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ABSTRACT 

 

A microstructure design of anisotropic resonant inclusions is investigated for the elastic 

metamaterial plate with the aid of the numerically-based effective medium model. Experimental 

validation is then conducted in the anisotropic metamaterial plate through both harmonic and 

transient wave testing, from which the anisotropic effective dynamic mass density, group and 

phase velocities are determined as functions of frequency. The strongly anisotropic mass 

density along two principal orientations is observed experimentally and the prediction from the 

experimental measurements agrees well with that from the numerical simulation. Finally, based 

on the numerically obtained effective dynamic properties, a continuum theory is developed to 

simulate different guided wave modes in the elastic metamaterial plate. Particularly, high-order 

guided wave coupling and repulsion as well as the preferential energy flow in the anisotropic 

elastic metamaterial plate are discussed.  
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I. INTRODUCTION 
 

Recently, Elastic Metamaterials (EMMs) have gained much attention due to their potential to 

possess unique effective material properties while maintaining reasonable sample size. 

Because of the vector characteristics of elastic waves and the possible coupling between 

longitudinal and transverse modes, richer wave propagation phenomena are expected in the 

EMMs. Various novel concepts and engineering applications of EMMs have been 

successfully demonstrated such as mechanical filters, sound and vibration isolators, elastic 

waveguides and energy harvesters.1–7 Most of these approaches rely on resonant inclusions 

and the resulting EMM parameters vary strongly with frequency. In the previous work, the 

anisotropic effective mass density tensor of an EMM made of lead cylinders coated with 

elliptical rubbers in an epoxy matrix was numerically determined.8 However, its practical 

design and experimental validation have not yet been systematically investigated. 

 

The quest for the anisotropic effective mass density of EMMs has been partly inspired by the 

success obtained from the Acoustic Metamaterials (AMMs), in which only longitudinal wave 

mode exists. Cummer and Schurig9 have numerically presented the possibility of acoustic 

cloaking by means of AMMs with the anisotropic mass density, however, engineering the 

AMM was still a challenge at the time. Based on Schoengberg and Sen's work,10 Cheng et 

al.11 designed an AMM with the anisotropic mass density by using a concentric alternating 

homogenous isotropic layered fluid. A feasible method to build and characterize fluid-like 

cylinders with cylindrically anisotropic mass density has been presented based on the idea 

that a corrugated structure with radial symmetry can be described by a fluid-fluid 

multilayered structure.12 In addition, another new class of AMMs with a dynamical 

anisotropic effective mass density was numerically designed through two-dimensional 

anisotropic arrangements of full elastic cylinders embedded in a nonviscous fluid.13 A similar 

anisotropic design was suggested in AMMs composed of perforating solid plates in a fluid-

like background.14 Zigoneanu et al.15 presented the experimental realization and 

characterization of an AMM with strongly anisotropic effective mass density. The 

metamaterial is composed of arrays of solid inclusions in a background of air, and the 

anisotropy is controlled by the rotational asymmetry of these inclusions. Most of these 
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approaches do not rely on resonant inclusions; therefore, the resulting AMM anisotropic 

parameters vary strongly in a broad frequency range. 

 

Different from AMMs, anisotropy of the effective mass density of EMMs can only be 

engineered by using anisotropic resonant inclusions instead of anisotropic lattices. 

Microstructure design of EMMs by embedding rubber coated lead spheres in an epoxy 

matrix, can be traced back to 2000.1 The resulting bandgap was later explained by negative 

effective mass density.16 Milton and Willis17 first proposed a two-dimensional (2-D) spring-

mass locally resonant model which shows that the effective mass density could become 

anisotropic. In order to fabricate the EMM with effective anisotropic mass density, Milton18 

suggested a soft-layer-coated elliptic lead core in the solid model, which is modified from the 

original model proposed by Sheng et al.. 19 Gu et al.20 investigated local resonance modes of 

elliptic cylinders coated with silicon rubber in a rigid matrix to obtain the anisotropic 

effective mass density. To explain the physical mechanism of the anisotropic mass density, a 

2-D lattice model that is composed of anisotropic resonators was studied analytically to 

obtain a second-order anisotropic effective mass density tensor.21 However, few EMMs have 

been fabricated and demonstrated experimentally at structural levels because of the lack of 

systematic analysis of feasible microstructure designs.  

 

In the paper, we expand upon the previous work8 and demonstrate experimentally that 

relatively complex resonant inclusions in a solid plate can create a strongly anisotropic 

effective mass density. First, the numerically-based effective method is employed to 

calculate the anisotropic effective mass density tensor of the EMM plate. Thus, a design of 

the EMM plate with strongly anisotropic mass density is proposed in the continuum manner. 

The experimental validation is then conducted on the proposed microstructure design of the 

EMM plate through both harmonic and transient wave testing. Strong anisotropy of the 

effective mass densities along two principal orientations is obtained and found to be in 

excellent agreement with the prediction of the numerical simulation. Specifically, the phase 

and group velocities of the EMM plate are experimentally determined through the transient 

elastic wave transmission measurements, and its effective dynamic mass density is 

experimentally determined from the measured phase velocity as a function of frequency. 
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Finally, to analyze different wave modes in the EMM plate, a continuum model of the EMM 

plate is developed, and the new wave phenomena such as the wave coupling and repulsion as 

well as the preferential energy flow are discussed. 

 

II. DESIGN OF EMMs WITH ANISOTROPIC EFFECTIVE MASS 

DENSITY 

 
Knowing effective dynamic properties of the EMM is a necessary condition for the 

microstructure design and its wave propagation characteristics. For isotropic EMMs, the 

three independent effective parameters can be determined: effective bulk modulus, effective 

shear modulus, and effective mass density.22, 23 For the EMM with simple microstructures, 

such as circular-coated spheres or cylinders, the analytically based effective medium theories 

have been developed.16, 24 However, in order to design such artificial materials for the desired 

properties such as anisotropic effective mass density, EMMs must have complex 

microstructures. For the EMM with general complex microstructures, a numerically-based 

effective medium model has been recently proposed to determine the effective dynamic 

properties based on the micromechanics approach.8, 25 A similar numerical approach was also 

suggested for EMMs with multi-resonator systems.26, 27 In this section, the numerically-based 

effective medium model is adopted for determination of the anisotropic effective mass 

density of the EMM and its microstructure design. 

 

A. The numerically-based effective medium model 

 

In this subsection, the numerically-based effective medium model is briefly reviewed. Fig. 1 

shows a representative volume element (RVE) of the three-dimensional (3-D) EMM, in 

which the general soft-coated elastic core is embedded in the matrix. The lattice size is 

denoted as a. The key of this method is to replace the EMM with an equivalent continuous 

medium under dynamic harmonic loadings. At the macroscopic scale, it is assumed that the 

composite material will behave as the medium under the applied global deformation. The 

difficulty of the numerical study is that most standard finite element software does not have 

the feature to directly deal with the problem with complex variables in the harmonic analysis. 
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This difficulty can be overcome by solving problems with real and imaginary parts of the 

constraint conditions separately.25 

 

  
FIG. 1. Representation of EMM lattice cell with arbitrary microstructure by a homogenous solid 

 

The applied local displacement on the boundary of the unit cell can be described as 

 (1)

where , and  is the displacement field compatible 

with a pre-assumed macro-strain αβE  plus a rigid translation 0
αu ,  is the local position 

vector in the unit cell. The effective medium parameters can then be calculated considering 

the boundary response of the metamaterial unit cell that “feels” and “responds to” the 

stimulation exerted by the outside elastic waves. Under the long-wavelength assumption, the 

effective stress, strain, resultant force and acceleration of the unit cell with the complex 

microstructure can be obtained by averaging local quantities on the external boundary as: 

       

       (2)

where ,  and  are the local stress, displacement and acceleration fields, respectively, 

 with being the boundary unit normal,  and  denote unit cell’s volume and 
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external boundary. Specifically, the anisotropic effective mass density of the EMM can be 

determined based on the following relation 

ܨଵܨଶܨଷ൩ ൌ െ߱ଶܸ ߩଵଵ ଵଶߩ ଵଶߩଵଷߩ ଶଶߩ ଵଷߩଶଷߩ ଶଷߩ ଷଷ൩ߩ  ܷଵܷଶܷଷ, 
(3)

where ܷఈis the global displacement field. For example, to calculate the anisotropic effective 

mass density components: ߩଵଵ ଵଶߩ,  and ߩଵଷ , the dynamic displacement constraints on the 

boundary of the RVE are applied as ܷଵ ൌ ௪௧݁ܣ  and  ܷଶ ൌ ܷଷ ൌ 0 . In the principal 

coordinate system, we have ߩఈఉ ൌ 0 when ߙ ്  For arbitrary x-y-z coordinate system, it .ߚ

can be numerically proved that the in-plane (x-y plane) anisotropic effective mass density 

follows the coordinate transformation law as 

ߩ௫௫ ௫௬ߩ ௫௬ߩ௫௭ߩ ௬௬ߩ ௫௭ߩ௬௭ߩ ௬௭ߩ ௭௭ߩ ൩ ൌ  ܥ ܵ 0െܵ ܥ 00 0 1൩ ߩଵଵ 0 00 ଶଶߩ 00 0 ଷଷ൩ߩ  ܥ ܵ 0െܵ ܥ 00 0 1൩ିଵ, 
(4)

where ܥ ൌ ܵ ,ߜݏܿ ൌ  is the angle between x-axis in the arbitrary coordinate system ߜ ,ߜ݊݅ݏ

and  ݔଵ-axis in the principal coordinate system. Therefore, the effective mass density admits 

the second-order tensorial property. For the determination of the effective moduli of the 

EMM, the anisotropic moduli can be similarly obtained based on the constitutive relations. 

For example, for a 2-D orthogonal EMM, the stiffness tensor can be simplified as only four 

effective parameters. After obtaining the three effective stresses and three effective strains on 

the boundary, the effective stiffness parameters can be calculated from the constitutive 

relations.  

 

B. Design of the EMM plate with anisotropic dynamic mass density 

 

The working mechanism of the EMM with anisotropic effective mass density is fully 

dependent on the inner microstructure design, which was clearly explained by analyzing the 

2-D mass-in-mass lattice model.21 Based on the mass-in-mass system, the effective mass 

densities along the two principal directions can be analytically expressed as ߩ,ଵ ൌ 1ܸ ቆ݉ଵ  ߱,ଵଶ߱,ଵଶ െ ߱ଶ ݉ଶቇ, (5)ߩ,ଶ ൌ 1ܸ ቆ݉ଵ  ߱,ଶଶ߱,ଶଶ െ ߱ଶ ݉ଶቇ, (6)
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where ܸ is the volume of the unit cell, ݉ଵ and ݉ଶ are outer and inner masses, respectively, 

and  ߱,ଵ ൌ ඥ݇ଵ ݉ଶ⁄   and ߱,ଶ ൌ ඥ݇ଶ ݉ଶ⁄  are the locally resonant frequencies of the inner 

mass along ݔଵ and ݔଶ directions, respectively. From Eqs. (5) and (6), it can be found that the 

anisotropy between ߩ,ଵ and ߩ,ଶ is mainly caused by the difference between the locally 

resonant frequencies ߱,ଵ and ߱,ଶ, which can be tuned through the design of the internal 

springs ݇ଵ and ݇ଶ along ݔଵ and ݔଶ directions, respectively. Specifically, design of the local 

stiffness anisotropy in the coating layer is the key to achieve the anisotropic effective mass 

density of the EMM. In this study, efforts on the microstructure design of the EMM plate 

with in-plane anisotropic effective mass density will be focused on modification of the well-

known three-component sonic crystal, soft-layer-coated heavy core embedded in a matrix. 

The coating layer with an elliptic shape is suggested to achieve the anisotropic effective mass 

density of the EMM plate with ݔଷ-axis normal to the plate and in-plane ݔଵ and ݔଶ axes are 

parallel to the elliptical semi-major axis and the semi-minor axis, respectively, as shown in 

Fig.2 (a). The microstructure geometrical and constituent material parameters are given in 

Table 1. 
TABLE 1.  Microstructure geometrical and material parameters. 

GEOMETRICAL PARAMETERS MATERIAL PARAMETERS 

a 11mm  Matrix: aluminum Coating: epoxy Core: lead 

b1 4.95mm Mass density 2700 ݇݃ ݉ଷ⁄  1033 ݇݃ ݉ଷ⁄  11310 ݇݃ ݉ଷ⁄  

b2 3.5mm Young’s modulus 71ܽܲܩ13 ܽܲܩ0.595 ܽܲܩ 

Φ 3.175mm Poisson’s ratio 0.32 0.38 0.435 

t 3.175mm     

 

The normalized effective mass densities along ݔଵ  and ݔଶ  directions as functions of the 

normalized frequency are calculated based on the numerically-based effective medium model, 

which is shown in Fig. 2 (b). In the figure, ߩ௩ is the average static mass density for the 

composite and ݂ is the locally resonant frequency of the microstructure along ݔଵ direction. It is 

noticed that ߩ,ଵ  and ߩ,ଶ  have different values in the normalized frequency range from ݂ ݂⁄ ൌ 0.4 to ݂ ݂⁄ ൌ 1.8. However, the anisotropic design is quite limited to the ratio of the 

semi-major axis to the semi-minor axis of the coating ellipse. To achieve a more strongly 

anisotropic effective mass density, a more modified microstructure design is needed. 
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(a) (b) 

FIG. 2. (a) Unit cell of the EMM plate with elliptical coating layer. (b) Normalized effective mass 

densities as functions of the normalized frequency along different principal directions. 

 

Fig. 3 (a) shows a new microstructure design in the elliptical coating layer with four 

symmetric micro-pores for the greater anisotropy in mass density. The same geometrical and 

material parameters in Table 1 are used. The diameter of the micro-pore is  and 

the centers of the four symmetric micro-pores are located at  with the 

orientation angles ( ) being  respectively. Fig. 3 (b) shows the in-

plane normalized effective mass density of the EMM plate with the micro-pores as a function 

of the normalized frequency. Comparing with the results in the Fig. 2 (b), it can be observed 

that the lower frequency band of the of  and  keeps the same, however, the upper 

band is dramatically increased from  to , which shows that stronger 

anisotropy of the effective mass density can be achieved through the current microstructure 

design. The same lower frequency band is expected because of the frequency normalization 

with respect to the static average mass density. It is also interesting to note that the effective 

mass density becomes isotropic ( ) when the frequency is close to the static 

case or much larger than the resonant frequencies. The different constant values of the 

effective mass density in static  and high-frequency  cases can be 

explained by Eqs. (5) and (6). It should be mentioned that the anisotropy can be further tuned 
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through the change of the positions, shapes and sizes of the micro-pores in the coating layer 

and the inner mass.  

 

    

(a) (b) 

FIG. 3. (a) Unit cell of the EMM plate with micro-pores in the coating layer. (b) Normalized effective 

mass densities as functions of the normalized frequency along different principal directions. 

 

III. EXPERIEMENTAL VALIDATION 
 

The experimental testing was conducted on the proposed microstructure design of the EMM 

plate in Fig. 3 (a). The EMM plates were manufactured with the aid of a computer numerical 

control (CNC) machine. First, the tests of the harmonic lowest symmetric guided waves 

along the two in-plane principal directions were performed to demonstrate different bandgaps 

due to the anisotropic effective mass density of the EMM plate. The group and phase velocity 

dispersion relations were experimentally determined from measurements of the transmitted 

transient wave signals with the aid of the wavelet technology, from which the anisotropic 

effective mass densities of the EMM plate along the principal directions were obtained.  

 

A.  The experimental setup 
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Two anisotropic EMM plates with the proposed microstructure pattern were manufactured 

for the guided wave propagation tests along the two principal directions. Fig. 4 schematically 

shows the fabrication procedure of the EMM plate. First, elliptic holes in a rectangular array 

(10×3) were drilled in the host aluminum (Al) plate (Type 6061) using the CNC machine. 

Second, pure lead rods (ESPI Metals) and liquid epoxy (Crystal Clear® 202, Smooth-On Inc) 

were implanted into the holes. A guiding plate was used to precisely locate the lead rods. 

After curing, micro-pores in the epoxy coating were formed with the CNC machine. The 

material properties of the Al plate, cured epoxy and the lead rods are listed in Table 1. The 

epoxy properties were measured by the simple tension testing of the epoxy samples.  

  
FIG. 4. Schematic diagram of the EMM plate fabrication 

To qualitatively investigate the anisotropic dynamic behavior of the EMM plate, the 

transmission characterizations of the lowest symmetric guided waves propagating in the 

EMM plates along the two principal directions were first performed experimentally. The 

experimental set-up, shown in Fig. 5, includes the following components: (1) arbitrary 

waveform generator (Tektronix AFG 3021) and power amplifier (Krohn-Hite 7602M); (2) 

two symmetrically surface-bonded rectangular piezoelectric actuators (P-33.00mm-4.00mm-
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.76mm-850 WFB, APC International, LTD), as shown in the left zoomed image. The same 

voltage input is applied on the two actuators to generate the harmonic lowest symmetric 

guided wave; (3) two circular piezoelectric disks (P-6.36mm-.76mm-850, WFB, APC 

International, LTD ), as shown in the right zoomed image, which are symmetrically surface-

bonded on the other side of the EMM plate and functioned as sensors; (4) a digital data 

acquisition system including a digital oscilloscope (Tektronix DPO4034) and a personal 

computer for the measurement, storage, and analysis of the received sensor signals. By using 

the summation of the outputs of both sensors, we can get purely symmetric guided wave 

signal and efficiently eliminate the unwanted asymmetric wave signal which may come from 

the slightly position mismatch of the two actuators. 

 

 
FIG. 5. The experimental set-up for harmonic testing of guided wave propagation in the EMM plate. 

 

B.  Wave transmission measurements 

 

Harmonic wave analysis is performed, and the transmitted wave signal of the EMM plate at 

each harmonic frequency is measured and recorded. By sweeping the frequency of the input 

harmonic signal, transmitted signals in the interested frequency regime can be secured. Fig. 6 

shows the lowest symmetric guided wave transmission of the EMM plates along the two 

principal directions. For validation purposes, the transmission results of the infinite EMM 

plates predicted by the numerical simulations are compared with the experimental results. 
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For wave propagation along ݔଵ direction, a wave bandgap can be found at the frequency 

range from 18.2 kHz to 21.8 kHz; however, the wave bandgap is found at the frequency 

range from 24.8 kHz to 30.4 kHz for wave propagation along ݔଶ direction. For the current 

microstructure design, the observed bandgaps can be explained by the negative effective 

mass density.16 Therefore, the strong anisotropy of the effective mass density is clearly 

revealed through the difference of the experimentally measured bandgaps along different 

wave propagation directions. Very good agreements between the experimental measurement 

and the numerical prediction also validate the experimental testing.  

    
(a) (b) 

FIG. 6. Comparisons of numerical and experimental transmission measurements of the lowest 

symmetric guided wave propagation in the anisotropic EMM plate along (a) ݔଵ direction  and (b) ݔଶ 

direction. The shaded regions indicate the corresponding bandgaps predicted by the numerical 

simulations. 

 

C.  Experimental determination of the effective mass density 

 

The effective mass density of the EMM has been analyzed numerically and analytically by 

numerous methods. However, to the best of our knowledge, experimental determination of 

the effective mass density of the EMM plate as a function of frequency has not yet been 

investigated. In order to do that, a transient wave propagation testing in the EMM plate 

should be conducted to find the group and phase velocities instead of the harmonic wave 

testing. The main difficulty of the transient wave testing in the solid EMM plate is the wave 

signal complexity due to the interference by the reflected waves from the two free ends. In 
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this study, the boundary reflection was eliminated by welding two extended Al plates with 

the same width and thickness to both ends of the EMM plate. In the experiment, the group 

and phase velocities cannot be obtained directly from ܿ ൌ ௗఠௗ   and ܿ ൌ ఠ , because the time 

origin of practical collected signals are simultaneously delayed to the time when physical 

waves excited. Moreover, not all frequency components appear at the same time, a so-called 

“time lag” exists between different frequency components. Therefore, using two sensors to 

measure the response waves at the same time can effectively eliminate these side effects. In 

the study, two symmetrically bonded piezoelectric sensor pairs on the both sides of the EMM 

plate were used to receive the transient wave signals, as shown in Fig. 7. In the figure, ݀ ൌ 225݉݉ is the distance between two sensor pairs and ݀ ൌ 110݉݉ is the length of the 

EMM. 

 
FIG. 7. Schematic diagram of the experimental set-up for the group and phase velocity determinations in 

the EMM plate 

A tune-burst broadband wave signal with the mathematical expression of ܸሺݐሻ ൌܣሾ1 െ cosሺ2ߨ ݂ݐሻሿsin ሺ2ߨ ݂ݐሻ was chosen, where ܣ is the amplitude and ݂ is the central 

frequency. Different central frequencies in the passing band were selected to cover the 

frequency regime of interest. Fig. 8 shows the received sensor signals before and after the 

EMM plate shown in Fig. 7 at the central frequency ݂ ൌ  which is within the ,ݖܪ13.6݇

frequency regime of the passing band. As shown in Fig. 8 (a), the sensor signal collected 

from the sensor pair 1 is the direct propagating wave signal followed by the strongly 

reflected wave from the heterogeneous EMM plate. The significant wave dispersion can be 

found in the transmitted signal collected from the sensor pair 2, as shown in Fig. 8 (b), which 

makes it very difficult to interpret directly. 
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(a) (b) 

Fig. 8. The transient wave signals collected from (a) sensor pair 1 and (b) sensor  
pair 2 at the central frequency ݂ ൌ  .ݖܪ13.6݇

 

1. Determination of group velocity 

 

    The continuous wavelet transform (CWT) based on the Gabor wavelets, which has been 

demonstrated as a useful time-frequency analysis tool of wave signals in structural health 

monitoring (SHM),28 is used to obtain the group and phase velocity dispersion curves of the 

EMM plate. The CWT of a given signal ݏሺݐሻ can be mathematically expressed as follows: 

ܹܶ൫ ොܽ, ܾ൯ ൌ 1√ ොܽ න ݐሻ߰ሺݐሺݏ െ ܾොܽ ሻതതതതതതതതതതതାஶ
ିஶ  ,ݐ݀

(7)

where ߰ሺݐሻ is the mother wavelet function and the overline indicates the complex conjugate, ොܽ and ܾ are known as the scale and translation parameters, respectively. The reciprocal of ොܽ 

is associated with the frequency and ܾ is related to the time. Gabor function is chosen as the 

mother wavelet function in the analysis since it can provide better resolutions both in the 

time and frequency domains than any other wavelets. The Gabor function is expressed as29 

߰ሺݐሻ ൌ రߨ√1 ඨ ෝ߱ߛ ݔ݁ ቈെ ሺ ෝ߱ ⁄ߛ ሻଶ2 ଶݐ ሺ݅ݔ݁ ෝ߱ݐሻ, 
(8)

where ߛ  and ෝ߱  are positive constants chosen as ߨඥ2/݈݊2 ൎ 5.336 and 2ߨ , respectively. 

The Gabor function may be considered as a Gaussian window function centered at t=0 and its 

Fourier transform centered at ߱ ൌ ෝ߱ . Therefore, the CWT using the Gabor wavelet 

represents the time-frequency component of s(t) around time ݐ ൌ ܾ and frequency ߱ ൌ ෝ߱/ ොܽ. 

For example, Figs. 9 (a) and (b) show the 2D plots of the magnitudes of CWT coefficients of 
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the measured sensor signals in Figs. 8 (a) and (b), respectively, for a scale with the central 

frequency ݂ ൌ  Physically, the magnitude of CWT reaches its maximum at the .ݖܪ13.6݇

wavelet ridge point; the corresponding time ܾ of the ridge point is the group delay which 

equals the delay of the propagating wave signal envelop, therefore, it can be used in the 

calculation of the dispersive group velocity at the frequency. The group delays at the two 

sensor pairs at the frequency are determined by the peak locations of the magnitudes of CWT 

coefficients of the sensor signals. The difference in the group delays of the waves at two 

sensor pairs, Δt, is then obtained for the group velocity calculation without side effects. 

 

  
(a) (b) 

FIG. 9. The magnitudes of CWT coefficients of the sensor signals collected from (a) sensor pair 1 and (b) 
pair 2 at ݂ ൌ  .ݖܪܭ13.6

 
In the current sensor deployment, the group velocity as a function of frequency can then be 

determined with the change of scale as: ܥሺ݂ሻ ൌ ݀/ሾΔݐሺ݂ሻ െ ݀ െ ݀ܥெ ሿ, 
(9)

where ܥெ ൌ  is the group velocity in the host Al plate. Fig. 10 shows the measured ݏ/5400݉

group velocity of the lowest symmetric guided wave mode in the EMM plate along ݔଵ 

direction. For comparison, the group velocity calculated from the theoretical analysis via the 

relationship ܿ ൌ ௗఠௗ  is also plotted in the figure. The geometrical and material properties 

used in the calculation are listed in Table 1. Good agreement between the theoretical result 

and the experimental measurement can be found in both the first and second passing bands.   
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FIG. 10. Experimentally measured group velocity of the lowest symmetric guided wave mode along ݔଵ 

direction as a function of frequency. 

 

2. Determination of phase velocity and effective mass density 

 

Determination of the phase velocity of the EMM plate needs the information of the phase 

angle of the CWT coefficient. At a given scale ොܽ (frequency), the phase angle of the sensor 

signal corresponding to certain group delay ܾ can be directly determined from the complex 

CWT coefficient as ߶ሺ ොܽ, ܾሻ, which is in the range of [–  In order to calculate the exact .[ߨ , ߨ

phase difference Δ߶ between the two sensor signals, the branch number ‘m’ of the inverse 

trigonometric function needs to be considered. By using the continuity of the phase spectrum, 

the proper branch number for each scale can be selected; therefore Δ߶ can be determined at 

each frequency. Finally the phase velocity of the EMM plate as a function of frequency can 

be obtained using the following relation: ܥሺ݂ሻ ൌ ݀ሺΔݐሺ݂ሻ  Δ߶ሺ݂ሻ2݂ߨ െ ݀ െ ݀ܥெ ሻ 

(10)

where Δݐ is the difference of the arrival time, and ܥெ is the phase velocity in the host plate. 

With the change of scale, the dispersive phase velocity versus the frequency can be finally 

obtained. Fig. 11 shows the phase velocity of the EMM plate from the measured sensor 

signals. For comparison, the phase velocity predicted from the theoretical dispersion relation 
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of the EMM plate is also added. In general, the measured phase velocity matches well with 

that from the theoretical prediction in the frequency range of two lowest passing bands. Good 

agreement can be found in the frequency range of weak dispersion, however, small 

discrepancy can be observed in the range of strong dispersion such as the frequency range 

close to the bandgap. 

 
FIG. 11. Experimentally measured phase velocity of the lowest symmetric guided wave mode along ݔଵ 

direction as a function of frequency. 

 

Finally, the anisotropic effective mass density of the EMM plate can be determined by the 

experimentally measured phase velocity and the effective stiffness predicted by the 

numerically-based effective medium model. For example, for the lowest symmetric guided 

wave propagating along the principal ݔଵ direction, the effective mass density of the EMM 

plate along the wave propagating direction can be determined by ߩଵሺ݂ሻ ൌ  .ଵሺ݂ሻሿଶܥଵଵ/ሾܥ

Fig. 12 shows the obtained effective mass densities as functions of the frequency for wave 

propagation along two principal directions based on the experimental data. For comparison, 

the corresponding effective mass densities from the numerical solutions are also plotted. 

Excellent agreement can be observed even for the frequency range with strong wave 

dispersion. It should be noticed that the distribution of the locally resonant elements in the 

EMM plate will not affect its effective dynamic mass density, which is different from the 

AMM, because the anisotropic effective mass density of the EMM plate is mainly caused by 

the anisotropic resonant motion of the locally resonant element.  
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(a) (b) 

FIG. 12. Effective dynamic mass densities of the anisotropic EMM plate along the two principal 

directions: (a)  ݔଵ direction; (b) ݔଶ direction. 

 

IV.  CONTINUUM MODELING OF THE EMM PLATE  

 
The dynamic behavior presented in the previous sections can be further modeled by using 

analytical approaches which provide more insight into the behavior of the system when 

undergoing internal resonance. The investigation developed here aims at developing an 

effective continuum model for different guided wave modes in the EMM plate, which are 

difficult to be measured experimentally. The analytical results are compared with the 

experimental measurements and the numerical simulations in different EMM plates. Some 

interesting dynamic phenomena will be discussed such as high-order guided wave coupling 

and repulsion in the anisotropic EMM plate. The developed effective continuum model can 

be applied to problems of time-dependent vibration and transient wave propagation in the 

EMM plate, which is important for its potential engineering applications. 

 

In general, based on the numerically determined effective stiffness, the 3-D stress-strain 

relation of the EMM plate in the principal coordinate system can be expressed as:  
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۔ۖەۖ
ଷଷ߬ଶଷ߬ଵଷ߬ଵଶۙۘۖߪଶଶߪଵଵߪۓ
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ێێۏ
ଵଷ000ܥଵଶܥଵଵܥۍێێ

ଶଷ000ܥଶଶܥଵଶܥ
ଷଷ000ܥଶଷܥଵଷܥ

ସସ00ܥ000
ହହ0ܥ0000

ۑۑےܥ00000
ېۑۑ ۔ۖەۖ

ଵଶۙۘۖߛଵଷߛଶଷߛଷଷߝଶଶߝଵଵߝۓ
ۖۗ.                                   

 

(11)

In an arbitrary x–y-z coordinate system (in-plane: x-y plane, out-of-plane: z axis), the 

constitutive equations can be derived using coordinate transformation and written as 

۔ۖەۖ
ۓ ௭߬௬௭߬௫௭߬௫௬ۙۘۖߪ௬ߪ௫ߪ

ۖۗ ൌ ҧ൧ܥൣ
۔ۖەۖ
ۓ ௫௬ۙۘۖߛ௫௭ߛ௬௭ߛ௭ߝ௬ߝ௫ߝ

ۖۗ,                                                           

 

(12)

where ܥҧ,  ݅, ݆ ൌ 1 to 6, are the transformed elastic constants. The equations of motion for 

the continuum plate with anisotropic mass density tensor can be written as  ߪ௫,௫  ߬௫௬,௬  ߬௫௭,௭ ൌ ሷݑ௫௫ߩ  ሷݒ௫௬ߩ  ሷݓ௫௭ߩ , ߬௫௬,௫  ௬,௬ߪ  ߬௬௭,௭ ൌ ሷݑ௫௬ߩ  ሷݒ௬௬ߩ  ሷݓ௬௭ߩ , ߬௫௭,௫  ߬௬௭,௬  ௭,௭ߪ ൌ ሷݑ௫௭ߩ  ሷݒ௬௭ߩ  ሷݓ௭௭ߩ . (13)

For the proposed metamaterial plate, the traction-free boundary conditions on the top and 

bottom surfaces are ߪ௭ ൌ ߬௫௭ ൌ ߬௬௭ ൌ 0, ݖ ൌ േ݄/2. (14)
For a guided wave along x direction, the displacements can be assumed as the form ݑ ൌ ,௭݁ሾೣ௫ିఠ௧ሿ݁ܣ ݒ ൌ ,௭݁ሾೣ௫ିఠ௧ሿ݁ܤ ݓ ൌ ௭݁ሾೣ௫ିఠ௧ሿ, (15)݁ܥ

where ݇௫ ൌ ߱ ܿൗ  is the wave number, ω is the angular frequency, ܿ is the phase velocity 

and  is a unknown variable to be determined. Substituting Eqs. (12) and (15) into Eq. (13), 

we have the following matrix form 

Γଵଵ Γଵଶ ΓଵଷΓଵଶ Γଶଶ ΓଶଷΓଵଷ Γଶଷ Γଷଷ൩ ൝ܥܤܣൡ ൌ 0,                                               

(16)

where Γଵଵ ൌ ҧଵଵܥ  ଶҧହହܥ െ ௫௫ܿଶ,Γଵଶߩ ൌ ҧଵܥ  ଶҧସହܥ െ ௫௬ܿଶ,Γଵଷߩ ൌ ሺܥҧଵଷ  ҧହହሻܥ െ ௫௭ܿଶ,Γଶଶߩ ൌ ҧܥ  ଶҧସସܥ െ ௬௬ܿଶ,Γଶଷߩ ൌ ሺܥҧଷ  ҧସହሻܥ െ ௬௭ܿଶ,Γଷଷߩ ൌ ҧହହܥ  ଶҧଷଷܥ െ .௭௭ܿଶߩ
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In order to obtain a nontrivial solution of Eq. (16), the following sixth-order polynomial 

needs to be satisfied:   ସଵߙ  ଶଶߙ  ଷߙ ൌ 0, (17)

where ߙ ሺ݈ ൌ 1, 2, 3ሻ are functions of the stiffness matrix ܥҧ ሺ݅, ݆ ൌ 1 to 6ሻ, the effective 

mass density ߩ௦ ሺݎ, ݏ ൌ ,ݔ ,ݕ   .ሻ and the phase velocity ܿݖ

By solving Eq. (17), the displacements can take the following summation forms as 

ݑ ൌ ቌ ݁ೕ௭ܣ
ୀଵ ቍ ݁ሾೣ௫ିఠ௧ሿ, ݒ ൌ ቌ ݁ೕ௭ܤ

ୀଵ ቍ ݁ሾೣ௫ିఠ௧ሿ,   
ݓ ൌ ቌ ݁ೕ௭ܥ

ୀଵ ቍ ݁ሾೣ௫ିఠ௧ሿ, 
(18)

where for each  (݆ ൌ 1 to 6) ܤ ൌ ,ܣܴ ܴ ൌ ΓଵଵΓଶଷ െ ΓଵଶΓଵଷΓଵଷΓଶଶ െ ΓଵଶΓଶଷ, ܥ ൌ ,ܣܵ ܵ ൌ ΓଵଵΓଶଷ െ ΓଵଶΓଵଷΓଵଶΓଷଷ െ ΓଶଷΓଵଷ. 
Substituting Eq. (18) into Eq. (14), we have 

ሺܪଵ, ,ଶܪ ݁േೕܣଷሻܪ ଶ⁄
ୀଵ ൌ 0 (19)

where ܪଵ ൌ ҧଵଷܥ  ҧଷଷܥ ܵ  ҧଷܥ ܴܪଶ ൌ ҧସସܥ ܴ  ҧସହሺܥ  ܵሻܪଷ ൌ ҧସହܥ ܴ  ҧହହሺܥ  ܵሻ
The existence of a nontrivial solution of Eq. (19) leads to two independent dispersion 

relations ܪଵଵሺܪଶଷܪଷହ െ ଷଷሻܪଶହܪ cot ൬݇ଵ݄2 ൰  ଷଵܪଶହܪଵଷሺܪ െ ଷହሻܪଶଵܪ cot ൬݇ଷ݄2 ൰ ଷଷܪଶଵܪଵହሺܪ െ ଷଵሻܪଶଷܪ cot ൬݇ହ݄2 ൰ ൌ ଷହܪଶଷܪଵଵሺܪ(20) 0 െ ଷଷሻܪଶହܪ tan ൬݇ଵ݄2 ൰  ଷଵܪଶହܪଵଷሺܪ െ ଷହሻܪଶଵܪ tan ൬݇ଷ݄2 ൰ ଷଷܪଶଵܪଵହሺܪ െ ଷଵሻܪଶଷܪ tan ൬݇ହ݄2 ൰ ൌ 0 (21)

which correspond to symmetric and antisymmetric wave modes, respectively. 
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To validate the continuum model, dispersion relations obtained from the current model will 

be compared with those from the FE simulation based on the detailed microstructures. We 

consider the EMM plate with the unit cell shown in Fig. 3 (a). In the first example, the 

microstructure geometrical and material parameters are given in Table 1 and wave 

propagation along principal  direction is considered. The effective stiffness matrix of the 

EMM plate can be obtained by using the numerically-based effective medium model, which 

is listed in Table 2.  
TABLE 2. Effective stiffness matrix of the EMM plate (unit: GPa) 

         

36.64 5.57 13.53 18.83 7.84 48.38 12.41 6.69 2.272 

 

  
FIG. 13. Comparison of the dispersion curves obtained by the continuum model,  FE simulation and 

experimental measurement for the guided wave along the principal  direction 

 

Fig. 13 shows the dispersion relation in the first Brillouin zone of guided wave propagation 

along principal  direction in the EMM plate obtained from the continuum model, which 

includes the lowest symmetric (S0) and antisymmetric (A0) guided wave modes and shear 
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horizontal (SH0) wave mode. For comparison, the dispersion relations predicted by the FE 

simulation based on the exact microstructure and the experimental measurement are also 

plotted in the figure. The bandgap for the lowest symmetric guided wave can be found in the 

frequency range of [17.7kHz, 22.8kHz], which has very good agreement with that from the 

experimental results. For the lowest antisymmetric guided wave and the shear horizontal 

wave, excellent agreement between the predictions of the current model and the exact FE 

simulation is found at low frequency range but small discrepancy at higher frequency regime.  

 

To understand wave behavior of different guided wave modes in the EMM plate, a guided 

wave propagating along a 45 degree with respect to the principal ݔଵ direction is studied. In 

the example, to demonstrate engineering application of metamaterial plate in the low-

frequency bandgap range, the rubber-coated lead cores are embedded in the epoxy matrix, 

with material properties for lead (ߩ ൌ 11310 ݇݃ ݉ଷ⁄ , ܧ ൌ ,ܽܲܩ13 ߥ ൌ 0.435), epoxy 

( ெߩ ൌ 1110 ݇݃ ݉ଷ⁄ , ெܧ ൌ ,ܽܲܩ4.4 ெߥ ൌ 0.38 ) and rubber ( ்ߩ ൌ 1300 ݇݃ ݉ଷ⁄ , ்ܧ ൌ10ܽܲܯ, ்ߥ ൌ 0.499), and the geometrical parameters of the microstructure are the same as 

those in Table 1. The anisotropic effective mass density tensor and the effective stiffness 

matrix are similarly obtained by using the numerically-based effective medium model. Fig. 

14 (a) shows the comparison of dispersion relations in the first Brillouin zone from the 

continuum model and the numerical simulation based on the exact microstructure, where ߱ 

is the locally resonant angular frequency of the microstructure along ݔଵ  direction and ݇כ ൌ ሺ݇ଵܽ  ݇ଶܽሻ/2. Excellent agreement can be observed in the two lowest order modes 

because the coupling of the difference wave modes does not occur.  

 

More complicated wave repulsions can be observed in the high-order wave mode diagram 

from the dispersion prediction by the exact numerical simulation; however, they cannot be 

predicted by the current continuum model. To give more intuitive understanding of the wave 

repulsion, the displacement fields of eigenmodes at several gap-edge frequencies marked in 

Fig. 14 (a) (the points 1-10) are plotted in Fig. 14 (b) to show the physical mechanism of the 

wave repulsion.  From Fig. 14 (b), it can be found that the dispersion curve containing points 

1, 7 and 9, which can also be predicted by the continuum model, describes the out-of-plane 

dominant motion. The wave repulsion, which is reflected at points 2 and 6, is caused by the 
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local rotation resonance (x-z plane) in the core. Therefore, it is understandable that the 

continuum model cannot capture this motion. As a result of the repulsion, the mode coupling 

can also be observed. For example, the displacement field in the lowest antisymmetric guided 

wave mode is dominated by the out-of-plane plate motion, as shown in Fig. 14 (b1), below 

the local rotation resonant frequency while is dominated by a coupling motion between the 

plate motion and local resonance motion above the local rotation resonant frequency, as 

shown in Fig. 14 (b7) and (b9). An additional flat band is found from the exact numerical 

simulation, which cannot be reflected from the continuum model at the frequency ߱ ߱⁄ ൌ1.6. From the displacement fields at points 3 and 8, it can be found that the narrow passing 

band is caused by the local rotation resonance (x-y plane) in the coating medium, which 

cannot be captured by the current continuum model. The difference between the current 

model and the exact numerical simulation is found for the high-order wave modes, the 

corresponding displacement fields are plotted in Fig. 14 (b) at points 4, 5 and 10. From the 

displacement fields at points 4, 5 and 10, it can be seen that the high-order wave modes are 

also the coupling modes of the plate motions and local rotation resonant motion. Therefore, 

the difference between the two models is due to the coupling behavior, which cannot be 

captured by the continuum model. 
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(a) 

   
 

  

(1) k*=0.24, ω/ω0=1.08 (2) k*=0.24, ω/ω0=1.14 (3) k*=0.24, ω/ω0=1.61 (4) k*=0.24, ω/ω0=1.68 (5) k*=0.24, ω/ω0=1.98

   
 

  

(6) k*=1.01, ω/ω0=1.12 (7) k*=1.01, ω/ω0=1.22 (8) k*=1.72, ω/ω0=1.61 (9) k*=1.72, ω/ω0=1.64 (10) k*=1.72, ω/ω0=2.04

(b) 

FIG. 14. (a) Comparison of the dispersion curves obtained by the continuum model and the FE simulation 

for the guided wave propagation along 45 degree with respective to the principal  direction; (b) The 

displacement fields around several gap-edge modes in the points 1-10. 
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Based on the developed continuum model, we will further study the wave behavior of the 

anisotropic EMM plate such as existence of preferential directions of effective velocities and 

energy flow. Figs. 15 (a) and (b) show the slowness curves of both symmetric and anti-

symmetric waves in the metamaterial plate at three different frequencies, respectively. In the 

figures, ߱ is the locally resonant angular frequency of the microstructure along ݔଵ direction, ்ܿ ൌ ඥܥ ⁄ߩ  is the in-plane bulk transverse wave velocity and ߩ is the static mass density 

of the plate. In the example, the microstructure design proposed in Fig. 3 (a) is chosen with 

lead, rubber and epoxy as the core, coating and matrix materials, respectively. From the Fig. 

15 (a), we notice that the anisotropy of effective velocities is obvious; the effective velocity 

along ݔଵ direction is higher than that along ݔଶ direction. For the frequencies at ߱ ߱⁄ ൌ 0.14 

and 0.7, the shapes of the slowness curves indicate strong energy focusing along specific ݔଵand ݔଶ directions. For the frequency at ߱ ߱⁄ ൌ 2.0, the anisotropy increases and most 

energy will propagate along ݔଵ direction. However, for antisymmetric wave, as shown in Fig. 

15 (b), changes in the shapes of slowness curves can be found at the three different 

frequencies. 

 

 
 

 
(a) Symmetric wave (b) Antisymmetric wave 

FIG. 15. Slowness curves of symmetric and antisymmetric wave at different frequencies 
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In order to further evaluate the difference between the phase direction and energy direction 

quantitatively at different frequencies, the energy flow direction as a function of phase 

direction angle is plotted in Fig. 16. For simplicity but without loss of generality, we assume 

that the guided wave is propagating along x-axis which has an angle δ with respect to the 

principal ݔଵ -axis and ߠ ൌ ଵሺడఠି݊ܽݐ డ⁄డఠ డೣ⁄ ሻ  is the difference between the group velocity 

direction and the phase velocity direction. It can be noticed that the relation between the 

directions of phase velocity and group velocity is almost invariable for the antisymmetric 

wave at different frequencies, which explains the consistence of the shapes of slowness 

curves in Fig. 15 (b). In contrast with the results of the antisymmetric wave, the relations 

between the directions of phase velocity and group velocity for different symmetric wave 

modes change obviously at different frequencies in Fig. 16, which is also consistent with the 

result shown in Fig. 15 (a). It should also be noticed that except for the two principal 

directions, the zero value of ߠ, which represents that the energy propagation direction is 

parallel to the phase direction, also occurs when the first symmetric wave (black circle and 

red triangle) propagates along the direction that deviates at 50° to 60° from the principal ݔଵ-

axis. However, no energy flow propagates parallel to the phase direction when the 

propagation direction of the second symmetric wave mode (blue square) does not coincide 

with either principal direction of the EMM plate. 
 

 
FIG. 16.  Energy direction θ with respect to the phase direction δ for symmetric and antisymmetric wave 

propagations at various frequencies  
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V. CONCLUSION 

 
This paper presented a new microstructure design and conducted an experimental validation of 

wave propagation in an EMM plate with anisotropic effective mass density. The design was 

achieved via numerically-based effective medium model. The experimental validation was 

conducted in the EMM plate through the analysis of the harmonic and transient wave 

propagation. The group and phase velocities as functions of frequency were obtained from 

transmission measurements of the transient wave signals with the aid of the wavelet technology, 

from which the effective mass densities along the two principal directions of the proposed 

EMM plate were then experimentally demonstrated for the first time. Excellent agreements 

between the experimental results and those from the numerically-based effective medium model 

were observed. Finally, a continuum model of guided wave propagation in the anisotropic 

EMM plate has been developed. The continuum model can correctly predict different guided 

wave modes in the EMM plate, which are difficult to be measured experimentally. Particularly, 

the high-order guided wave coupling and repulsion as well as the preferential energy flow 

direction in the anisotropic EMM plate were discussed.  
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