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Abstract 

I present a highly accurate computational study on atomic order in 2-nm cuboctahedral 

Au-Pd nanoparticles.  Equilibrium atomic structures, energies and electronic surface d-

band centers have been calculated across the entire range of compositions at different 

temperatures using a Bayesian approach to cluster expansions.  The estimated prediction 

error in formation energies calculated by the cluster expansion, relative to density 

functional theory, is approximately 1 meV / atom.  This prediction error would be low for 

a cluster expansion on a bulk material, and it is exceptionally low for a study of 

nanoparticles of this size.  This result was accomplished by extending the Bayesian 

approach for cluster expansions to account for non-local, composition-dependent effects 

that might otherwise not be captured.  For this system the Bayesian approach is estimated 

to be approximately five times as efficient as more common cluster selection techniques.   
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Atomic order in nanoscale materials plays an important role in a variety of emerging 

technologies, including lithium-ion batteries,1 data storage,2 and catalysis.3, 4  One of the 

great challenges in the design of new nanoscale materials is the determination of how 

atomic order affects their properties.5  Experimental characterization of the atomic 

structure of nanoscale materials can be very difficult, and computational methods 

developed to study bulk crystals can become prohibitively expensive when applied to 

nanoscale materials due to the loss of translational symmetry.  In this communication, I 

demonstrate how this computational expense can be dramatically reduced by using 

machine learning techniques to address the particular challenges posed by nanoscale 

materials.  As a result, it becomes feasible to very rapidly and accurately evaluate the 

properties of nanoscale materials as a function of atomic order.  I demonstrate this 

method by predicting the structures, energies, and centers of the electronic surface d-band 

for 2-nm cuboctahedral Au-Pd nanoparticles across the entire composition range with an 

estimated accuracy of 1 meV / atom relative to density functional theory (DFT).6 

 

My approach is an extension of the cluster expansion method that has been widely used 

to study atomic order in bulk compounds.7  The cluster expansion method is applicable to 

materials such as fcc alloys in which the general topology of atomic sites is known but 

the ordering of atoms on those sites is not.  I will use a binary alloy nanoparticle as an 

illustration, and it is straightforward to extend the approach to the general case.  To start, 

each atomic site in the crystal is assigned a site variable, is .  These site variables are 

similar to spin variables in an Ising model,8 but in an A-B alloy the value 1is =  indicates 

element A is present at the thi  site, and 1is = −  indicates element B is present.  A 
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property of the material may then be expressed as a function of these site variables, 

( )F s .  The function ( )F s  is expanded as a linear combination of basis functions, each 

of which is the product of a cluster of site variables: 

 ( ) 0 cluster i
clusters i cluster

F V V s
∈

= + ∑ ∏s  (1) 

where the clusterV  are unknown coefficients known as effective cluster interactions (ECI), 

and 0V  is a constant term representing the “empty” cluster.  An example of a cluster of 

sites might be a nearest-neighbor pair of sites, and the number of sites in a cluster may 

range from zero to all the sites in the material.  When all possible clusters are included, 

the expansion in equation (1) is exact. 

 

Because it is usually impractical to determine values for all ECI in a cluster expansion, it 

is common to reduce the expansion so that values only need to be determined for a 

manageable number of distinct ECI.  One way to reduce the number of distinct ECI is to 

take advantage of the symmetry of the material.  For example, in a bulk FCC alloy all 

nearest-neighbor pairs are symmetrically equivalent, so they all must have the same ECI 

values.  It is also possible to “truncate” the cluster expansion, by recognizing that the ECI 

for clusters with a large number of sites, or a large distance between sites, are typically 

very small.  It is commonly assumed that these ECI may be set to zero, effectively 

removing the clusters from the expansion, with little loss of accuracy.   The selection of 

which clusters to include in the expansion is usually accomplished by minimizing the 

cross-validation error in a set of training data,9 and a least-squares fit is used to assign 

values to the ECI.  The resulting expansion makes it computationally feasible to very 
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rapidly predict property values for a large number of atomic configurations, enabling 

thermodynamic averaging over configurations and combinatorial searches for structures 

with optimal property values.   

 

The cluster expansion approach has previously been used to model atomic order in bulk 

materials and predict the shape of nanoparticles,10, 11 but modeling internal atomic order 

in nanoparticles is substantially more challenging.  Because the symmetry of a 

nanoparticle is much lower than that of a bulk material, there are many more 

symmetrically distinct, significant ECI in a nanoparticle.  When using a least squares fit, 

it is necessary to include at least as many structures in the training set as there are 

unknown ECI, resulting in the need for large training sets.  In addition, the low symmetry 

of the nanoparticle makes the calculation of the property value much more expensive for 

each element in the training set.  The combination of these effects can make it 

prohibitively expensive to generate sufficient training data.  This problem can be 

alleviated through the use of a Bayesian cluster expansion, in which a prior probability 

distribution is assigned to ECI values and cross-validation is used to optimize the shape 

of the distribution.12  Among the benefits of this approach is that it allows for an 

arbitrarily large number of ECI to be included in the expansion, regardless of the training 

set size.  The prior probability distribution can be used to couple the ECI between clusters 

of sites that are congruent but not symmetrically equivalent.  For example, it may be 

supposed a priori that the ECI for a nearest-neighbor pair three layers below the 

nanoparticle surface should be close the ECI for a nearest-neighbor pair four layers below 

the surface.   
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It has previously been demonstrated that the Bayesian approach significantly reduces the 

size of the training set required to fit a cluster expansion to both bulk and nanoparticle 

energies calculated by the embedded-atom method.12, 13  However real alloys are more 

challenging, as they include non-local electronic effects.  The need to better represent 

non-local effects in cluster expansions has been discussed elsewhere,14 and a proposed 

solution is to use a composition-dependent linear transformation of the basis functions to 

reduce the number of significant ECI in the cluster expansions.15-17  This approach is 

effective because, as in the Bayesian approach, the resulting cluster expansion can 

include interactions from more distinct clusters of sites than there are structures in the 

training set.  However, in practice both approaches rely on the evaluation of interactions 

for a finite number of clusters up to a maximum cluster size, making it difficult to capture 

truly non-local contributions to the energy. 

 

Some contributions to the energy are composition-dependent, and these are poorly 

represented by a sum of local interactions.  For example, in the Au-Pd nanoparticles 

considered in this communication, when the number of gold atoms (out of 201 total 

atoms) reaches 190, an electronic energy level is completely filled, and the next available 

electronic energy level is calculated to be 275±27 meV higher in energy.  This gap was 

observed in over 20 different nanoparticles with the same composition, regardless of 

atomic order.  The 191st gold atom contributes an extra valence electron that enters this 

high-energy level, resulting in a discrete jump in the particle energy as a function of 

composition.   
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Such composition-dependent contributions to the energy can be addressed by modifying 

the cluster expansion method, resulting in expansions that are able to rapidly predict the 

formation energies of Au-Pd nanoparticles across the entire range of compositions with 

accuracy of about 1 meV/atom.  I accomplish this by replacing the constant term 0V  with 

composition-dependent terms 0,nV , where n  is the number of gold atoms in the 

nanoparticle.  For a 201-atom gold nanoparticle, this approach introduces an additional 

201 unknown variables to the cluster expansion.  If these terms were independent of one 

another, very large training sets would be required to determine the values of  0,nV  at each 

possible composition.  However it may be expected that the ECI values for compositions 

that are close to each other must also be close.  To enforce this expectation, I use the 

Bayesian prior distribution to couple empty ECI values, much in the same way the 

Bayesian prior distribution is used to couple the values of the ECI for congruent clusters.  

Specifically, for the 201-atom Au-Pd nanoparticles, the prior distribution for the ECI 

takes the form: 

 ( )
( )2

0, 0, 1
2

0

201
2

1

n nV V

n
p e σ

−− −

=

∝ ∏v  (2) 

where v  is a vector containing all ECI to be fit, ( )p v  is the prior probability 

distribution, and 0σ  is a constant to be determined via cross validation.  Conceptually, 

this approach is analogous to connecting all pairs of values 0,nV  and 0, 1nV +  with springs, 

where the spring constant is 2
0σ − .   
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The full prior distribution used in the Bayesian cluster expansions for this communication 

is the product of three terms: 

 ( )
( ) ( )2 22

0, 0, 1
22 2

0

201
22 2

0 , 1

n nV V V VV

n
p e e e

α βα

αβα σσ σ

α α β α

−− − − −−

≠ ≠ =

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟∝ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∏ ∏ ∏v  (3) 

where the last term is given by equation (2) in the text and the first two terms are 

described in reference 12.  For clarity an irrelevant normalization constant has been left 

out of the right side of equation (3).  The subscripts α  and β  represent orbits of 

symmetrically equivalent clusters.  Equation (3) results in the following regularization 

matrix, as defined in reference 12: 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A B
Λ

C D
 (4) 

where A , B , C , and D  are all submatrices.  A  is a 202 × 202 matrix that represents the 

concentration-dependent empty ECI, with elements given by 0,0 202,202 0A A λ= = , 

, 02i iA λ=  for 0 202i< < , , 1 1, 0i i i iA A λ+ += = − , where 0λ  is a parameter to be optimized.  

B  and C  are matrices in which all elements are 0, and D  is the regularization matrix 

described in reference 12, with the row and column for the empty ECI removed.   

 

For the Bayesian cluster expansions in this communication, the parameters αλ  and αβλ  in 

the regularization matrix (as defined in reference 12) are given by: 

 
3 4

1

2

5

1

1

0

r n

n

e e nα α

α
α λ λ

α

α
αβ

λ
λ

λ

λ λ α β
λ

α β

=⎧⎪= ⎨
>⎪⎩

⎧⎪= ⎨
⎪⎩

 for 

 for  

if  and  are congruent

if  and  are not congruent

 (5) 
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where nα  and rα  are, respectively, the number of sites per cluster in α  and the maximum 

distance between sites in Angstroms.  The regularization parameters 0λ , 1λ , 2λ , 3λ , 4λ  

and 5λ  were optimized by using a conjugate gradient algorithm to minimize the leave-

one-out cross-validation error.  The resulting prior probability distribution encourages to 

the ECI to take on values that are physically more likely, but it does not impose any hard 

constraints.  For example, 0,nV  could vary rapidly with n  if the training data sufficiently 

support such a change.  As a result, there is a dramatic reduction in the size of the training 

set required to reach a given level of accuracy. 

 

For comparison with the Bayesian approaches cluster expansions were also trained using 

the more common cluster selection method, in which there is no regularization matrix.  

The set of included clusters was selected by using simulated annealing to minimize the 

leave-five-out cross-validation error, as this was found to result in lower prediction errors 

than the leave-one-out cross validation error.  For every cluster included in the expansion, 

all subclusters were included as well.   

 

To evaluate the Bayesian cluster expansion, density functional theory (DFT) calculations 

were used to generate a data set for 171 cuboctahedral 201-atom (~2 nm) Au-Pd 

nanoparticles.  All DFT calculations were performed using the Vienna Ab-Initio 

Simulation Package (VASP)18 with the Perdew-Burke-Eznerhof (PBE)19 exchange-

correlation functional.  The standard projector-augmented wave (PAW)20 potentials 

provided with VASP were used, and VASP was run with the precision level set to 

“accurate”, ensuring that there were no wrap-around errors in the Fourier transforms.  A 
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single k-point at the center of the Brillouin zone was used for each nanoparticle, and 

Gaussian smearing with a width of 0.05 eV was used to set partial occupancies.  Real-

space projectors were used to evaluate the non-local part of the PAW potential.  

Calculations were stopped when the difference for the total energy for the nanoparticle in 

successive ionic relaxation steps was less than 1 meV.  Calculations were run in a 

periodic cubic cell with length of 3 nm on each side, ensuring at least 1nm between each 

nanoparticle and its periodic images.  The surface d-band centers were calculated by 

restarting the calculations from the relaxed structures and using the projected density of 

states for the first two surface layers.  

 

The set of 171 nanoparticles consisted of a set of 42 structures selected to sample 

configuration space in a way that minimizes the variance in the predicted property values, 

as described in reference 21.  The remaining 129 structures were low-energy structures at 

different compositions predicted by the cluster expansion.  Due to the importance of the 

end compositions on the quality of the cluster expansion,21 the pure Au and pure Pd 

nanoparticles were included twice in the training set in a way that ensured that during 

cross-validation the cluster expansion was always fit to a set of structures that included 

both pure Au and pure Pd.   

 

To demonstrate the predictive power of the Bayesian approach I have generated 10 

randomly-ordered lists of the set of 171 structures.  Cluster expansions were trained using 

the first 10 structures in each list, and the prediction error of the cluster expansion was 

evaluated against a test set consisting of the remaining 161 structures.  The average of 



11 
 

these 10 prediction errors was taken to be the estimated prediction error.  This process 

was then repeated by incrementally moving structures from the test set to the training set.  

The required size of the training set to reach different levels of accuracy is given in Table 

I.  To achieve an accuracy of 5 meV/atom, the Bayesian approach with concentration-

dependent ECI is about five times as efficient as cluster selection, and about twice as 

efficient as a Bayesian approach with concentration-independent ECI. 

 

 5 
meV / 
atom 

4 meV 
/ atom 

3 meV 
/atom 

2 meV 
/ atom 

Cluster 
Selection 

118 >160 >160 >160 

Bayesian with 
concentration-
indepenent ECI 

40 65 >160 >160 

Bayesian with 
concentration-
dependent ECI 

24 31 46 76 

Table I.  The number of structures in the training set required to reach different levels of 
estimated prediction error.   

 

For the comparisons listed in Table I, the set of candidate clusters included all pairs up to 

the second-nearest neighbor and all 3-, and 4-, site clusters up to the nearest neighbor, for 

a total of 102 symmetrically distinct clusters.  The cluster expansion generated with the 

full set of 171 training structures used all pairs up to the ninth-nearest neighbor, and all 3- 

and 4- site clusters up to the second nearest neighbor, for a total of 398 symmetrically 

distinct clusters.  It was found that this set of clusters slightly improved the accuracy of 

the Bayesian approach, resulting in a cross-validation error of 1.02 meV / atom.  

However it was not used for comparison with cluster selection because it made the cluster 

selection approach significantly worse.   
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There were not enough structures in the training set to evaluate higher levels of accuracy 

for cluster selection, but an additional data point comes from the recent work of Yuge,22 

in which a genetic algorithm23 was used to select clusters for a cluster expansion of a 55-

atom Pt-Rh nanoparticle.  With 327 nanoparticles in the training set, a cross-validation 

error of 2.9 eV/atom was achieved.  The approach outlined in this communication 

achieves the same average cross-validation error for a 201-atom Au-Pd nanoparticle with 

only 20 nanoparticles in the training set.  Yuge did not report prediction error measured 

against an independent test set, but the estimated prediction error for the Au-Pd 

calculations is less than 2.9 eV/atom with only 47 structures in the training set. 

 

The cluster expansion generated by the full set of 171 structures allows for a very 

accurate theoretical study of atomic order in nanoparticles.  The estimated prediction 

error relative to DFT is approximately 1 meV per atom, which would be low for a bulk 

cluster expansion and is exceptionally low for a 2nm nanoparticle.  I have used this 

cluster expansion in Monte Carlo simulations to predict both the ground state and the 

equilibrium room-temperature atomic order in the nanoparticles (Figure 1).  The results 

are qualitatively similar to results obtained both experimentally and with the embedded 

atom potential,24, 25 in that there is competition between the preference of Au atoms to 

occupy sites with low coordination and the preference for Pd atoms occupy sites adjacent 

to Au atoms. 
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Figure 1  (Color online).  Atomic ordering in Au-Pd nanoparticles.  The first and third 
rows show the exterior of the nanoparticles, and the second and fourth rows show a cross-
section of the middle of the nanoparticles. 

 

I have extended my analysis to the electronic structure of nanoparticles.  It has been 

shown that the binding energy of adsorbates and catalytic activity of metallic surfaces is 

related to the position of the center of the electronic d band at the surface.26  I have 

calculated the surface d-band centers for each of the particles in the training set and 

trained a separate cluster expansion to predict the surface d-band center as a function of 

atomic order.  The set of 398 clusters was used for the d-band center cluster expansion, 

resulting in a cross-validation error of 7 meV.  The two cluster expansions (of energies 

and d-band centers) were used in a Monte Carlo simulation to predict the equilibrium 

distribution of d-band centers in an ensemble of nanoparticles at 300K.  The results are 

shown in Figure 2.   These results can only be obtained by using a method that is able to 

simultaneously rapidly evaluate the atomic and electronic structure of the nanoparticles.  
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Figure 2.  Surface d-band centers as a function of composition at 300K.  The y-axis 
shows the deviation of the surface d-band center from a linear interpolation of the surface 
d-band centers of pure Au and pure Pd particles.  At each composition, the predicted 
thermodynamic spread in surface d-band centers for an ensemble of nanoparticles is 
shown. 

 

Atomic-level details of the surface structure are also important predictors of catalytic 

activity.  For example, it is known that the rate of the acetoxylation of ethylene on Au-Pd 

surfaces depends on the spacing between Pd monomers on the surface.27  Similarly, 

hydrogen adsorption on the { }111  surface of Au-Pd nanoparticles requires the existence 

of Pd dimers on the surface.28  The cluster expansion enables accurate prediction of the 

atomic arrangement on the nanoparticle surface as a function of composition and 

temperature.  The fractions of Au-Au dimers, Au-Pd dimers, and Pd-Pd dimers on the 

{ }111  surfaces at 300K are shown in Figure 3.  The ability to rapidly and accurately 

predict equilibrium electronic and atomic structure as a function of composition and 

temperature should make this approach very useful for the design of new catalysts. 
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Figure 3  (Color online). Dimer distribution on the { }111  surface at 300K.  The x-axis is 
the total fraction of Au in the nanoparticle, and the y-axis is the fraction of nearest-
neighbor dimers.   

 

In this communication I have demonstrated that for DFT calculations on alloy 

nanoparticles, the Bayesian approach to creating cluster expansions reduces the 

computational cost to reach a given level of accuracy by nearly an order of magnitude 

relative to cluster selection.  To account for significant composition-dependent effects, 

the previously-presented Bayesian cluster expansion method has been extended to allow 

for composition-dependent ECI.  As a result, it is possible to accurately predict structure-

property relationships in multi-nanometer alloy nanoparticles with reasonable 

computational cost.  This approach should be a valuable tool for researchers seeking to 

accelerate the development of new technologies through the rational design of nanoscale 

materials.  
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