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ABSTRACT 

We present a density functional theory (DFT) framework taking into account the finite 

temperature effects to quantitatively understand and predict charged defect equilibria in a metal 

oxide. Demonstration of this approach was performed on the technologically important 

tetragonal zirconium oxide, T-ZrO2. We showed that phonon free energy and electronic entropy 

at finite temperatures add a non-negligible contribution to the free energy of formation of the 

defects. Defect equilibria were conveniently casted in Kröger-Vink diagrams to facilitate realistic 

comparison with experiments. Consistent with experiments, our DFT-based results indicate the 

predominance of free electrons at low oxygen partial pressure (
2

610OP −≤  atm) and low 

temperature ( 1500T K≤ ). In the same regime of 
2OP but at higher temperatures, we discovered 

that the neutral oxygen vacancies (F-centers) predominate. The nature of the predominant defect 

at high oxygen partial pressure has been a long standing controversy in the experimental 
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literature.  Our results revealed this range to be dominated by the doubly charged oxygen 

vacancies at low temperatures ( 1500T ≤ K) and free electrons at high temperatures. T-ZrO2 was 

found to be hypostoichiometric over all ranges of T and 
2OP mainly due to the doubly charged 

oxygen vacancies, which are responsible for inducing n-type conductivity via a self-doping 

effect. A range of 1.3 eV in the band gap of T-ZrO2 starting from the middle of the gap towards 

the conduction band is accessible to the chemical potential of electrons (Fermi level) by varying 

T and 
2OP  without extrinsic doping. The approach presented here can be used to determine the 

thermodynamic conditions that extremize certain desirable or undesirable defect to attain the 

optimal catalytic and electronic performance of oxides.  

 

I. INTRODUCTION 

 In 1926 Frenkel introduced the notion of point defects in crystalline solids to elucidate 

the phenomenon of diffusion.1 Now we understand that not only diffusion but almost all 

crystalline solids’ properties are affected by defects and in particular by point defects.2 Metal 

oxides are no exception in terms of the dependence of their properties on the underlying point 

defects. This class of materials is currently widely used in various energy systems for a multitude 

of purposes3,4,5,6 and it is crucial to understand their defect equilibria and transport properties in 

order to advance these energy systems. While in operation, metal oxides are typically exposed to 

a wide range of temperatures and oxygen chemical potential and this, in turn, renders our task of 

understanding and predicting their defect equilibria and transport properties even more difficult. 

In this paper we thoroughly analyze the defect equilibria in a technologically important metal 

oxide, namely tetragonal zirconium oxide (T-ZrO2). Our approach is based on Density 
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Functional Theory (DFT) taking into account finite temperature effects and spanning a wide 

range of oxygen chemical potentials. In a companion article we extend this analysis to include 

the transport kinetics of oxygen defects.7 We believe that the framework we establish in these 

two articles serves as a model in analyzing point defects in metal oxides in realistic 

thermodynamic conditions. 

 Zirconia (ZrO2) belongs to the list of the most important metal oxides due its wide usage 

in different technological applications.8 In energy systems it is used in fuel cells,3 in gas sensors,9 

as a thermal barrier coating,10 and as a protective natively grown layer against nuclear fuel 

cladding corrosion in light water-cooled nuclear reactors.11,12,13 Its applications were recently 

extended to include usage as a gate dielectric for metal oxide semiconductor devices5 and in 

biomedical applications such as hip implants14 and dental restorations.15 This diversity in 

zirconia applications is attributed to its superior properties; in particular it has high strength and 

fracture toughness,16 an ionic conductivity that can be significantly enhanced by doping17 and 

straining,18 and high dielectric constant.5 At ambient pressure zirconia crystallizes in three 

polymorphs. Up to 1440 K the monoclinic phase is stable, above this temperature the tetragonal 

phase is stable up to 2640 K where it transforms to cubic phase, and finally melting occurs at 

2870 K.19 Among these three, the tetragonal phase has the highest fracture toughness,8,16 the 

highest dielectric constant,20 and is the corrosion resistive phase.11 Although tetragonal zirconia  

is thermodynamically stable at very high temperatures, it can be stabilized at much lower 

temperatures by stresses, doping or reducing the crystallite size.8 Improving the corrosion 

resistance,11,12,21 enhancing the performance as a gate dielectric,5 and preventing the well-known 

low temperature degradation of T-ZrO2
16 depend in first place on our understanding of the defect 

physics in this phase.  
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 Conductivity and thermogravimetry measurements were performed to understand the 

defect equilibria in T-ZrO2.22,23,24,25,26 However, these measurements could not fully resolve the 

nature of the native dominant point defects mainly due to the interfering role of impurities and 

the difficulty in performing the measurements at the very high temperatures where this phase of 

zirconia is stable. In spite of this, all these experiments confirmed that at low oxygen partial 

pressure T-ZrO2 is a mixed ionic (predominantly doubly charged oxygen vacancies) and 

electronic (n-type) conductor, and at high oxygen partial pressure it is mainly an ionic conductor. 

Also two experiments confirmed that the electronic transference number increases by elevating 

the temperature.24,25 However, the type and the charge state of the predominant point defect at 

high oxygen partial pressure remained elusive. Furthermore, all the models proposed to 

understand the experimental measurements were based on fully ionized defects ignoring the 

ability of zirconia point defects to trap electronic charge carriers and hence changing their charge 

states. On the other hand, theoretical ab initio calculations focused only on oxygen 

vacancies27,28,29 and indeed only the study by Eichler27 considered the charge states of this 

particular defect. Moreover none of the theoretical studies considered finite temperature effects 

or the role played by oxygen chemical potential on defect equilibria. Hence, a comparison 

between theory and experiments was never possible to perform.  

 We establish in this paper a framework to predict and understand defect equilibria in 

metal oxides, taking the T-ZrO2 as a model system. Our approach explicitly considers the effect 

of the relevant thermodynamic conditions in order to bridge the gap between theory and 

experiments. In particular we used DFT to calculate the formation energies and identify the 

defect structure for oxygen and zirconium defects in all possible charge states. Extension to free 

energies from DFT-calculated formation energies was accomplished by sampling the relevant 
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excitations, mainly the phonon free energy and the electronic entropy. Finally, the overall picture 

of the defect equilibria was conveniently casted in a Kröger-Vink diagram.  This was followed 

by a detailed comparison with the priorly reported experimental measurements. Our results are in 

agreement with the experimental finding that at low oxygen partial pressure (
2

610OP −≤  atm), 

free electrons predominate. In the same range of 
2OP , but at higher temperatures, we found that 

neutral oxygen vacancies (F-centers) are predominant. Moreover, our calculations revealed that 

at high 
2OP , the doubly charged oxygen vacancies predominate at low temperatures ( 1500T ≤ K) 

and free electrons predominate at high temperatures. We extended our analysis to track the 

dependence of two important variables, namely the chemical potential of electrons (Fermi level) 

and off-stoichiometry, on the thermodynamic conditions. We found out that T-ZrO2 is 

hypostoichiometric in all ranges of T and 
2OP . In addition, a range of 1.3 eV in the band gap of 

T-ZrO2 from the middle of the gap and towards the conduction band is accessible to the chemical 

potential of electrons by a self-doping effect from the doubly charged oxygen vacancies, which 

cause n-type conductivity.  In a companion paper,7 we use the defect equilibria established here 

as the backbone to predict oxygen transport kinetics in T-ZrO2 in the wide range of 

thermodynamic conditions explored here. 

 

II. THEORETICAL AND COMPUTATIONAL APPROACH 

 This section is presented in four subsections. First, we present the relevant 

thermodynamics of defect formation in a metal oxide. Second, we describe the algorithm of 

constructing the Kröger-Vink diagram. Third, we explain how we included finite temperature 

effects in our calculations. Finally, we describe the needed DFT calculations. 
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A. Thermodynamics of Defects Formation 

 To understand the energetics of the formation of a point defect in a metal oxide 

exemplified here by tetragonal ZrO2, we appeal to the picture of a constrained grand canonical 

ensemble. In this picture a crystal of ZrO2 of a fixed volume is constrained to exchange oxygen, 

but not zirconium, with an oxygen reservoir of a fixed temperature and oxygen chemical 

potential. In fact the volume does not have to be fixed but we assume that the change of volume 

due to the creation of point defects is negligible when these defects have dilute concentrations. In 

this constrained ensemble, physically the creation of all types of point defects occurs by 

exchanging only oxygen with the reservoir. Thus an oxygen vacancy forms by removing an 

oxygen atom from the crystal and inserting it in the reservoir. Conversely, incorporating an 

oxygen atom from the reservoir into an interstitial site in the crystal leads to the formation of an 

interstitial oxygen. To create a zirconium vacancy, two oxygen atoms get incorporated in the 

crystal in regular lattice sites representing a ZrO2 unit formula missing zirconium cation. On the 

other hand creating a zirconium interstitial requires moving two oxygen atoms from the crystal 

into the reservoir and displacing a zirconium cation from its original lattice site to an interstitial 

site. In all these reactions charge neutrality has to be maintained. We elaborate on the latter 

condition in the next subsection. While this formalism does not rely on the traditional concepts 

of Frenkel and Schottky disorder, accounting for them is still amenable within this constrained 

ensemble as can be readily understood on the basis of the defect creation processes described 

above (simply by composing Frenkel or Schottky from their constituents) and as will be shown 

quantitatively later in this subsection. The picture described above is necessary to understand the 

energetics of point defect creation, however, the actual modeling of these defects in a DFT 
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supercell is described in subsection II.D. We can now define the Gibbs free energy of formation, 

f
qDG , ,of the defect D that has a charge q as follows: 

, ( ) ,f solid solid solid solid
D q potential vib vib elec DG E E T S S P V μ= Δ + Δ − Δ + Δ + Δ ±       (1) 

where solid
potentialEΔ , solid

vibEΔ , solid
elecSΔ , solid

vibSΔ , VΔ are the differences in potential energy, vibrational 

energy, electronic entropy, vibrational entropy, and volume between the defected and perfect 

crystals. P is the pressure, T is the temperature, and Dμ is the chemical potential of the species D. 

As discussed above the change in volume is negligible and hence the VPΔ  term can be set to 

zero. The term solid solid solid
vib vib vibE T S FΔ − Δ =  represents the phonon contribution to the free energy of 

formation of the defect. This contribution is significantly enhanced with temperature. The term 

solid
elecT S− Δ is also enhanced with the temperature and adds a non-negligible contribution to the 

free energy of formation of the defect. Subsection II.C addresses these finite temperature effects. 

It is worth noting that the convention is to exclude the configurational entropy of the defects 

from the definition of the Gibbs free energy. However, the contribution of this entropy is still 

accounted for implicitly when computing the concentrations of the defects as described in the 

next subsection. Indeed defects are stabilized in crystals at finite temperature mainly due to the 

configurational entropy.30 Finally, we define the term solid
potential DE μΔ ± as the formation energy of 

the defect and denote it by ,
f

D qE . Next we describe the details of the latter term. 

 The formation energies of oxygen and zirconium defects can be computed as follows: 

2,
1 ( ) ,
2

f
O q defected perfect O VBM F MPE E E q E Eμ μ= − ± + + +        (2) 

2,
3 ( ) ,f

Zr q defected perfect O VBM F MP
NE E E q E E

N
μ μ= − + + +∓ ∓       (3) 
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where the top signs are for vacancies and the bottom signs are for interstitials. Edefected is the DFT 

energy of the supercell that contains the defect. Eperfect is the DFT energy of the perfect supercell. 

2Oμ is the chemical potential of oxygen. EVBM is the energy of the valence band maximum in the 

perfect supercell. Fμ  is the chemical potential of electrons (or the Fermi level) relative to the 

valence band maximum and hence it can take values from 0 to the width of the band gap in the 

perfect crystal. EMP is the Makov-Payne correction for the multipole interactions between the 

periodic images of the charged defects.31 Further details about the computation of formation 

energies and the accuracy of the Makov-Payne correction are given in the Supplemental 

Materials (S.M.).32 

 The chemical potential of oxygen, 
2Oμ , is defined as follows:33 

2

2 2 2 2

0 0
0( , ) ( , ) ln( ),ODFT

O O O O B

p
T p E T P k T

P
μ μ= + +      (4) 

where, 
2

DFT
OE  is the total energy of an isolated oxygen molecule as computed by DFT, 

2Op is the 

partial pressure of the oxygen gas, and Bk  is Boltzmann constant. 
2

0 0( , )O T Pμ is the difference in 

chemical potential of O2 between T=0 K and the temperature of interest at the reference pressure 

0P  which is typically taken as 1 atm. The term 
2

0 0( , )O T Pμ was obtained from thermo-chemical 

tables.34 It is important to note that equation (3) implicitly indicates that the chemical potential of 

zirconium, Zrμ , is defined as: 

2 2
,DFT

zr ZrO OEμ μ= −      (5) 

where 
2

DFT
ZrOE is the DFT energy of the unit formula of ZrO2 in the perfect crystal of zirconia. This 

definition is consistent with the constrained grand canonical ensemble picture that we described 

in the beginning of this section and has been adopted in studying charged defects in other 



9 

 

oxides.35,36 As mentioned in the beginning of this subsection, it is still possible to account for the 

traditional concepts of Frenkel and Schottky disorder. The formation energy of composite 

defects such as Frenkel pair or Schottky defect becomes the sum of the individual formation 

energies of the components of the composite defects as can be readily seen from equations (2), 

(3).  

B. Construction of the Kröger-Vink diagram  

 The basic idea that governs the Kröger-Vink diagram30 is that at a given temperature and 

oxygen partial pressure, the concentration of ionic and electronic defects should sum up to 

achieve charge neutrality in the bulk of the ionic crystal. This statement can be expressed in 

mathematical terms as follows: 

,
[ ] 0,q

v c
D q

q D p n+ − =∑        (6) 

where [Dq] is the concentration of a point defect D of charge q, pv is the concentration of holes in 

the valence band, nc is the concentration of electrons in the conduction band, and the summation 

is taken over all charged defects. The concentration of a point defect D with charge q was 

derived by Kasamatsu et al.37 by minimizing the Gibbs free energy of the defected crystal and 

hence accounting for the configurational entropy. The expression is: 

,

, '

'

exp( )
[ ] ,

1 exp( )

f
D q

q B
D f

D q

q B

G
k TD n

G
k T

−
=

+ −∑
     (7) 

where nD is the number of possible sites for the defect D in the lattice per chemical formula of 

ZrO2 and thus the concentration is given in units of number of defects per chemical formula. The 

functional form of the concentration of a point defect is similar to the Fermi-Dirac distribution, 
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although no quantum mechanical considerations were accounted for in the derivation. The 

assumption , '
f

D qG >> Bk T  for all charges q’ leads to neglecting the summation in the denominator 

and obtaining the familiar Boltzmann-like expression for a point defect concentration. However, 

we are not adopting this assumption as it breaks down at high temperature and/or extreme 

oxygen partial pressure conditions. Special care needs to be taken in applying the summation in 

equation (7). This is a summation over the charge states of the defect that compete for the same 

site in the lattice (See the S. M. for an illustration).  

 The concentration of electrons in the conduction band and holes in the valence band is 

given by applying Fermi-Dirac statistics to the electronic density of states38 as follows:  

∫
∞

−+
=

CBME

B

F
cc

Tk
E

dEEgn ,
)exp(1

)( μ       (8) 

∫
∞−

−+
=

VBME

B

F
vv

Tk
E

dEEgp ,
)exp(1

)( μ         (9) 

where gc(E), gv(E) are the density of electronic states in the conduction band and valence band 

per volume of the chemical formula ZrO2, respectively. ECBM is the energy of the conduction 

band minimum.  

 With the above expressions, the construction of the diagram at a fixed temperature 

proceeds by examining a wide range of the oxygen partial pressure. At each value of the later, 

there is only one value for the chemical potential of electrons, Fμ , that achieves the charge 

neutrality condition. This value of the electron chemical potential has to satisfy two constrains, 

otherwise we designate the oxygen partial pressure under examination as inaccessible. The first 

constraint is that the electron chemical potential has to have a value between the valence band 
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maximum and the conduction band minimum. The second is that the formation energies, f
qDE , , 

of all the defects have to be positive because a negative value of the formation enthalpy indicates 

that the crystal is not stable at these values of the electron chemical potential and a phase 

transition or phase separation would take place at such values to avoid instabilities in the crystal. 

A final constraint that we applied to the overall construction of the Kröger-Vink diagram is 

limiting the search for accessible thermodynamic conditions (T,
2OP ) to an off-stoichiometry, x, 

in ZrO2+x, in the range 0.065x < . These extrema of the values of x corresponds to the extrema 

of the actual off-stoichiometry modeled in our DFT supercells. We regard this range of x as the 

range in which the assumption of non-interacting defects holds. Typical off-stoichiometries of 

undoped T-ZrO2 fall within the limit of non-interacting defects that we specified. On the other 

hand, this does not hold for other metal oxides that exhibit higher off-stoichiometries such as 

CeO2 and UO2. 

 It should be emphasized at this stage that the temperature, the oxygen partial pressure and 

the electron chemical potential are not independent variables. Indeed, specifying two of them is, 

in principle, enough to determine the third.   

C. Finite temperature effects 

 A major challenge that confronts bringing the DFT calculations (at 0 K) closer to the 

realm of experimental conditions is capturing the finite temperature effects. Ignoring these  

effects can lead to results that are far from being quantitative.35,39 The major difficulty in 

capturing these effects is that they are typically very expensive computationally. In our modeling 

of defect equilibria in tetragonal zirconia we found out that the free energy of phonons and the 

electronic entropy have important quantitative contribution. This is the case especially because 
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the undoped T-ZrO2 is stable at very high temperatures. In this subsection we examine these 

finite temperature effects. 

 We illustrate these finite temperature effects on the neutral oxygen vacancy in T-ZrO2 as 

an example here (The same approach and analysis are applicable to all the other defects). The 

creation of this defect is associated with a change in the vibrational free energy of the system, 

vibFΔ , that can be written as: 

defected O perfect
vib vib vib vibF F F FΔ = + −              (10) 

The vibrational free energy of the oxygen atom in the gas phase, O
vibF , is already included in the 

chemical potential term for the oxygen atom in the gas phase, μO. What is typically neglected in 

defect calculations are the vibrational free energies of the perfect crystal, perfect
vibF , and the 

defected crystal, defected
vibF .  We accounted for these two terms within the harmonic 

approximation38 as follows: 

∫
∞

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

,
4

sinh2ln)( ω
π

ωω d
Tk

hgTNkF
B

B
solid

vib              (11) 

Where N is the number of degrees of freedom, ω is the phonon frequency, g(ω) is the phonon 

density of states, h is Planck’s constant. 

 Similarly a change in the electronic entropy occurs in the system upon creating a neutral 

oxygen vacancy as follows: 

perfect
elec

O
elec

defected
elecelec SSSS −+=Δ         (12) 

 The electronic entropy for the oxygen atom in the gas phase, O
elecS , is already accounted for in 

the chemical potential term for the oxygen atom, μO. However, it is common to neglect the 

electronic entropies of the perfect crystal, perfect
elecS , and the defected crystal, defected

elecS . In fact the 
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electronic entropy for a wide band gap perfect crystal is negligible. However, if a point defect 

was introduced in the crystal and this defect subsequently introduced electronic states in the band 

gap, then the electronic entropy contribution of these states can be significant.40 The electronic 

entropy for a solid crystal was calculated as follows:38,41  

∫
∞

∞−

−−+−= ,)]1ln()1(ln)[( dEffffEgkS B
solid
elec           (13) 

where g(E) is the electronic density of states and f is the Fermi-Dirac distribution which is a 

function of temperature, energy and the chemical potential of electrons. It is worth noting that all 

the temperature dependence of solid
elecS  is embedded in the Fermi-Dirac distribution since we 

neglected the temperature dependence of the electronic density of states. An accurate 

determination of the temperature dependence of g(E) is still beyond the current computational 

capabilities (See S.M.32 for a discussion on the challenges of modeling the temperature 

dependence of g(E)).  However, in the Results and Discussion section we present Kröger-Vink 

diagrams calculated at different band gaps and thus indicating how the reduction of the band gap, 

which is the main impact of temperature on g(E),42 can alter the defect equilibria. 
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FIG. 1. (Color online) (a) Corrections to the free energy of formation of the neutral oxygen 
vacancy due to the change in the phonon vibrations and the electronic entropy in the solid. (b) 
The total electronic density of states (DOS) for tetragonal ZrO2 in a perfect supercell and in a 
supercell with a neutral oxygen vacancy. The arrow in (b) indicates the electronic state in the gap 
due to the neutral oxygen vacancy that enhances the electronic entropy of the defect. The 
position and magnitude of the resonance (in (a)) between μF and the defect state (in (b)) depends 
on temperature and oxygen partial pressure. 
 

 In Fig. 1(a), we plotted the correction to the free energy of formation of the neutral 

oxygen vacancy due to the phonon vibrational contribution in the solid ( perfect
vib

defected
vib FF − ) and 

the electronic entropy contribution in the solid ( )( perfect
elec

defected
elec SST −− ). Both the temperature and 

oxygen partial pressure dependence of these corrections are also shown in the figure. It is clear 

that phonons add a significant quantitative correction to the free energy of formation especially 

at the very high temperatures. This correction is further amplified by the exponential dependence 

of the defect concentration on the free energy of formation. Within the assumptions adopted 

here, the phonon correction is independent of the variation of 
2OP  on an isotherm. Quantitatively 

the correction due to the change of the electronic entropy of the solid is not as significant as that 

of phonons. However on an isotherm, this correction exhibits an interesting dependence on 



15 

 

2OP that originates from the defected
elecTS− term. As will be shown in the Results and Discussion 

section, at 
2OP =1 (atm) the chemical potential of electrons μF is located almost at the middle of 

the band gap. Then by lowering 
2OP it starts moving up towards the conduction band edge. Once 

μF reaches a value of about 2.6 eV (i.e. coincident with the defect state shown in Fig. 1(b)) it 

resonates with a defect-induced state in the band gap and as a result the electronic entropy is 

enhanced and this leads to the minima observed in Fig. 1(a). The role of electronic entropy in 

defect equilibria is not well-studied particularly in non-metal systems. The insights that we 

demonstrated here conveys an important message that whenever a defect state arises in the band 

gap within the reach of μF , the electronic entropy contribution should be assessed carefully.  

 

D. Density functional theory calculations  

 Density functional theory calculations were performed using the projector-augmented 

plane-wave method43 as implemented in the Vienna Ab-initio Simulation Package 

(VASP).44,45,46,47 Exchange-correlation was treated in the Generalized Gradient Approximation 

(GGA), as parameterized by Perdew, Burke, and Ernzerhof (PBE).48,49 In this work we chose to 

apply standard PBE instead of a hybrid functional that incorporates a fraction of the exact 

exchange interaction for the following reasons. First, typical practice of using hybrids requires a 

precise knowledge of the band gap in order to choose a fraction of the exact exchange that 

reproduces the priorly known band gap. In the case of T-ZrO2, there are only two reported values 

for the experimental band gap, 4.2 eV and 5.7 eV.50,51 Those two values are too widely separated 

from each other to be useful while choosing the exact exchange fraction. Second, zirconium 

oxide is not among the family of strongly correlated metal oxides52 and hence standard PBE is 
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able to reasonably describe this system. Third and most importantly, the picture that hybrid 

functionals can act as the norm, to which the errors in standard PBE predictions can be 

referenced, has been recently challenged by Ramprasad et al.53 Those authors demonstrated that 

while standard PBE underestimates quantities such as the valence band width and the formation 

energies with respect to accurate experimental determination, hybrid functionals overestimate 

these quantities. Fourth, a major goal in the current work is to emphasize the contribution of 

finite temperature effects (in particular phonons and electronic entropy) to the defect equilibria in 

metal oxides. At the temperatures of interest in this work, these effects can be more dominant 

compared to any error due to standard PBE band gap issues. In addition, evaluating these finite 

temperature effects using hybrid functionals is too expensive computationally and is not 

anticipated to be more accurate than standard PBE as they tend to overestimate the vibrational 

frequencies.54 Finally, in order to address the underestimation of the band gap due to PBE, we 

performed a sensitivity analysis on the predicted Kröger-Vink diagram as discussed in the 

Results and Discussion section.  

 For zirconium the 4s2 4p6 4d2 5s2 electrons were treated as valence electrons. For oxygen 

the 2s2 2p4 electrons were treated as valence electrons. These electrons were represented by a set 

of plane waves expanded up to a kinetic energy cutoff of 450 eV. The error in the total energy 

with respect to calculations performed using a kinetic energy cutoff of 600 eV was found to be 

less than 5 meV per chemical formula. Bulk point defect calculations were performed in a 

supercell that is 2× 2× 2 of the conventional unit cell (See S.M. for perfect crystal lattice 

parameters32). The later has 4 zirconium cations and 8 oxygen anions. In this paper all 

crystallographic directions are based on the conventional unit cell. A 2× 2× 2 Monkhorst-Pack k-

point mesh was used to perform reciprocal space integrals. The error in the total energy with 
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respect to calculations performed with a 6× 6× 6 k-point mesh was found to be less than 1 meV 

per chemical formula. Gaussian smearing with a smearing width of 0.05 eV was used to 

accelerate the convergence of the electronic structure. All ionic relaxations were considered 

converged when the forces on all ions were less than 0.01 eV/Å. For computational efficiency, 

all calculations were done initially by seeking a net zero magnetic moment solution and after 

convergence, spin polarized calculations were performed on the pre-converged structure.  

 Single defects were introduced in the super cell one a time. No defect-defect association 

was considered as the equilibrium concentrations of all defects in undoped tetragonal zircnoia 

are expected to be dilute. We considered oxygen vacancies with charge states from 0 to 2+, 

oxygen interstitials with charges from 2- to 0, zirconium vacancies with charges from 4- to 0 and 

zirconium interstitials with charges from 0 to 4+. Antisites were not considered here as they are 

expected to have high formation energies in particular for zirconia55
 and in general for all binary 

ionic materials due to electrostatic considerations.2  

 The zirconium sublattice in T-ZrO2 is distorted face centered cubic and hence is close-

packed. Therefore, we considered only interstitial zirconium at the octahedral site in the center of 

the conventional unit cell. On the other hand, the oxygen sublattice is more open as it is a 

distortion for the simple cubic structure. Thus, we considered 8 different interstitial structures. 

These are <100>, <001>, <110>, <101>, <111> split dumbbells, <100>, <001> crowdions and 

the octahedral site in the center of the conventional unit cell. This nomenclature of interstitial 

structures is borrowed from the literature of defects in metals. This comprehensive examination 

of interstitial configurations, however, has not been common in studying defects in ionic 

materials. In this paper we chose to transfer this nomenclature to ionic materials to emphasize the 
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importance of exhausting many possible interstitial configurations when searching for the lowest 

energy one. Fig. 2 exemplifies representative interstitial structures for oxygen in T-ZrO2. 

 

FIG. 2. (Color online) Examples of the oxygen interstitial structures considered. (a) <110> 
dumbbell, (b) <001> crowdion, (c) the octahedral site. Green (large) and red (small) balls 
represent zirconium and oxygen, respectively. The sticks are guide for the eye and have no 
particular physical meaning. This figure was generated using the visualization software 
VESTA.56 
 

 At all the charge states that we considered for the interstitial oxygen in the <100> 

crowdion structure distorted the tetragonal structure in a manner that makes it unphysical to 

define its formation energy with respect to the perfect crystal T-ZrO2. The <100> crowdion is 

not considered further in this paper.  

  DFT calculations were also performed to account for phonons within the harmonic 

approximation. According to the symmetry of the supercell, certain atoms in certain directions 
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were displaced twice, backward and forward, a distance of 0.004 Å and the electronic ground 

state was calculated. This allowed, utilizing a central finite difference, the construction of the 

Hessian matrix and the determination of the vibrational frequencies of the system. The code 

Phonopy57 was then used to calculate the phonon density of states using 15x15x15 k-point 

sampling centered at the gamma point.  

 To calculate the concentration of free electrons and holes (as described in subsection 

II.B) and to quantify the contribution of electronic entropy to the free energy of formation of the 

point defects, the electronic density of states were calculated for the perfect and defected T-ZrO2 

supercells. In these calculations a finer k-point mesh of 7× 7× 7 centered at the Γ point was used 

in combination with the tetrahedron method with Blöchl corrections.58   

 

III. RESULTS AND DISCUSSION 

This section is presented into four subsections. In the first subsection we discuss the dependence 

of the formation energies of the charged point defects on the electron chemical potential. In the 

second subsection, we present our calculated Kröger-Vink diagrams and compare them with 

conductivity measurements from the literature. In particular, the slopes of the calculated defect 

concentrations in the Kröger-Vink diagrams are found consistent with the slopes of the total 

conductance in the conductivity measurements from literature. Hence, our prediction of the 

predominance of free electrons at low 
2OP  is consistent with prior experimental conclusion. A 

key contribution of our DFT-based results is the finding that the doubly charged oxygen 

vacancies are the dominant defects in the high
2OP regime, where the prior experiments had fallen 

short of revealing the type and charge state of the predominant defect.   In the third subsection 
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we discuss the variations of T-ZrO2 off-stoichiometry and electron chemical potential with the 

thermodynamic conditions.  T-ZrO2 was found to be hypostoichiometric in the entire T and 
2OP  

range. Furthermore, the chemical potential of electrons has access to a range of 1.3 eV of the 

band gap of T-ZrO2 by a self-doping effect mainly from the doubly charged oxygen vacancies. 

Finally, we discuss our key observations related to the atomic and electronic structure of the 

point defects. 

A. Defect formation energies at 0 K 

 Fig. 3(a,b,c) is a plot of the formation energies at 0 K (excluding the zero point energy) 

for all the defects we considered as a function of the electron chemical potential. Part (d) of the 

figure summarizes the thermodynamic transition levels between the dominant charge states of 

each defect as extracted from (a,b,c). Two important notes need to be clarified for this figure. 

First, the formation energies were allowed to take negative values in Fig. 3. This is not be 

confused with the fact that the Gibbs free energy of a defective crystal is more negative than that 

of a perfect crystal at finite temperature2 since what we plotted in Fig. 3 is indeed the formation 

enthalpy of the defects neglecting the pressure-volume term. The enthalpy of formation for a 

point defect is a positive quantity2,30 and this was taken care of while constructing the Kröger-

Vink diagram as pointed out in the Theoretical and Computational Approach section.  Second, 

the formation energies of oxygen interstitials were based on the energetically most favorable 

configurations (See Section III.D). 

 As was shown previously for T-ZrO2 by Eichler,27 we found that the oxygen vacancies 

exhibit negative-U behavior with a U value of –0.037 eV. This behavior indicates that the singly 

charged vacancies are not stable with respect to the disproportionation reaction into neutral and 

doubly charged vacancies. We also found out that oxygen interstitials exhibit negative-U 
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behavior with a U value of -0.838 eV. Although the negative-U behavior indicates that the 

intermediate charge state is never stable thermodynamically, signatures of this banned charge 

state were observed in electron spin resonance spectra59 in the context of studying hydrogen 

defects in wide band gap oxides. This was explained by metastability due to sufficient isolation 

of the charged defect.59 However, there is no transparent way to quantify the concentration of the 

defects that are in a metastable charge state and at any case it is expected that this concentration 

is less than what would be calculated based on their formation energies. Thus, to simplify the 

analysis we will assume that the disallowed charge states, OV • and /
iO , always have negligible 

concentration. If under any circumstances their concentrations increases to a non-negligible 

level, once equilibrium is reached the majority of these defects will undergo the 

disproportionation reaction and hence their concentration drops to a very low level again. 

 The quadruply charged is the predominant zirconium vacancy throughout most of the 

band gap compared to the other charge states as in part (b) of Fig. 3. This can be understood on 

the basis that this is the only charge state for zirconium vacancies that does not lead to the 

formation of the O- ion as will be explained in subsection III.D. While O- is favorable to O2- in 

the gas phase, the Madelung potential in an ionic crystal favors the O2- ion,60 thus / / / /
ZrV  is the 

predominant. On the other hand, zirconium interstitials have in general high formation energies 

compared to all other native defects as shown in Fig. 3 (c). Part (d) of the same figure depicts the 

thermodynamic transition levels of all the native defects. A thermodynamic transition level 

indicates the value of the electron chemical potential at which the dominant charge state of a 

defect changes from a value to another. These levels are amenable to experimental 

determination. Deep levels in the band gap can be measured by deep-level transient spectroscopy 

(DLTS) experiments, while shallow levels can be determined through temperature dependent 
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Hall measurements.61 This diagram in Fig. 3 (d) is more relevant to studying zirconia as a gate 

dielectric material compared to the traditional Kröger-Vink diagram that is more common in 

ceramics literature. Furthermore, the thermodynamic transition levels can directly correspond to 

a separation between two regions in the Kröger-Vink diagram as will be discussed in the next 

subsection III.B. 

 

FIG. 3. (Color online) Defect formation energies as a function of the electron chemical potential. 
(a) Oxygen defects. (b) Zirconium vacancies. (d) Zirconium interstitials. (d) The thermodynamic 
transition levels for the native defects determined from (a,b,c). 
 



23 

 

 We turn now to compare our results of the formation energies with the values available in 

the literature. The detailed comparison is in the Supplemental Material.32 Here we summarize 

that our results for the oxygen vacancy formation energies are in a good agreement with the DFT 

calculations of Eichler27 and of Ganduglia-Pirovano et al.28 We also have a reasonable agreement 

with the embedded cluster Hartree-Fock and B3LYP-DFT calculations of Safonov et al.29 We are 

not aware of any published electronic structure calculations of defects other than oxygen 

vacancies in undoped tetragonal zirconium oxide. However, the study of Dwivedi et al.62 using 

classical interionic potential considered all fully ionized defects of T-ZrO2. The predictions of 

this potential are far from being reasonable and this is expected since a simple pair potential with 

a fixed charge for each ion is not able to reproduce the complex charged defect structures of 

zirconium oxide. To the best of our knowledge, the only experimental value of a defect 

formation energy for undoped tetragonal ZrO2 is that of the / / / / 2Zr OV V ••+ Schottky defect 

determined by Wang and Olander.63 They performed a thermodynamic analysis for the 

thermogravimetric measurements of Xue22 and obtained a value of 4.12 eV, while we obtained a 

DFT value of 5.53 eV for the same defect. Although such quantitative discrepancy is common 

between DFT and experimentally derived formation energies, it is worth mentioning that Wang 

and Olander relied in their analysis on the assumption that quadruply charged zirconium 

vacancies has to be the predominant native defect at high oxygen chemical potential to simplify 

the charge neutrality equation in this regime. The nature of the predominant defect in tetragonal 

ZrO2 at high oxygen chemical potential is a long standing controversy in the literature22,23 as 

discussed in the next subsection, hence such an assumption is definitely questionable. 

Furthermore, in their analysis, Wang and Olander obtained negative entropy of formation for that 

particular defect, a result that they suspected in their concluding remarks. We will discuss more 
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the potential origins of discrepancy between DFT calculations and experiments in the next 

subsection.  

B. Defect Equilibria. 

In this subsection we discuss the equilibria of the electronic and point defects of tetragonal ZrO2 

utilizing Kröger-Vink diagrams. We further compare our results with the experimental results in 

the literature that attempted to explain the defect equilibria in tetragonal ZrO2. We found that our 

results are consistent with experiments in terms of the predominant defect at low T (≤ 1500K)  

and low 
2OP (≤ 10-6 atm). In this regime, both experiments and our calculations confirmed the 

predominance of electrons followed by the doubly charged oxygen vacancies. There is also 

consistency between our computational results and experiments in terms of predicting the 

increase of electronic transference number by elevating the temperature. However, prior 

experiments could not resolve the type and the charge of the predominant defect at high
2OP . Our 

DFT calculations were able to uncover the nature of this defect and we found it to be the doubly 

charged oxygen vacancies at low temperatures and free electrons at high temperatures. 

Confidence in our conclusions is enhanced by the agreement between the slope of the 

predominant defect concentration in the calculated Kröger-Vink diagrams and the slope of 

conductance as a function of 
2OP  in conductivity experiments.23  
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FIG. 4. (Color online) Calculated Kröger-Vink diagram for tetragonal ZrO2 at (a) 1500 K using 
the DFT predicted band gap of 3.9 eV, (b) 1500 K using the experimental band gap of 4.2 eV,  
(c) 2000 K using the DFT predicted band gap. (d) Conductivity measurements on tetragonal 
zirconia by Kofstad and Ruzicka.23 In a,b,c only the defects that have concentrations greater than 
10-8 are shown. The dash-dot lines in a,b,c,d are guide for the eye showing the (-1/2) and (-1/6) 
slopes. 
   

 Fig. 4(a,c) shows the calculated Kröger-Vink diagrams at 1500 K and 2000 K, 

respectively using the DFT band gap of 3.9 eV. Part (b) of the figure is the calculated diagram  at 

1500 K using the experimental value50 of 4.2 eV and part (d) is a reproduction of the 

conductivity measurements of Kofstad and Ruzicka.23 In our calculated diagrams we show only 
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the defects that have concentrations greater than 10-8 per ZrO2 chemical formula. Moreover, we 

limit the horizontal axis to a range of 
2OP  that extends from 1 (atm) to 10-15 (atm) unless there is 

no value for the electron chemical potential in the band gap that achieves both charge neutrality 

and positivity of all formation energies (See S.M. for further details32). We chose those two 

representative temperatures for our calculated Kröger-Vink diagram because they represent two 

distinct classes, i.e. the low temperature behavior is exemplified by the diagram at 1500K and the 

high temperature behavior is represented by the one at 2000K. The distinction between the two 

behaviors is the predominant defect at each regime of 
2OP  as detailed below. Before discussing 

the details of the diagrams, we introduce the notation log10[D] for log10 of the defect 

concentration. 

B.1. The Kröger-Vink diagram at 1500 K 

 The diagram at 1500 K using the DFT band gap in Fig. 4(a) can be divided into two 

regions. The first is a high 
2OP  region that extends from 1 atm up to 10-1.4 atm in which the 

doubly charged oxygen vacancies are the predominant defect. In this region charge 

compensation mainly takes place through the creation of quadruply charged zirconium vacancies 

and free electrons. The slope of log10[D] for the predominant defect in this region is slightly 

negative but close to zero. This region is characteristic for ionic materials that predominantly 

form Schottky defects around the stoichiometric composition.30 The second region extends from 

10-1.4 atm up to 10-15 atm and the predominant defects here are the free electrons followed by the 

doubly charged oxygen vacancies. Charge compensation mainly takes place among these two 

types of defects and hence their log10[D]  have a slope of (-1/6) as predicted by applying the law 

of mass action. This behavior of the concentrations leads to an n-type electric conductivity. It is 
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worth noting that the log10[D] of neutral oxygen vacancies grows with a slope of approximately 

(-1/2) by lowering 
2OP  in this region until it becomes comparable to the concentration of free 

electrons. The slope of the log10[D] of this defect is roughly independent of the 
2OP as it does not 

participate in achieving charge neutrality. The calculated diagram at 1500 K using the 

experimental value of 4.2 eV for the band gap is shown in part (b) of Fig. 4. The same qualitative 

features described above still apply to this diagram. The major difference is that extending the 

band gap expands the horizontal region down to 10-5.7 atm. This is in a better agreement with 

conductivity measurements shown in part (d) of the figure and discussed below. Increasing the 

band gap adds a penalty to the process of creating free electrons and holes. Hence the region in 

which free electrons predominates is delayed until a pressure as low as 10-5.7 atm is achieved. 

B.2. The Kröger-Vink diagram at 2000 K 

 Fig. 4(c) shows the calculated Kröger-Vink diagram at 2000 K using the DFT band gap. 

The first distinction to note here compared to the lower temperature diagram, is that there are 

more defects that have concentrations greater than 10-8 and this is anticipated as the 

concentration is temperature activated. Second, there is no region in which log10[D] of the 

predominant defect has a horizontal slope. This is an indication of an off-stoichiometric 

composition and indeed it is hypostoichiometric as we elaborate more in the next subsection. 

However, the diagram can still be divided into two regions. The first region extends from 1 atm 

to 10-8.8 atm. In this region the free electrons are predominant followed by the doubly charged 

oxygen vacancies. Charge compensation takes place mainly among these two types of defects 

and hence the (-1/6) slope for both of them. It is evident in this region that doubly charged 

oxygen interstitials have higher concentration compared to quadruply charged zirconium 
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vacancies. This indicates that if tetragonal ZrO2 were stable at 
2OP  higher than 1 atm and can 

approach stoichiometric composition at 2000 K, then it would be an ionic compound in which 

the intrinsic region around the stoichiometric composition is dominated by oxygen Frenkel pairs. 

This is a significant difference compared to the finding at 1500 K where the intrinsic region 

around the stoichiometric composition is dominated by Schottky defects. The second region in 

the Kröger-Vink diagram at 2000 K extends from 10-8.8 atm to roughly 10-14.5 atm. The border 

between the first and second region is due to the thermodynamic transition level for oxygen 

vacancies from charge state 2+ to 0 as shown in part (d) of Fig. 3. As discussed above we did not 

find a value for the chemical potential of electrons that achieves both charge neutrality and 

positivity of the formation energies of all defects at pressures lower than 10-14.5 atm. In this 

region the neutral oxygen vacancies predominates with log10[D] slope of approximately (-1/2). It 

is also noticeable that the concentrations of three charge states of zirconium interstitial grow in 

this region by lowering 
2OP  but still below the concentrations of oxygen and electronic defects in 

this region. 

B.3. Comparison with experiments 

 To compare our theoretical results with the experimental findings in the literature, we 

show in Fig. 4 (d) the conductivity measurements of Kofstad and Ruzicka.23 On an isotherm, the 

defect motilities are constant. Therefore, the log10 of the total conductance of a metal oxide 

exhibits a slope with 
2OP  that is governed by the log10[D] slope of the predominant defect. This 

is what justifies the comparison between our DFT calculated concentrations and the conductivity 

measurements. 
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 The conductivity measurements in Fig. 4 (d) are in a reasonable agreement with our 

calculated Kröger-Vink diagram at 1500K in terms of exhibiting a slightly negative slope that is 

very close to zero at high 
2OP . At lower 

2OP  the slope of the log10 of the conductance changes to 

roughly (-1/6). It is important to note that according to these conductivity measurements, the first 

horizontal region extends down to 10-4 atm and then the (-1/6) starts somewhere between 10-6 

and 10-7 atm depending on the temperature. This is more consistent with our calculated Kröger-

Vink diagram using the experimental band gap of 4.2 eV.  

 The trends exhibited by the conductivity measurements shown here are also obeyed by 

the conductivity measurements of Vest and Tallan.24 In addition, thermogravimetric 

measurements by Xue22 reproduced the (-1/6) slope at low
2OP . Thus, there is a firm agreement 

that at low
2OP  the predominant defect is free electrons followed by doubly charged oxygen 

vacancies. However, the experimental efforts could not resolve the nature of the predominant 

defect at high
2OP . Kofstad and Ruzicka whose results are reproduced in Fig. 4(d) suggested that 

at high 
2OP both oxygen vacancies and interstitials are predominant. Authors of Ref. [24] could 

not deduce the predominant defect at high
2OP . The thermogravimetric measurements of Xue22 at 

high 
2OP  exhibited a positive slope that can be fitted well by either +1/6 ( / /

iO  predominant) or 

+1/5 ( / / / /
ZrV  predominant) slopes but the latter was chosen to conform to the classical potential 

predictions of Ref. [62]. As we mentioned above and detailed in the Supplemental Material,32 the 

results of this classical potential are highly unphysical and cannot be used as a support of the 

nature of charged defects. We believe that the reasonable agreement between our DFT results 
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and the conductivity measurements of Ref. [23,24] provides a solid ground to propose that this 

defect is the doubly charged oxygen vacancies at high
2OP . 

 There is another aspect in which our DFT calculations are consistent with the 

experiments. We showed that at low temperatures (with respect to the range of stability of T-

ZrO2) the electronic conductivity predominates in the region of low 
2OP . At higher temperatures, 

the electronic conductivity predomination starts at high 
2OP  and extends over a wide range of 

2OP . Measurements of the electronic and ionic transference numbers are consistent with this 

finding.24,25 

B.4. Origins of the gap between theory and experiment 

 Beyond the finite temperature effects (which we demonstrated in subsection II.C and 

incorporated into our analysis), there are several other challenges that obstruct improving the 

level of agreement between theory and experiments for determining the nature and 

concentrations of defects at a given thermodynamic state. On the experimental side, impurities 

are unavoidable and those can significantly affect the conductivity measurements. For example 

the conductivity measurements of Guillot and Anthony26 could not resolve the nature of the 

intrinsic predominant defects in T-ZrO2 because of the interfering role of impurities. Moreover to 

the best of our knowledge all the experiments on T-ZrO2 to understand its defect equilibria were 

performed on polycrystalline samples. Grain boundaries and the associated space charge zones 

can significantly affect defect equilibria.2 Not only the presence of grain boundaries, but also the 

size of the grains themselves can alter the equilibria.64 The current DFT computational limits do 

not allow realistic calculations for charged defect energies at grain boundaries. Another factor 

that is pertinent to undoped T-ZrO2 is that it is thermodynamically stable at very high 
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temperatures, which poses limitations on the feasibility and accuracy of the measurements. On 

the theoretical side, the well-known DFT problem of underestimating the band gap has an 

exponentially amplified impact on determining the concentration of free electrons and holes, and 

hence on the overall equilibria of the charged defects. As shown in Fig. 4(a,b) applying a rigid 

shift of 0.3 eV to the conduction band improved the agreement with the conductivity 

measurements. Applying rigid shifts to the conduction band to match the experimental band gap 

is a common practice.65,66 However, the spread in the experimentally determined band gap 

values, as in the case of T-ZrO2,50,51 makes it difficult to choose one of these values with 

confidence (See the S. M.32 for further discussion). Furthermore, the well-known GGA-DFT 

issue of over-binding the oxygen molecule introduces an error of about 1.36 eV when using the 

PBE functional as estimated by Wang et al.67 by fitting the formation enthalpy of simple non-

transition metals to the experimental values. This over-binding impacts the accuracy of 

determining the chemical potential of oxygen. The outcome of applying such correction is 

introducing a positive shift to the oxygen molecule energy. Hence, it becomes more favorable to 

create defects that lead to incorporate more oxygen gas into the solid which are oxygen 

interstitials and zirconium vacancies. This simultaneously reduces the concentration of oxygen 

vacancies and zirconium interstitials. In other words, the concentration of the negatively charged 

point defects increases and the concentration of the positively charged point defects decreases. 

This, in turn, reduces the concentration of free electrons and increases the concentration of free 

holes to maintain charge neutrality. Furthermore, the actual value of the correction depends 

strongly on the DFT simulation parameters which restricts us to use the simulation parameters of 

Ref. [67] in order to justify using 1.36 eV as a correction, otherwise we have to repeat the fitting 
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with our DFT parameters. Hence, we chose not to apply this correction to reduce the empiricism 

in our approach as much as possible. 

C. Off-stoichiometry and electron chemical potential 

 The temperature and the oxygen partial pressure are the thermodynamic independent 

variables that determine the defect concentrations in the stress-free undoped T-ZrO2 as discussed 

in the previous subsection. Two other important observables that are determined by T and 
2OP  

are the sample off-stoichiometry, x, and the chemical potential of electrons, Fμ . The former is an 

integral quantity that represents the collective defect equilibria and can be measured in 

thermogravimetric experiments.22 The latter is a fundamental quantity that affects the transport 

and transfer of electrons, and can be measured in electrochemical impedance spectroscopy 

experiments.68 In our DFT calculations, the calculated defect concentrations can be used to 

compute x and the charge neutrality condition determines the value of Fμ . In this subsection we 

discuss the relations among T-
2OP -x- Fμ  on the basis of our DFT calculations. 

 Fig. 5(a,b,c) depicts the relations among T-
2OP -x- Fμ  for stress-free undoped T-ZrO2. 

Part (a) of the figure shows that the off-stoichiometry of a T-ZrO2 sample is almost independent 

of 
2OP for several orders of magnitude, and then at a very low 

2OP the off-stoichiometry decreases 

significantly. The 
2OP at which |x| (hypostoichiometry here) sharply increases is reduced with 

increasing the temperature.  
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FIG. 5. (Color online) (a) Off-stoichiometry in ZrO2+x as a function of the oxygen partial 
pressure, 

2OP , at different temperatures. The dependence of the electron chemical potential, Fμ , 
on the oxygen partial pressure at different temperatures (b), and on the off-stoichiometry, x, at 
different temperatures (c). 
 

 As shown in the resulting Kröger-Vink diagrams, oxygen vacancies are responsible for 

the observed off-stoichiometry. This plot indicates also that T-ZrO2 is always hypostoichiometric 

in the T-
2OP  range considered here, and this is consistent with the experimental results of 

Carnigila et al.69 Part (b) of Fig. 5 shows that at 1 (atm), the chemical potential of electrons μF is 
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close to the middle of the DFT calculated band gap. By lowering
2OP , we find that μF moves 

towards the conduction band minimum within a range of about 1.3 eV. This is a self-doping 

effect due to the native defects particularly the doubly charged oxygen vacancies and consistent 

with the n-type conductivity identified in the previous subsection. Finally in part (c) of the 

figure, we plotted the two dependent variables μF and x. Close to the stoichiometric composition, 

μF is very sensitive to very small changes in x. A very small change to a hypostoichiometric 

composition leads to a jump in the electron chemical potential towards the conduction band and 

then Fμ levels off by further decrease of x. The value of x at which μF  levels off in part (c) of the 

figure corresponds the value at which the sharp decrease in the off-stoichiometry takes place in 

part (a). It is evident from part (c) that the lower the temperature, the greater the maximum 

achievable electron chemical potential by self-doping.  

 The chemical potential of electrons in the bulk of a metal oxide controls the transport of 

electrons.70 Furthermore the transfer of electrons across interfaces is governed by the matching 

of μF across the interface. These two issues are of great importance in corrosion, catalysis, gate 

dielectrics and dye-sensitized solar cells among other applications. We demonstrated here that 

our theoretical approach for defect equilibria in the bulk of a metal oxide consistently determines 

the value of μF according to the surrounding thermodynamic conditions. While we did not 

address here determining the variations of μF across an interface, we believe that our 

determination for μF in bulk zirconia sets a necessary boundary condition needed for the accurate 

determination of its variations at interfaces with the same approach described here.  
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D. Defect atomic and electronic structures 

 So far our discussion of the point defects was based on the energetics. However, we 

believe that it is also important to elucidate the atomic and electronic structure of the defect. This 

is because the atomic and electronic characteristics of each defect provide a signature to help in 

detecting it experimentally. Moreover, these characteristics are needed to understand the 

transport kinetics of the point defects and their effect on the mechanical properties of the 

material, and thus, can be important for future work concerned with these defects. In this 

subsection we describe our key observations related to the atomic and the electronic structures of 

the major defects that we assessed in the analysis presented above, starting with vacancies and 

ending with interstitials. More details are presented in the S.M.32 

 Several experiments and DFT calculations confirmed that oxygen vacancies in all phases 

of zirconium oxide have the ability to trap electrons forming F-centers.27,28,65,71  Our calculations 

are consistent with these prior reports as we observed electron localization on the vacant oxygen 

site for both x
OV  and •

OV . The ground state for the two electrons localized in the x
OV  defect is 

singlet. It is energetically very unfavorable for zirconium cations to get reduced to the oxidation 

state 3+ and hence the electrons get trapped in the vacant site. On the other hand, we observed in 

our calculations that all zirconium vacancies except / / / /
ZrV lead to the formation of the antimorph 

of the F-center, namely the V-center. In a V-center, a hole gets trapped in an oxide ion that is the 

nearest neighbor of a cation vacancy. This means that each of the zirconium vacancies other 

than // / /
ZrV  is a cluster of point defects. For example, a more accurate notation for x

ZrV would 

be // / /(4 )x
O ZrO V• , however, we kept the former as a simplified notation throughout the paper. As we 
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showed in the previous subsections the V-centers associated with all zirconium vacancies except 

/ / / /
ZrV  always have a minute concentration.  

 As indicated in the computational methods section we considered seven different 

structures of the interstitial oxygen at all charge states after excluding the <100> crowdion. Our 

calculations indicate that for the charge states 0 and -1, the <110> split dumbbell is the 

energetically most favorable structure. The lengths of the dumbbells are 1.47Å and 1.99 Å 

respectively larger than our calculated bond length for the oxygen molecule which is 1.23 Å. 

Examination of the charge the density (See S.M.32) shows that the charge is almost evenly 

distributed on the two ions of the dumbbell. Moreover, for the charge state 0, there is a very 

distinct feature that appears in the phonon density of states (See S.M.32) which is a characteristic 

peak at a frequency of 939 cm-1. While this peak is at a frequency much higher than any 

vibrational mode in the crystal, it is still much lower than 1560 cm-1, our calculated vibrational 

frequency for the oxygen molecule. On the other hand for the charge state -2 the octahedral site 

is the most favorable. The strong columbic repulsion does not allow the doubly charged 

interstitial oxygen ion to have a dumbbell or a crowdion configuration.  

 

IV. CONCLUSION 

 In this paper we presented a framework to understand and predict the equilibria of 

charged point defects in a metal oxide exemplified here by the technologically important case of 

T-ZrO2. In our treatment we considered the relevant finite temperature excitations, due to 

phonon vibrations and electronic entropy, and demonstrated these to be important for the 

quantitative accuracy of the DFT calculations. Phonons add a significant contribution to the free 
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energy of formation of the defects especially at high temperatures. The electronic entropy 

contribution gets enhanced when the chemical potential of electrons (Fermi level) coincides with 

a defect state in the band gap.  

 We found out that T-ZrO2 is hypostoichiometric over its range of stability. Within the 

temperature range (1440-2640K) of stability of T-ZrO2 our calculations using the DFT band gap 

of 3.9 eV (experimental band gap of 4.2 eV) indicated that: (a) at low temperatures up to 1500 K 

(up to 1700K) the doubly charged oxygen vacancies predominates at high 
2OP and electrons 

predominates at low 
2OP , (b) at temperatures higher than 1500 K (higher than 1700K) the 

electrons are the dominant defects at high 
2OP within a wide range while the neutral oxygen 

vacancies (F-centers) predominate at low 
2OP . Our computational predictions are consistent with 

prior experiments, which indicated the predominance of electrons at low temperatures and low 

2OP  and confirmed the increase of the electronic transference number at higher temperatures. 

However, the predominant point defect type and charge state were not amenable to experimental 

determination priorly. And hence, our computational results here filled a gap in our 

understanding of zirconia defect equilibria over a wide range of thermodynamic conditions. 

 The chemical potential of electrons, which is important for electron transport and 

transfer, was determined with the charge neutrality condition. For the undoped T-ZrO2 studied 

here, μF, was found to reside close to the middle of the band gap at high 
2OP , and to approach the 

conduction band edge by lowering the 
2OP  due to a self-doping effect by oxygen vacancy 

defects.  
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 It is possible to extend the thermodynamic space from (T,
2OP ) to include mechanical 

strain, doping, and electric and magnetic fields. By constructing diagrams similar to the 

traditional Kröger-Vink diagram, one can optimize the thermodynamic conditions that extremize 

certain desirable or undesirable point defect types for technological purposes such as catalysis, 

corrosion and microelectronics applications. An accurate determination of these optimum 

conditions dictates careful sampling for the excitations and degrees of freedom for the system 

under consideration.   
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