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In this paper we deduce transport properties in the preseinagpseudogap associated with precursor su-
perconductivity. Our theoretical analysis is based on thiely adopted self energy expression reflecting this
normal state gap, which has appeared in interpretationhiaiopmission and in other experiments. Thus, it
should be generally applicable. Here we address THz comdtyict(w) = o1(w) + io2(w) measurements
in the underdoped high temperature superconductors aive atrreasonable agreement between theory and
recent experiment for botty, ando, above and below-..

PACS numbers: LP12832B-74.72.Kf,74.72.-h,74.25.F205g

I. INTRODUCTION where therz subscript denotes the diagonal tensor component
along ther direction. We consider in the transverse gauge the
One of the biggest challenges in understanding the higlinear response of the electromagnetlc curtént — K A,

temperature superconductors revolves around the origheof to a small vector potentiaA. HereK(Q) ﬁ( Q) + 7 /m,
ubiquitous pseudogap. Because this normal state gag-has,hare the paramagnetic contribution, glvenM) is assO-
wave like features compatible with the superconducting or¢iaeq with the normal current resulting from fermionic and
der parameter, this suggests that the pseudogap is retatedy,sonic excitations. The vect@ is definedQ = (g, i)

some form of “precursor pairing”. On the other hand, there, harei0) . is a bosonic Matsubara frequency.
are many reportg suggesting that the pseudogap onset tem- " '

perature is associated with a broken symmetry and, thus, an-
other order parameter. It is widely believed that because th A. Weak Dissipation Limit
pseudogap has clear signatures in generalized trandpasé t
measure_m_erﬁé_ may help with the ce_ntrally Important ques- For simplicity, we begin in the weak dissipation limit where
tion of distinguishing the two scenarios. In this paper we an 1
the parametety in Eq. (1) is small. We defin&/ ,, =

alyze recent experimental observations which have suggest 1 i ;
that precursor pairing scenariéanay be problematic. By de- (iwn — &)™ as the bare Green’s function, and show how
fault, these observations may imply that the pseudogap mudhis standard self energy expression in the pseudogap state
involve another (yet unspecified) order parameter. A2

Our work is based on a preformed pair scenfavibich has Spg ik & =02 Go_k = gk
been previously applied to transpbt within a slightly dif- ‘ iwn + &k

fer_ent, but eq.uwalent_framew_ork. Imp_ortantly th'f prefed leads to consistent expressions for the current-currergles
pair scheme is associated with the widely Uséd*approx- o' 0 ctions

imate self energy, which we derived even earlier within our \ya gerive an expression fdP(Q) by turning first to the
i i iqfp 16
microscopic formalisrt? diamagnetic current. This can be written as
A?
pg.K R 2
— 1 n 0 0& 0G
fon+ bt § P WSLGK:‘z e O
where K = (K, iw,) andiw, is a fermionic Matsubara fre-
quency. Herey represents a damping, which we will mterpret The right hand S|de of Eq. (3) can be manlpulated so that it ap-

e 2 0 0 i corverson o s 0 . e g ot i) 1t
ay y y erentiating both sides of the equaliy;' = G — L.k,

expression for the complex conductivity. one has the identity

Epg,K = —iy+

PREFORMED PAIR-BASED- PSEUDOGAP ok 0k ok Ok ok

—1 -1
II. TRANSPORT THEORY IN THE PRESENCE OF A Gk _ aGovK _ O%pgrc Ok angvK' (4)

UsingdG i /Ok = —G%0G ' |0k, Eq. (3) becomes
The complex conductivity can be written in terms of the g K/ x0CGx/ a()

paramagnetic current-current correlation functi%(Q) to S Ok [ 08k ang,K 5
which one adds the diamagnetic contributiofyn m Z K ok [ ok } ®)
o(w) = —lim Po(q,w) + (n/m) g @ The expression for the self energy, Eq. (1), can be used to

40 i further simplify Eq. (5). Sinc&,g x = —A2 1 Go _k =



A2

2 o1 iwn + &)1, then which results in

621)9,1( — A2 2 %

pg.k70,— K ’ (6) < & O

Ok Ok P(0) = 2 ;k" ;l: (GG (1= 22,68 )] ©
where a term proportion @A,  /Ok has been dropped since
it gives a negligible contribution to the final result. Thiemre

Eq. (5) becomes ) _
A natural extension of Eq. (9) to gener@lis

2SS
P ZG% ali{ (i)l: qu,kGO K) (7)

0 0
. - - - _ 22 §k+q/2 §k+q/2 GKGK+Q
Interestingly, the combinatio&G, appears naturally in the

manipulations, and this is further exploited in AppendixdA t

derive a consistent scheme for evaluating the variousaxcit - AmkApg=k+qG07*K*QGOﬁKGKJrQGK} (10)
tion gaps. In order for the Meissner effect to be present only

belowT, we require

o This ansatz will be checked by appealing to the transverse f-

P0) +7/m=0,T>T. (8)  sumrule. First we rewrite Eq. (10) as
|
Poo(quw) = 3 0k % | B+ B E B —§08 — 00, (1= 75 - £(50) 1)
zz(d, - - Ok, Ok, E;_Ek_ w2 — (Elj_ + Ek—)2 k k

B - By BB+ 606+
EfB. W= (B - E)?

(£B - r(BO))

where at superscriptindicates that the given function is eval-we combine the two limits to yield the appropriate form for
uated ak + g/2. We define the quantity

T > TC (12) (SAE - Asc kAsc k qu kqu k (15)

which enters into Eq. (11). Importantly, Egs. (11) and (15)
represent the full electromagnetic response above anavbelo
T., albeit in the weak dissipation limit. The superfluid depsit
follows from the definition

2 —
YA Ap 7A NS
Once the temperature passes belgwwe need to include the
self energy of the condensed pairs as well

Sk = Sse,k + Spgx = — | A5y + A2

sc,k

Go,-x (13) o
P0)+%i/m=%s/m (16)
whereX x now consists of a condensed and non-condenseg
pair contributions. This results in an expression for the di
magnetic contribution, just as in Eq. (8) which can be rewrit

ombining Eqg. (11), (15) and (14) implies that the superfluid
density is given by

ten in the form ns _ Z%%quk[l_ﬁwk)—i—afwk)} 17)
i, %%{A_ﬁl —2f(B) §_Eaf(Ek)} " m 2=k, Ok, By 2F D F.
m "4~ 0k Ok 2E EZ OEx

Thus the normal fluid density, which will be used as input
into the f-sum rule that constrains (w), isn,/m = n/m —

whereAf = A2\ + AZ, . To determine howAZ, , enters  , /p, —
into the paramagnetic curref(Q), we observe that, in the
BCS limit, o~ 96k Dk [Asg,k 1-2f(Ex)  Ep—Afgd f(Ek)}
- o Ok, Ok, L B2 2y E2 OFx
6AF g = AL (AL, BCSlimit k

The transverse f-sum rule is given by
An essential point is that the superconducting dapyx ap-

pears with the opposite sign from the pseudogap contributio lim oo d_w( _ IMP,(d, i — w + iO*))
in Eq. (12). In the case of general temperatudes, T’ < T'x, q—0

= (18)
m

oo T w



This sum rule can be proven to hold analytically by directly Eq. (11), we have
using Eq. (11), along with the normal fluid density. From

T dw ,  IMPu.(q,iQ,, — w+i01) 106 06 (B2 — EZ 4+ 2A02%,, 1 1
li aw xx\Y, 18om _ - YS pgK = 19
40 oo T ( w ) ; 2 Ok, 61{1[ E}? (2Ek —2Ek) (19)
E2 + E2 —2A2 ET) - f(E-
X (1 — 2f(Ek)) . kEz PIK {im A k+) f(7 k )}
k q—0 Ek — Ek
D¢ D6 [Aég,k 1-2f(Bx) B} — Ajyk Of (Ek>] _
Ok, Ok, L EZ 2By E2 OFx m’

Importantly one can see by direct Kramers Kronig analysisThis natural extension of our small dissipation result et

that Eq. (8), which reflects the absence of a normal state

Meissner effect, is intimately connected to the sum rulevabo ﬁ(Q) ~ 92 Z Ok+a/2 Hicras2 (22)
K

T.. ok ok

The confirmation of the sum rule then serves to validate
Eq. (11), where importantly Eq. (15) must be used. We
stress that in the usual BCS-like, purely fermionic Hamilto whereF,,, x = — A, k(iw, +&+iv) " Gk. Here thel,,
nian (which we consider here) only fermions possess a hoperms represent the non-condensed pair contribution hs-tra
ping kinetic energy and thereby directly contribute to $ran port, which appeared in our small dissipation derivation as
port, as indicated by the right hand side of the sum rule. Thavell. They are not to be associated with broken symmetry.
contribution to transport from pair correlated fermionsees  This is, in part, reflected in the incorporation of the finife-
indirectly by liberating these fermions through a breakefip time v~! in the expression foF,,, . Rather they represent
the pairs. correlations among pairs of fermions. This is in contrast to

We now see that the general form of the superconductinthe Fi. x contributions, which are present only for < 7,
electromagnetic response consists of three distinct ibontr and reflect a non-zero order parametey. . Note that the
tions: (1) superfluid acceleration, (2) quasi-particletteza  difference in the relative signs ak? , and A2, that ap-
ing, and (3) pair breaking and pair forming. These all appeapears in Eq. (23) is a direct consequence of the same physics
in conventional BCS superconductors, buffat= 0 this last  discussed in our weak dissipation calculations. That time co
effect is only present when there is disorder. However, én th densed and non-condensed pairs enter in a different fashion
presence of stronger than BCS attraction andl at 0, non- is a crucial finding and one that is essential in order that the
condensed pairs can be decomposed to add to the higher freen-condensed pairs do not contribute to a Meissner effect.
guency conductivity.

X [GxGr4+qQ + Fse,xkFoe,k+Q — Fpg,k Fpg k+0Q) »

I11. CALCULATION OF THE PAIRING GAPS
B. Strong dissipation limit Throughoutthis paper we have implicitly presumed that the
) _gap componenta,,, (7)) and A,.(7") are known, where the
We now use the full expression for the self energy to obtaifyaps are assumed to be d-wave ang (T) andA,.(T) are
compatible expressions for transport coefficients in thenst  the gap magnitudes at the antinodes. We now discuss the way
dissipation limif. The full Green’s function is given by in which these are calculated, referring the reader to Agixen
A for more details.
. . pg.k sek 7Y We consider a preformed pair scenario which is based on
Cx = (M” ~ iy = wn 4+ &+ iy iwn + €k) (20) " Bcs Bose Einsteir;1 Condensztion (BCS-BEC) theory. Given
the small pair size and the anomalously high transition tem-
Below T, we introduce terms of the forns. x Fsc k10 peratures of the cuprates, one might associate these fmding
which represent the usual Gor’kov functions to represeat thwith a stronger than BCS attractive interaction. Impotant
condensate. More specificallfs., x can be represented as a the BCS ground state wavefunction
product of one dressed and one bare Green’s funcfigrn ]
%o} = [ J(use + vueei 4ty I0) (23)

Asc,k 1 (21) k

. 2
Wwn + & jw,, — & — mf—ifk is well known to contain both the BCS and BEC limits. We

Fsc,K = -
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Figure 1: (a) The superconducting gap. and pseudogap 4, at the antinode for three different dopings and in units efithplane hopping

integral ¢, obtained self-consistently within the microscopic modisicussed here for a nearest neighbor tight-binding disper, as a

function of temperature. Temperature is measured in ufitsedtransition temperaturg.. Solid lines showA, dotted linesA 4, and dashed
lines A,.. From Ref. 17. (b) The gaps used for the present calculatiBoperconducting gaphs. and pseudo gap,, at the antinode in

meV for three different dopings as functions of temperatilissnperature is measured in units of the transition tentpesd.. The solid lines

showA,, and dashed lines denate,.. HereA? = A%, + Aig represents the square of the excitation gap. Details oéthasameters are
included Ref.18
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Figure 2: (a) The real conductivity; as a function of frequency normalized by the dc conductiity = 300K, 055, . Inset: The imaginary
conductivityo, as a function of frequency. (b)The real conductivitly as a function of temperature. (c) The quantity, as a function of
frequency. Insetwos as a function of temperature. (d) The imaginary condugtivit as a function of temperature. Inseti as a function of
temperature neédfe..

present in Appendix A a treatment of finite temperature efscenario is a mean-field scheme just as in strict BCS the-
fects which is based on a t-matrix implementation of BCS-ory. Beyond this BCS endpoint there are two types of ex-
BEC theory. Ours represents a straightforward extension dfitations, fermionic quasi-particles and pair excitasioMhe
standard BCS and Gor’kov theory. Given that we start withfermions have the usual dispersion relatiog, whereky =

the same wavefunction, it is not surprising that our pairing,/¢ + AZ and where the excitation gap consists of two con-



5

tributions from non-condensed (pg) and condensed (sc3:pair These effects are made clearer by plotting the “phase stiff-

via Al = Af,q,k + Agak. We stress that the preformed pairs ness”, which is proportional to the quantity, and is shown

represent pair correlations of fermions which have notiing in Fig.2(c). Deep in the superconducting state there isyno

do with broken symmetry. Note that the full gag remains  dependence too,(w), while at highefT this dependence be-

relatively T-independent, even beldliy because of the con- comes apparent. In the inset to (c), the temperature depen-

version of non-condensedh(,, «) to condensedX,. «) pairs  dence ofwo,(T) is displayed. We see that abd¥e, wos is

as the temperature is lowered. never strictly constant, as would be expected from fluobmati
Written in terms of fermion creation and annihilation op- contributions.

erators ¢’ andc respectively), these pair correlations corre- In general, these curves capture the qualitative features o

spond to[(ccfec) — (cfet)(cc)] and are ignored in BCS the- served in recent experimepts

ory (where the attraction is very weak). In a closely related

fashion, the (square of the) contribution to the total pajri

gap (A(T)) associated with non-condensed pairs (pg), can V. CONCLUSIONS

be writterl as A2 (T') = [A*(T) — AZ.(T)] where sc cor-

responds to condensed pairs and pg corresponds to the pre

formed (pseudogap) pairs. expression which appears in Eq. (1) and which is
The results of a full numerical solutiéhfor these gap pa- wigely adopxt:éjgfri)the Iiteratﬁ?pé3'14, can b?e u(sgd to derive the
rameters (associated with Egs. (A6), (A9), and (A10)) forgequency dependent conductivityw). Importantly, the re-
a nearest-neighbor tight-binding dispersion is shown & th g,jr5 can e seen to be analytically compatible with thestran
Fig.1(a), where the gaps, A,., andA,,, are plotted as func- -y qrqe f.sum rule, and semi-quantitatively compatible it
tions of temperature and for different dopings, as reptesen a5 | the normal state this constraint is equivalent & th
by different interaction coupling constants. For the C&leu oqjirement that there is no Meissner effect. This theory is
tions performed n this paper, the specific parameters tE W ¢4y extended below, by including a second component
used are illustrated in Fig.1(b). These particular paramet , e excitation gap associated with condensed pairs which
were chosen for consistency with the cuprate phase diagrary of the ysual BCS (undamped) form. We have additionally
SO tklat, for example, the attractive interaction was chosen gy, that the recent experiments by Bilbro etedn be suc-
fit 7. This procedure is described in more detail in [18].  egsfylly addressed in this framework which can be micro-
scopically associated with BCS-BEC crossover theory. Im-
portantly, this particular variant of a preformed pair agaarh
IV. DETAILED NUMERICAL STUDIES has been unambiguously realized in (atomic physics) experi
ments where a pseudogap is claimed to be obsétved
We now turn to more detailed comparisons between THz We can summarize the effects of a pseudogap in the normal
theory and experiment. Fig.2 displays our more quantgativ state, which differentiates the present theory from thatsof
results foro; ando, both as functions of and7'. Our nu-  BCS counterpart. In the low frequency regime, with a pseudo-
merical results, based on Eqg. (2), are presented in a laysut dgap present, there are fewer fermions available to cor&ibu
signed to mirror Figure 1 from Ref. 5 where the general trend$o transport since their number is reduced because they are
are similar. One sees from Fig.2(a) and its inset that weltied up into pairs. However, once the frequency is suffityent
aboveT.,, the real part of the conductivity is almost frequency high to break the pairs into individual fermions, the conduc
independent. The imaginary part is small in this regime. Attivity rises above that of the Drude model. One can see that
the lowest temperatures, contains much reduced spectral the effect of the pseudogap is to transfer the spectral weigh
weight while the frequency dependencerefx w=!; bothof ~ from low frequenciesto higher energiesx 2A, (whereA is
these reflect the characteristic behavior of a superfluice Ththe pairing gap). In this way one finds an extra “mid-infréred
behavior belowT’. is not superficially different from that of ~contribution to the conductivif which is as observéd ex-
strict BCS theory. However, it should be noted that the pgiri  perimentally and is strongly tied to the presence of a pseudo
gapA(T) (at the antinodes) is almo%t independent. BCS gap. This contribution is not, however, visible in the law
theory (which considers only fermionic excitations) wquld THz experiments that are considered in later figures.
thus, predict no significant T dependencesirandos. The behavior ob,(w) is rather similarly constrained. On
Here, as in the experimental studigse focus primarilyon  general principlesg> must vanish at strictly zero frequency
the temperature dependent plots in Figs.2(b), (d) and 8t in as long as the system is normal. Here one can see that the
to (c). One sees that; shows a slow decrease as the tem-low frequency behavior is also suppressed by the presence of
perature is raised aboe. Somewhat below,, o, exhibits  a pseudogap because of the gap-induced decrease in the num-
a peak that occurs at progressively lower temperatureseas tiper of carriers. At higheo ~ 2A), the second peak it (w)
probe frequency is decreased. At rougfily we find thatos leads, via a Kramers-Kronig transform to a slight depressio
shows a sharp upturn at law. The region of finites, above  in o2 (w) in this frequency range. As a resuth (w) is signif-
the transition can be seen from the inset in Fig.2(d). Thetins ically reduced relative to the Drude result.
shows an expanded view 6§ (7") nearT.. In agreement with We now turn to the question of to what extent does the con-
experiment, the nesting of the, versus T curves switches ductivity below the transition temperature differ from tha
orders abov€.. strict BCS theory. Here it is important to stress the comipfex

‘In this paper we have shown how the standard self energy



of the superfluid phase in the presence of a pseudogap. Angleand d-wave pairing by defining the form factop, =

resolved photoemission experimestmdicate that the (anti-  [cos(k,) — cos(k, )] for the latter and taking it to be unity for

nodal) spectral gap is not sensitiveéffa In strict BCS theory the former. These virtua) # 0 pairs are associated with an

with a constant pairing gap, the superfluid density shoutd noeffective propagator or t-matrix which is taken to be of the

vanish atT,.. Rather it would vanish when the excitation gap form

disappeared, say @t*. Moreover, sincers x n;/w it would

then seem to be difficult to understand the behavior of the THz HQ) = v '

conductivity which reflect§’, and notT™*. 1+ U GrGo~K+Q¥i_q/2
There has to be, therefore, a substantial effect of the pseu-

dogap which persists beldi., thus differentiating these sys- in order to yield the standard BCS equations. This t-matrix

tems from conventional BCS superconductors. In the presenitcorporates a summation of ladder diagrams in the padticle

theory this difference is incorporated by including a peiesit ~ particle channel and importantly depends on b@thnd Gy,

pseudogap below the transition. This non-zérg, is to be  which represent dressed and non-interacting Green’s func-

associated with non-condensed pairs which are preseneabotions respectively. That one has this mixture of the two

T, and do not immediately disappear once the transition lindsreen’s functions can be traced back to the gap equation of

is crossed. Rather these non-condensed pairs gradualy co@or’kov theory. In order to describe pairing in tig:_, -

vert to the condensate 45 — 0. As a consequence, in the wave channel, we write the attractive fermion-fermion in-

(A1)

present approach we find that the spectral gap exhibit§'the teraction in the formUy x = Upkpx, WhereU is the
insensitivity at the anti-nod&while n,® vanishes af, and  strength of the pairing interaction. As in bosonic theqries
appears clearly in transport. non-condensed pair excitations of the condensate are-neces

Finally, we raise the important issue of concomitant ordersarily gapless beloW,.. This means thaf{@ — 0) — oo and
inthe abovel. pseudogap phase. Interestingly, we have founds equivalent to the vanishing of the effective pair cherhica
such order to exist in high magnetic fields, in the form of potentiali,q, for T < T.. This leads to a central constraint
bosonic charge density wave-like states or precursor yorteon theT-matrix¢=*(Q — 0) = 0 — fipair = 0,7 < T,. In
configurations. Future work will be required to see if this order to identify the above condition with the BCS gap equa-
is a more general phenomenon. Nevertheless, it should d&n, we need to incorporate the appropriate formdgs. In
clear that the THz conductivity and even the two-gap physic8CS theory the fermionic self energy that appears in the full
observed in ARPEZ are not incompatible with a preformed dressed Green’s functiofix, is
pair scenario for the cuprates. They, thus, do not necéssari
require the presence of another order parameter. Yse k= Z tsc(Q)G07—K+QSDi—q/2 (A2)

This work is supported by NSF-MRSEC Grant 0820054. _ ZA (0
We thank Hao Guo and Chih-Chun Chien, along with Peter 5
Scherpelz and A. Varlamov for useful conversations, and L.
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where As. k(T) = As(T)gx is the superconducting or-

Appendix A: Summary of T-matrix Theory der parameter. The full Green’s function is théf,' =
Gg}K — X,k Which, when inserted in Eq. (Al) yields the
In this section we summarize previous wdfk**which es-  BCS gap equation belo®, 1 = —~U 3", %&Ek)wﬁ with

tablished a microscopic description of the pseudogap based )
on BCS-BEC theory. Alternative formulations of preformed i’ = /i + A%, - We have thus used Eq. (A1) to derive
pairs of a different nature from our work are discussed inthe standard BCS gap equation within a t-matrix language.
Ref?®. In the present paper a stronger than BCS attrackmportantly, this demonstrates that we can interpret this g
tion leads to boson-like excitations or meta-stable, lovedl  equation as a BEC condition. That is, it is an extended ver-
pairs with non- zero net momentum.These pairs give rise to aion of the Thouless criterion of the strict BCS theory that
gap for fermionic excitations. At the microscopic levelske applies for alll’ < T..
pairs are associated with a t-matrix which is coupled to the In order to extend the t-matrix theory to include a stronger
fermionic Green'’s function, which is, in turn, dependent onthan BCS attraction we presume that the# 0 pairs are no
the t-matrix. longer virtual. The t-matrix in general possesses two ¢ontr
It is useful to begin by reformulating strict BCS theory as butions: theq = 0 contribution that gives rise to the con-
a BEC phenomenom which motivates our extension to trealensed or superconducting pairs and ¢he 0 contribution
a stronger than BCS attraction. Important here is that BC®f Eq. (A1) that describes the correlations associated thigh
theory can be viewed as incorporativigtual non-condensed non-condensed pairs. As a result, the fermionic self-gnerg
pairs. Here we consider the general case applicable to bo#iso possesses two contributions that are given by



Yk = Z HQ)Go, K 1Q¥h_q/2 = Z {tsc(Q) + g (Q)| Go, - K +Q¥h—q/2 = sl + Tpg K (A3)
Q Q

The resulting full Green’s function 6" = G&}(—ESQK— Egs. (A6), (A9), and (A10) present a closed set of equa-
Ypg.ic- While, as beforey,. x = —Aﬁc,kGO,—K, we find  tions for the chemical potentiad, the pairing gapAk (7)) =
numerically>®thaty,,  is in general of the form A(T)px, the pseudogap,gk(T) = Apg(T)¢x, and the
’ superconducting order paramet&. x(7) = Ascpx With
. AZ gy D) = \/A2(T) — A2 (T). We find thatA,,(T) es-
e w+ & + iy sentially vanishes af' = 0 whereA = A,.. In this way,

. . . ... the "two gap” physics disappears in the ground state. Impor-
With Apg k = Apgk. Thatls, the self-energy associated with tantly, nu?’ngricpal)gtudiééshrz)sv that ford-wgve pairing, therep
the non-condensed PaIrs POSSESSES _thg sarr:e structure agdizg superfluid phase in the bosonic regime where neg-
BCS counterparts, albeit with a finite lifetime;, : .. ative; the pseudogap is, thus, associated with the fermioni

We can understand these results more physically as ar's'q%gime
from the fact that,,(Q) is strongly peaked aroun@ = 0 '
below T, where the pair chemical potential is zero and for a
range of temperatures abo¥ as well where this chemical
potential is small. Thus the bulk of the contributiondg, x
in the ordered state comes from snall

Spg.k * = > tpg(Q)Go, -k (A5)
Q

If we define

Azgzq,k == Z tpg(Q)‘PE (A6)
Q

we may write

Sk~ —(AL e+ A2 )Gk = —ALGo_x (A7)
Eq.A7 leads to an effective pairing gayy7") whose square

is associated with the sum of the squares of the condensed and

non-condensed contributions

Note that the full gapAx remains relatively T-independent,

even belowI, because of the conversion of non-condensed

(Apg.k) to condensedX,. k) pairs as the temperature is low-

ered. The gap equation for this pairing gaf(7T) =

A(T)gx, is again obtained from the conditiop), (Q = 0) =

0, and given by

1=uy LB (A9)

whereEx = /& + A%(T)yg ,and f is the Fermi distribu-

tion function. Note that one needs to self-consistentlgdet
mine the fermionic chemical potential, by conserving the
number of particlesy = 2" ,- Gk, which leads to

_ R RN Y
n_2;GK—zk:[1 E+2Ekf(Ek) (A10)

k
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