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We have studied the magnetic-field dependence of both dark-count rates and photon-count rates
in a superconducting nanowire single-photon detector made of TaN in external magnetic fields
|µ0H | < 10 mT perpendicular to the plane of the underlying meander structure and at T = 4 K.
The dark-count rates show a characteristic field-dependence, which is asymmetric with respect
to magnetic field direction. The field- and the current dependence of the dark counts can be
quantitatively well explained if one assumes that the critical current is reduced to ≈ 50% at the
180◦ meander turns when compared to a straight strip, and the observed asymmetry can be modeled
assuming that the turnarounds are not all strictly equal. Surprisingly, the photon count rates do
not show any significant field dependence, which seems to be at odds with existing detection models
invoking vortex crossings.

PACS numbers: 74.40.+k, 74.78.Na

Magnetic vortices in meso- and microscopic superconducting structures display a rich variety of phenomena. Since in
many applications such structures are composed of arrays of superconducting strips, the strip geometry is of particular
interest. It has been realized theoretically1,2 and experimentally3 that narrow superconducting strips remain in the
Meissner state up to magnetic fields significantly exceeding the lower critical field Hc1 of the bulk material. However,
if a transport current is applied, vortices (or anti-vortices) may be activated over the energy barrier at the strip edges
that subsequently traverse the strip under the influence of the Lorentz-force, thereby destroying the dissipation-free
superconducting state4. Currently there is a debate5–9 over the fluctuation modes dominating in thin superconducting
strips that are too wide to be considered one-dimensional, i.e., with width w ≫ ξ, the superconducting coherence
length, but narrow enough so that edge-effects are significant, i.e. w ≪ Λ, where Λ = 2λ2/d is the effective penetration
depth, λ is the magnetic penetration depth in thick films and d ≪ λ is the film thickness. This situation is typical for
superconducting nanowire single-photon detectors10 (SNSPD), where a large bias current is applied which is of the
order of the experimental critical current. Vortices crossing the superconducting strip have been considered as the
main cause for dark-count events6,11 in SNSPD. Vortices have also been made responsible to explain the detection
of low-energy photons for which the photon energy alone is insufficient to trigger a detection event8,12. Both events,
dark counts as well as vortex-assisted photon counts, should have a distinct magnetic-field dependence8.
The detection elements of SNSPD are not simply straight strips, however. In order to increase the effective detection

area and the coupling to the electro-magnetic wave of the photons, the active area typically consists of a meander
with separations between adjacent strips roughly equal to the strip width. This design implies 180◦ turnarounds at
the strip ends for the superconducting bias-current. Whereas the current-density along the straight portions of the
meander is highly uniform, due to the fact that w ≪ Λ, the current density is inhomogeneous in the vicinity of the
turnarounds13. The local current density at the inner radius of the turnaround exceeds the uniform current density
of the straight parts and it is reduced at the outer radius. This leads to an effectively reduced critical current for a
meander structure, because superconductivity is destroyed when the energy barrier vanishes at the inner radius. For
the geometry considered here, the corresponding current density is always lower than the depairing current-density6.
The level of reduction of the critical current depends on the detailed geometry of the turn14,15 and can be minimized
to achieve higher critical currents for meander structures16. In the case of a single turn or several turns in the same
direction, the application of a small magnetic field of the right orientation should lead to an increase of the critical
current17.
In this Rapid Communication we report on systematic measurements of the magnetic field-dependence of dark

counts as well as photon counts in SNSPD. The device studied in detail is made from a d = 4.9 nm thick TaN
film deposited by DC reactive magnetron sputtering on a R-plane cut sapphire substrate18. Using electron-beam
lithography the film was patterned into a meander with 21 strips of width w = 110 nm, strip separation ∆ = 80 nm and
covering an area of 3.4×3.9 µm2. Such TaN-SNSPD have been demonstrated to be single-photon detectors comparing
favorably well with NbN-SNSPD19. After fabrication the device had a sharp superconducting transition8,11,20–22,24

at Tc = 8.84 K. Count-rate measurements were done in a He-3 cryostat with free-space optical access. The light from
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a continuous light-source was passed through a monochromator and directed onto the detector through a series of
quartz windows and apertures with decreasing diameter to reduce the amount of blackbody background radiation.
For the measurements of the intrinsic dark counts caused by fluctuations in the superconducting meander, the optical
windows were replaced by blanks and an Al cap was placed over the detector in good thermal contact to the sample
holder, thereby creating an isothermal cavity around the detector.
The bias current was supplied by a Keithley 2400 programmable source-measure unit. To ensure a stable DC

current through the detector, a series of HF- and low-pass filters was used. The detector signal was fed into a cryogenic
amplifier at the 4K-stage and then further amplified at room-temperature before fed into a threshold counter. Further
details of the used set-up are given elsewhere19. A bipolar magnetic field up to about 10 mT was applied using a
conventional electro-magnet placed as close as possible to the device outside the cryostat and opposite to the optical
access window. In this way the magnetic field was oriented perpendicular to the meander plane. The magnetic field
was measured using a calibrated cryogenic hall-sensor that was placed in close proximity to the detector inside the
cryostat. We verified field gradients to be negligible over the small detector area due to a minimum distance of the
magnet to the detector of about 6 cm25. All measurements presented have been done at T = 4 K.
In Fig. 1 the dark-count rate RDC in zero magnetic field is plotted on a logarithmic scale vs. the applied bias

current Ib. It shows the typical near-exponential increase for increasing bias currents. The solid line is a fit of Eq. (51)
from Ref. 6 to our data with an attempt rate and the vortex energy scale ν as free parameters (solid line in Fig.
1). We obtain an almost identical current-dependence upon reversing the current direction, but shifted along the
Ib-axis by about 0.4 µA, which is probably caused by an unaccounted current offset (not shown in Fig. 1). From the
fitted parameter ν = ε0/(kBT ) = 51.5± 1.5, ε0 = Φ2

0µ
2/(2πµ0Λ) (Refs. 6,8), we can derive the effective penetration

depth at T = 4 K, Λ = 165 ± 5 µm, which compares very well with ∼ 120 µm, the zero-T value expected from our
conductivity measurements, where Φ0 = 2.068× 10−15 Wb is the magnetic-flux quantum, µ = 0.930 a correction for
currents close to the depairing current, µ0 = 4π×10−7 Vs/Am is the vacuum permeability and kB = 1.38×10−23 J/K
is Boltzmann’s constant.
For the description of the magnetic-field dependence of the dark-count rate we can phenomenologically approximate

the current-dependence as

RDC ≈ R0 exp

(

Ib

Ĩ

)

, (1)

with R0 being a proportionality factor, Ĩ ∝ Ic is a current scale and Ic is the experimental critical current. The
dashed line in Fig. 1 as a resulting fit of our data to Eq. (1) shows that for the current-range of interest this is a
satisfactory description of the current-dependence of RDC. Using Eq. (1) has the advantage over Eq. (51) of Ref. 6
that the underlying physical model, which we will use to describe the field-dependence, becomes more transparent. In
the following we will assume that the experimental critical current Ic is equivalent to the current for which the barrier
for vortex entry vanishes at a certain point along an edge of our structure. The experimentally measured Ic ≈ 17 µA
is indicated in Fig. 1.
In Fig. 2 we are plotting the measured RDC as a function of the applied magnetic field H for various bias currents.

The upper panel shows the dark-count rates for a certain current direction (in our convention Ib < 0) and the lower
panel for the reversed current direction (Ib > 0), both for positive and negative magnetic-field values. The dark-count
rate is clearly magnetic-field dependent with a certain unexpected asymmetry with respect to the field direction. For
Ib > 0 (Ib < 0) the minimum in RDC seems to be shifted to slightly negative (positive) fields. However, reversing both
the current and magnetic field direction leaves the asymmetry unchanged as demonstrated for the data measured
with Ib = +16.5 µA plotted in the upper panel (open symbols), but with a reversed (upper) field-axis from +10 to
−10 mT.
Following a recent theoretical model for vortex-crossings in straight strips8 we would expect a symmetric field-

dependence of the dark-count rate around H = 0, RDC(H) ∝ cosh(H/H1), with H1 being a magnetic-field scale for
vortex crossings. This behavior is clearly not compatible with the measured data, even if taking into account that
the meander geometry consists of several parallel straight strips with alternating current directions. The self-field of
one strip amounts to at most about 150 µT at the edges and the contributions from all the neighboring strips partly
cancel each other, resulting in a maximum contribution of ≈ ±20 µT, which is too small to explain the observed
asymmetry in RDC(H).
A more plausible explanation is that the 180◦ turnarounds connecting neighboring strips are responsible for the

asymmetry in the magnetic-field dependence, which we will demonstrate in the following.
In general, a single 180◦ turnaround is expected to have a reduced critical current Ic,t as compared to the straight

strip (Ic,s)
17. Applying the equations for the sharp rectangular 180◦ turnaround to our geometry, we calculate

a reduction α = Ic,t/Ic,s ≈ 0.5. Estimating the critical current of the straight sections Ic,s = 2wI0/(πeξ), with
I0 = Φ0µ

2/(2µ0Λ) at 4 K, and using the T-dependence of Λ and ξ and ξ(0) ≈ 5 nm from Hc2(T ) measurements11,
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FIG. 1: Dark counts and photon counts on logarithmic scale vs. bias current. Errors are of the size of the data points or
smaller except where plotted. The solid line is a least-squares fit to Eq. (51) from Ref. 6, while the dashed line is a fit to
the phenomenological Eq. (1). The dashed lines connecting the photon-counts data are guides to the eye. The inset shows
an electron micrograph of the measured device. In the lower left corner is a sketch of the magnetic field and bias current in
relation to the meander geometry.

we have α ≈ 17 µA/22.6 µA ≈ 0.75. The measured α is larger than the theoretical value, most probably because our
turnarounds are not strictly rectangular, but somewhat rounded.
Furthermore, it becomes clear that for bias currents Ib <∼ Ic,t, the barriers for vortex-entry along the straight sections

of the meander are still relatively high. Using Eq. (1) and scaling Ĩ with Ic we estimate the probability for vortex-
crossings near the turnaround to be a factor ∼ 105 higher than along the straight sections, making vortex-crossings
near the turnarounds the dominating contribution to RDC despite their short overall length.
The application of a magnetic field destroys the symmetry of the current distribution in left- and right-turning

turnarounds. In one case (e.g. left turn) screening currents due to the applied field will increase the current density at
the inner edge (lower experimental Ic), while in the other case (right turn) it will decrease the current density (higher
Ic). For magnetic fields H ≪ H∗, with H∗ being a device-dependent field scale for the critical current, the critical
current is linear in magnetic field8,17,

Ic(H) ≈ Ic,t

(

1−
H

H∗

)

, H∗ =
2w

πeξ
H0, H0 =

Φ0

2µ0w2
, (2)

with Ic,t the critical current in zero-field, and we obtain µ0H
∗ ≈ 425 mT for our device.

In Ref. 8, the magnetic-field dependence of the dark-count rate was obtained by replacing Ib with the true micro-
scopic current at the edge which is the sum of applied current and screening current. We will take here a complementary
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FIG. 2: Dark counts log(RDC) for different Ib plotted as a function of applied magnetic field H . The |Ib| have been progressively
increased by 0.25 µA. Upper panel: Ib < 0; lower panel: Ib > 0. The +16.5 µA data are also plotted in the upper panel,
but on a reversed field-axis (uppermost H-axis) to demonstrate the equivalence of reversing field or current direction. The
corresponding y-axis (right axis, upper panel) has been shifted by 0.35 to compensate the current off-set. Solid lines are least-
square fits according to Eq. (4) with common parameters, performed independently for negative and positive Ib, respectively.

approach by identifying the critical current for which the barrier for vortex entry vanishes with the field-dependent
critical current from Eq. (2)17. Inserting Eq. (2) into (1) results in the field-dependent dark-count rate for a single
180◦ turnaround

R1
DC(H) = R0 exp

(

Ib

Ĩ(1−H/H∗)

)

. (3)

The application of a positive magnetic field would then lead to a reduction of the critical current and thus an increased
dark-count rate, whereas a negative field leads to a reduction of R1

DC(H). Considering the geometry of our meander
(see Fig. 1), we have an equal number of left- and right-turns with opposite effects of positive and negative applied
fields on Ic, and the overall effect of a magnetic-field should again be symmetric around H = 0. In reality, however,
we may not expect that all of the turns are identical due to imperfections from the structuring process, and we
have to assume a certain distribution of α-factors. In order to keep the model as simple as possible, we assume one
turn to have a reduced critical-current (by a factor β ≤ 1) and all others to have equal Ic,t. We then arrive at the
following equation for the field-dependent dark-count rate, neglecting the contributions from the straight sections
with Ic,s > Ic,t,

RM
DC(H) = (N − 1)R1

DC(H) +Rβ
DC(H) +NR1

DC(−H), (4)
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FIG. 3: Relative photon count-rates as functions of the applied magnetic field H , normalized to photon count-rates in zero-
field for each Ib. For clarity, the datasets have been shifted in y-direction by multiples of 0.5. We also plotted the expected
H-dependence for 985 nm photons and Ib = 13 µA (dashed black curve). Horizontal lines are to guide the eye.

with Rβ
DC(H) = R0 exp

[

Ib/
(

βĨ(1−H/H∗)
)]

and N = 10 the number of left and right turns, respectively for the

measured device. We performed independent least-squares fits to our data obtained for positive and negative currents
(solid lines in Fig. 2), with µ0H

∗ ≈ 240 mT, β = 0.94±0.01 and Ĩ = 0.35±0.01 µA as additional fitting parameters to

the attempt rate R0. Ĩ compares well with Ĩ = 0.31± 0.01 µA from fits of Eq. (1) to the zero-field RDC(Ib) data. The
field-scale H∗ is smaller than the expected value calculated with Eq. (2) possibly due to edge imperfections generally
leading to reduced edge barriers. However, our simple, vortex-based model obviously fairly accurately describes both
the magnitude of and the observed asymmetry in the measured RDC(H) with reasonable physical parameters.
In Fig. 3 we present our measurements of photon count-rates Rph as functions of the applied magnetic field,

normalized to the photon count-rates in zero-field and for two photon wavelengths of 400 nm and 985 nm, respectively.
Dark-counts (typically ≪ 0.1Rph, compare Fig. 1) have been subtracted. The estimated detection efficiencies (DE)
range from ∼ 0.1 at maximum Ib and 400 nm photons, to ≈ 10−4 at the lowest measured Ib and 985 nm photons.
From the DE up to 0.1 we can conclude that most photon-detection events occur along the straight sections of the
meander18, which is also supported by recent simulations23. Except for the scattering in some datasets, Rph appear
to be constant with a field-independent photon count-rate.
Next, we will estimate the expected field-dependence following Ref. 8 for the photon count-rate at 985 nm wave-

length, R985, and Ib = 13 µA, for which the field-dependence should be most pronounced. Assuming that for 400 nm
photons and Ib = 16 µA we have reached the maximum DE ≈ Rabs, the photon-absorption rate, we obtain for the

photon-assisted vortex-crossing rate R985(13 µA)
Rabs

= 1 − exp(−2η) = 6 · 10−4 ≈ η (Eq. (45) in [8])26. With η ≪ 1 Eq.
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(47) in [8] can be simplified to

R985(H)

R985(0)
≈ cosh

(

H

H1h

)

, (5)

with H1h = H∗ (νh + 1)
−1

Ib/Ic,s, and νh is the vortex energy-scale near the absorption site that can be estimated
from the low-current part in Fig. 1, where Rph ∝ Iνh , see Eq. (46) in [8]. We estimate νh ≈ 12 and therefore, using
the larger, theoretical H∗, we obtain µ0H1h ≈ 10 mT at Ib = 13 µA. The expected field-dependence is plotted in Fig.
3 (dashed curve) and would be easily measurable, which is clearly inconsistent with our data, however. A similarly
strong field dependence would be expected for 400 nm photons and Ib = 9 µA (µ0H1h ≈ 12.5 mT), whereas H1h for
the other datasets is expected to be larger and the field-dependence less pronounced, yet should still be measurable.
We note here that we have obtained qualitatively similar results also in NbN-SNSPD8,27, which shows that our

observations are not unique to the TaN material.
In conclusion, we have presented systematic measurements of dark-count rates and photon-count rates as a function

magnetic field in a TaN-SNSPD. The field-dependence of RDC(H) can be successfully modeled assuming vortices
traversing the superconducting strip predominantly in the vicinity of the meander turns, where the critical current
for vortex-entry is reduced with respect to the straight sections. The observed asymmetry in RDC with respect to
current- or field-reversal can be explained assuming that not all turnarounds have exactly the same Ic,t. By contrast,
we have not found any evidence for a scenario in which vortices assist in the detection of photons with energies that
are insufficient to trigger a detection event. Our results strongly suggest that although crossing vortices are the main
source of dark-counts, they most probably do not contribute significantly to the photon detection.
We acknowledge stimulating discussions with L. Bulaevskii and A. Semenov. This research received support from
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