

part as indicated above (the experimental residual resistivity is very small). The result is C = 0.647×10−4 µΩcm/K2

in fair agreement with the KG-DLM and DKG-DLM calculations.

IV. CONCLUSIONS

We have presented a simple theory of paramagnetic spin-disorder resistivity based on the disordered local moment
model combined with the Kubo-Greenwood linear-response technique and applied it to magnetic transition metals,
ordered Ni3Mn and Fe3Si compounds, and to Ni2MnX (X=In, Sn, Sb) Heusler alloys. The results agree reasonably
well with experimental data and with the results of the supercell Landauer-Büttiker approach (bcc Fe, fcc Ni, and
Ni2MnSn). The case of Ni (and partly also Co) requires a special approach in which the FSM-DLM method is used.
Present results, in an agreement with a recent study17 indicate an interesting relation between the local moments
in the magnetically disordered state and the SDR, in particular in cases where the local moment is induced by the
longitudinal spin fluctuations (such as fcc Ni).27

We have also calculated the SDR for ordered Ni3Mn and Fe3Si alloys. The local moments on Ni in Ni3Mn and on
one of the Fe sublattices in Fe3Si collapse to zero in the DLM state, but in reality these moments may persist due
to quantum and thermal fluctuations. In order to evaluate their effect on SDR, we used two models with potentials
taken either from the DLM state or from the ferromagnetic state. For Ni3Mn our results suggest that Ni atoms retain
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their local moments above Tc. In Fe3Si the SDR in both models is close to experiment, so that a clear conclusion can
not be drawn.
The SDR value in Ni2MnSb can be explained only by assuming the presence of disorder in an otherwise stoichiometric

alloy. Other studied Heusler alloys exhibit only very small residual resistivity, and the KG-DLM model applied to
ideal systems works well. Finally, we have shown that a reasonable description of the resistivity below Tc is possible
for metals with a weak magnetic short-range order like, e.g., bcc-Fe17 or some Heusler alloys.18 We conclude that
the linear response calculation of the spin-disorder resistivity within the DLM model is a rather fast and accurate
alternative to the computationally demanding averaging of the Landauer-Büttiker conductance over spin-disorder
configurations in supercells. This method is applicable as long as uncorrelated spin disorder is being considered.
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Appendix A: Alloy analogy for conductivity of the DLM state

The residual conductivity of a random alloy reduces within the TB-LMTO-CPA formalism to expressions of the
form

Tr 〈g(z)vg(z′)v〉 = Tr {ḡ(z)vḡ(z′)v}
+Tr {ḡ(z)Γ(z, z′)ḡ(z′)v} , (A1)

where the symbol 〈. . . 〉 denotes configuration averaging, the g(z) is the auxiliary Green’s function, the v denotes a
non-random effective velocity operator, and the energy arguments z, z′ = EF ± i0, where the EF is the alloy Fermi
energy.19 The first term in Eq. (A1) leads to the coherent contribution to the conductivity, with ḡ(z) = 〈g(z)〉, while
the second term represents the incoherent (vertex) contribution. The non-random quantity Γ(z, z′) is given as a sum
over lattice sites, Γ(z, z′) =

∑

R
ΓR(z, z′), where the individual terms can be obtained from a set of coupled linear

equations

ΓR(z, z′) = 〈tR(z)ḡ(z)vḡ(z′)tR(z′)〉
+

∑

R′( 6=R)

〈tR(z)ḡ(z)ΓR′(z, z′)ḡ(z′)tR(z′)〉 , (A2)

where the tR(z) denotes the random single-site T-matrix operator at the R-th site defined with respect to the effective
CPA medium, see Ref. 20 for details. The solution of these equations can be obtained as a limit for n → ∞ of the

sequence Γ
(n)
R

(z, z′), n = 1, 2, . . . , which is defined recursively by

Γ
(1)
R

= 〈tRḡvḡtR〉 ,
Γ
(n+1)
R

= Γ
(1)
R

+
∑

R′( 6=R)

〈

tRḡΓ
(n)
R′ ḡtR

〉

, (A3)

with energy arguments z and z′ omitted here and below for brevity.
The application of this approach to the DLM state with local magnetic moments pointing randomly in all directions

leads to the average Green’s function ḡ(z) that is spin-independent. In each spin channel, the ḡ is defined from an
equiconcentration random alloy of two atomic species, corresponding to moments pointing up and down which lead

to single-site T-matrices t↑
R

and t↓
R

satisfying the CPA condition t↑
R
+ t↓

R
= 0.14 For conductivity calculations, the

effective velocity operator is given by the commutator relation v = −i [X,S], where the X represents the coordinate
operator and the S denotes the TB-LMTO structure-constant matrix.19 Consequently, the v is spin-independent as
well and the coherent part of the DLM conductivity can thus be evaluated very easily in the alloy analogy.14

For the vertex part of the conductivity, one can write the spin-independent operators (matrices) ḡ, v and ḡvḡ in
Eq. (A3) in the form

M = m⊗ 1, (A4)
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where the first factor denotes a matrix in the site- and orbital-index RL (L = ℓm) while the second factor is the unit
matrix in the spin index s (s =↑, ↓). In this notation, the single-site T-matrix for the R-th local moment pointing in
a random direction nR can be written as

tR =
t↑
R
+ t↓

R

2
⊗ 1 +

t↑
R
− t↓

R

2
⊗
∑

α

nRασα, (A5)

where α = x, y, z, the nRα are components of the random unit vector nR and the σα denote the Pauli spin matrices.
By using the identity σ2

α = 1 and the obvious configuration averages 〈nRα〉 = 0 and 〈nRαnRβ〉 = δαβ/3, one can
prove easily that for an arbitrary non-random spin-independent operator M , Eq. (A4), the following averaging rule
is valid:

〈tRMtR〉 = µ⊗ 1,

µ =
1

2
t↑
R
mt↑

R
+

1

2
t↓
R
mt↓

R
. (A6)

This means that the resulting average 〈tRMtR〉 is spin-independent and that it can be obtained again by employing
the equiconcentration alloy of up- and down-moments. The use of Eq. (A6) in the recursive sequence (A3), i.e., for

M = ḡvḡ and M = ḡΓ
(n)
R′ ḡ, n = 1, 2, . . . , proves that the alloy analogy is applicable also for evaluation of the vertex

part of the DLM conductivity.

Appendix B: Landauer-Büttiker calculation for Ni2MnSn

The Landauer-Büttiker supercell method used as a benchmark to calculate the SDR of the Heusler alloy Ni2MnSn
was described in Ref. 17. The spd basis set and the Barth-Hedin exchange-correlation potential42 were used to solve
the electronic structure problem and for transport calculations. The ground-state local moments and total density of
states agree well with previously reported data.18,43 For the transport calculations, a 2× 2 lateral cubic supercell was
used. Good convergence was achieved by integrating the conductance over the two-dimensional Brillouin zone using
a 15 × 15 k-point mesh and averaging over 15 random noncollinear spin distributions (spin disorder applied to Mn
moments only). The active disordered region was varied in length from 4 monolayers to 104 monolayers, as shown
in Fig. 1, reaching the Ohmic regime. The calculated SDR for Ni2MnSn was 47.7± 0.4 µΩ cm, which is in excellent
agreement with the DLM method and with experiment.
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of Solids, edited by H. Dreyssé, Lecture Notes in Physics, Vol. 535 (Springer, Berlin, 2000), p. 349.
23 S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
24 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).
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TABLE I: Calculated SDR (ρSDR) for bcc-Fe in the present approach (KG-DLM)and in the supercell LB (sc-LB)16,17 are
compared with its experimental value (ρexp).

13 The value of the SDR from the Landauer-DLM approach15 is 180 µΩcm.
Present results obtained using the fully relativistic (Dirac) version of the KG-DLM approach (DKG-DLM29) are also shown.
We present the magnetic moments in the ferromagnetic phase (MFM

tot ) and in the DLM phase (MDLM
tot ) when available. Results

are shown for the spd-basis while corresponding values for spdf -basis are given in brackets. The experimental lattice constant
of bcc-Fe was used.

Method
KG-DLM DKG-DLM sc-LB exper

MFM
tot (µB) 2.23 (2.18) 2.23 (2.19) 2.29 (2.22) 2.18

MDLM
tot (µB) 2.15 (2.06) 2.18 (2.08) − −

ρSDR (µΩcm) 84.7 (71.5) 89.6 (75.2) 102 (85) 80

TABLE II: The calculated SDR (ρSDR) for ferromagnetic fcc-Ni in the present KG-DLM approach are compared with the results
of the supercell LB (sc-LB) approach.16,17 The experimental value is 15 µΩcm.13,35 Calculated resistivities are presented as a
function of the effective Ni-local moment Meff . Results are shown for the spd-basis while corresponding values for spdf -basis are
given in brackets. In the case of the sc-LB approach we also show theoretical errorbars (see text for details).17 The experimental
lattice constant of fcc-Ni was used.

Method Meff (µB) ρSDR (µΩcm)
KG-DLM 0.3 12.4 (10.2)

0.45 26.7 (19.7)
0.6 34.1 (29.7)

sc-LB 0.3 12±0.3
0.4 21±0.4 (18±0.4)
0.5 27±0.5 (23±0.5)
0.66 34±0.6 (29±0.6)

TABLE III: Calculated theoretical SDR (ρth) in Heusler alloys Ni2MnX (X=In, Sn,Sb) in the KG-DLM approach are compared
with corresponding experimental data (ρexp).

38,39 The DLM is limited to the Mn-sublattice. For all alloys the experimental
lattice constants was used. See the text for discrepancy between theory and experiment for Ni2MnSb alloy.

Alloy ρth (µΩcm) ρexp (µΩcm)
Ni2MnIn 42.6 44.1
Ni2MnSn 50.4 46.6
Ni2MnSb 73.7 31−35
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FIG. 1: Area-resistance product RA vs the thickness L (4 monolayers per lattice constant a) of the disordered region for
Ni2MnSn. Each point corresponds to an average of 15 random spin-disorder configurations.


