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Scanning tunneling spectroscopy (STS) is a useful probe for studying the cuprates in the super-
conducting and pseudogap states. Here we present a theoretical study of the Z-map, defined as
the ratio of the local density of states at positive and negative bias energies, which frequently is
used to analyze STS data. We show how the evolution of the quasiparticle interference peaks in the
Fourier transform Z-map can be understood by considering different types of impurity scatterers,
as well as particle-hole asymmetry in the underlying bandstructure. We also explore the effects of
density wave orders, and show that the Fourier transform Z-map may be used to both detect and
distinguish between them.

PACS numbers: 74.55.+v, 74.72.-h, 71.45.Lr

I. INTRODUCTION

Conventional metals and superconductors exhibit
particle-hole symmetry at low energies, which is well de-
scribed by Fermi liquid and BCS theory. In contrast, a
notable feature of the high-Tc cuprate superconductors
is the number of ways in which they break particle-hole
symmetry. Electron or hole doping the Mott insulating
parent compounds leads to superconductivity, although
the maximum Tc is drastically different, reaching 150 K
for hole doped compounds, while only 30 K in the case of
electron doping. Another example is a pronounced asym-
metry in the conductance spectrum for tunneling elec-
trons and holes, measured by scanning tunneling spec-
troscopy (STS).1 These asymmetries can be understood
in the context of doping a Mott insulator, where the ad-
dition of electrons is more difficult than extraction, due
to the strong electron-electron repulsion.2,3

Recent experiments have observed further particle-
hole symmetry breaking in the pseudogap state, a phase
whose origin is debated, but may be due to preformed
Cooper pairs lacking phase coherence, or a compet-
ing order.4 Angle-resolved photoemission spectroscopy
(ARPES)5 in the pseudogap regime reveals particle-hole
symmetry breaking in the form of a bend-back in the
energy dispersion misaligned with the Fermi momen-
tum kF , which can arise from a density wave (DW)
order.6,7 Because superconducting fluctuations should
be roughly particle-hole symmetric, while spin and
charge orders generally induce particle-hole asymmetric
changes, searching for particle-hole symmetry breaking
is a useful way to distinguish between superconductivity
and DW orders.

In this paper we explore the signatures of particle-hole
asymmetry in the local density of states (LDOS) mea-
sured by STS, a technique which has been used exten-
sively to study the cuprates in both the superconduct-

ing and pseudogap phases.1,8,9 STS has revealed that
the cuprates have a spatially inhomogeneous electronic
structure, including modulations in the LDOS and su-
perconducting gap magnitude.10–27 In the d-wave super-
conducting phase, the LDOS modulations can arise from
quasiparticle interference (QPI), due to the scattering
of wave-like quasiparticles off impurities.12,15,22,25–27 The
wavevectors of the modulations can be determined from
the Fourier transform of the LDOS.

Fourier transform STS (FT-STS) data are often ana-
lyzed using the Z-map, defined as the ratio of the LDOS
at positive and negative bias energies,

Z(r, ω) =
n(r,+ω)

n(r,−ω)
. (1)

Experimentally, the Z-map has been used to cancel both
non-dispersing “checkerboard” modulations and system-
atic errors due to tip elevation uncertainty, in order to re-
veal the superconducting QPI pattern.20,22 By definition,
the magnitude of the Z-map clearly carries information
on particle-hole asymmetry in the LDOS.

Due to superconducting coherence factors, the Z-map
in fact enhances the intensity of LDOS modulations from
QPI, as discussed in Ref. 28. To summarize their argu-
ment, since STS tunnels electrons rather than quasipar-
ticles, the strength of the measured conductance at r
depends on the magnitude of the hole and electron am-
plitudes, |un(r)|2 and |vn(r)|2 (n labels the eigenvalue of
excitations). Expressing the LDOS in terms of the elec-

tron Green’s function n(r, ω) = −(1/π)ImĜ11(r, ω), the
dependence of the LDOS on coherence factors is clear:

n(r, ω > 0) =
∑
n

|un(r)|2δ(ω − En) (2)

n(r, ω < 0) =
∑
n

|vn(r)|2δ(ω + En).
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Assuming well defined excitations in energy (so the sum
over n includes just one term), the Z-map reduces to

Z(r, ω) =
|u(r)|2

|v(r)|2
(3)

By recalling the sum rule
∑
n |un(r)|2 + |vn(r)|2 = 1, it

is clear that whenever |u(r)|2 is large |v(r)|2 is small, so
taking the ratio of the coherence factors will enhance the
maxima.

The superconducting QPI pattern in the cuprates is
dominated by scattering wavevectors qi predicted by the
octet model.29,30 The octet model is derived by not-
ing that for a d-wave superconductor, the quasiparti-
cle dispersion exhibits banana-shaped contours of con-
stant energy (CCE). The momentum space LDOS is
maximal at the tips of the CCE, where the curvature
is strongest. Quasiparticle scattering is dominated by
wavevectors q1 − q7 that connect the endpoints of the
CCE, depicted in Fig. 1. The presence of particle-hole
symmetric wavevectors dispersing according to the octet
model is evidence that an observed gap is due to super-
conductivity; the shape of the underlying Fermi surface
and the momentum dependence of the gap can be deter-
mined from this dispersion.

The evolution of the QPI intensity with bias energy
has recently been a subject of discussion in the litera-
ture. FT-STS experiments have observed that the in-
tensity at some octet q-vectors disappears when the tips
of the banana-shaped CCE cross the antiferromagnetic
zone boundary (AFZB), which has been interpreted as a
signature of the loss of QPI, or more generally, the loss
of quasiparticles.22 In contrast, recent ARPES measure-
ments observed well defined quasiparticles all the way
from the node to the antinode, and it has been argued
that the extinction of QPI at the AFZB observed in FT-
STS can be attributed simply to the momentum depen-
dence of impurity scattering.31 Additionally, the presence
of a competing spin DW order coexisting with supercon-
ductivity can explain the disappearance of QPI beyond
the AFZB.32

In addition to dispersing octet q-vectors from su-
perconducting QPI, static quasi-periodic “checkerboard”
modulations have been observed in both the supercon-
ducting and pseudogap phases.13,15,17–19,21–24,26,27 Al-
though the origin of these modulations remains unknown,
there has been much discussion about their relation to
a possible DW order in the pseudogap phase; scenarios
that have been proposed include orbital current induced
d-density waves,33 one dimensional stripes,34 nematic or-
der,35 short range charge order connected to nested parts
of the Fermi surface in antinodal regions,23,36–38 and
disorder-induced charge orders.39

We present a detailed study of what can be learned
from the Z-map in superconducting, DW, and coexisting
phases. In the first part of the paper we show that the
evolution of the Z-map intensity with bias energy and
doping reflects the underlying particle-hole asymmetry
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FIG. 1. The octet model. Scattering is dominated by
wavevectors q1-q7 which connect the eight points at the ends
of banana-shaped contours of constat energy (red curves)
centered on the normal state Fermi surface (dashed line).
The phase of the d-wave superconducting order parameter
is shown in green (positive) and orange (negative).

of the bandstructure. We also compare the QPI pat-
terns from different impurity types, and show how the
Z-map can distinguish between them. In the second half
of the paper, we consider DW order– both long range and
fluctuating– and show that due to inherent particle-hole
symmetry breaking, DW order produces a unique pattern
in the Z-map. As a result, the Z-map may be a useful in
detecting and distinguishing between DW orders.

The plan for the rest of this paper is the following:
in Section II we discuss general properties of the Z-map
and its connection to particle-hole asymmetry. In Section
III, using a single site impurity, we study the evolution
of the QPI intensity with bias energy and doping, while
in Section IV, we introduce an extended impurity with
scattering treated self consistently. We investigate the
signatures of DW order in the Z-map in Sections V-VII,
considering the effect of long range and fluctuating DW
orders, and their coexistence with superconductivity. We
conclude in Section VIII.

II. PARTICLE-HOLE ASYMMETRY IN THE
Z-MAP

Because the CCE in the superconducting state are
particle-hole symmetric, the octet wavevectors are the
same at positive and negative bias energy (qi(ω) =
qi(−ω)), however, the QPI intensity (the magnitude of
the LDOS modulations) at those wavevectors need not
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be. Here, we consider the effect of inherent particle-hole
asymmetry in the underlying cuprate bandstructure on
the Z-map intensity; the difference between injecting and
extracting electrons from a Mott insulator would further
enhance this asymmetry in a real material. The Z-map
intensity evolves with bias energy in part because n(r, ω)
is closer to particle-hole symmetric at low energies than
at higher energies (where there is more asymmetry due
to the proximity of the van Hove singularity). Addition-
ally, variation in the QPI intensity with doping can be
understood by appealing to particle-hole asymmetry, as
doping moves the van Hove singularity.

In order to quantify these ideas, we first decompose
the Z-map into even and odd functions of bias energy,
which makes clear the dependence on the particle-hole
asymmetry of the underlying bandstructure. The LDOS
can be written as the sum of a uniform part and a part
modulated by impurity scattering: n(r, ω) = n0(ω) +
δn(r, ω). When LDOS modulations are weak, such that
|δn(r, ω)| << |n0(ω)|, the Fourier transform Z-map can
be expanded as40

Z(q, ω) = Z0(ω)
(
δq,0 +

δn(q, ω)

n0(ω)
− δn(q,−ω)

n0(−ω)

)
= Z0(ω)(δq,0 + δZ(q, ω))

where Z0(ω) = n0(ω)/n0(−ω). Decomposing the
LDOS as δn(q, ω) = δneven(q, ω) + δnodd(q, ω), where
δneven(q, ω) = δneven(q,−ω) and δnodd(q, ω) =
−δnodd(q,−ω), the Z-map modulation can be expressed
as

δZ(q, ω) = α(ω)δnodd(q, ω) + β(ω)δneven(q, ω) (4)

where

α(ω) =
1

n0(ω)
+

1

n0(−ω)
(5)

and

β(ω) =
1

n0(ω)
− 1

n0(−ω)
. (6)

The factors α(ω) and β(ω) reflect the amount of
particle-hole asymmetry in the underlying band struc-
ture. For a particle-hole symmetric bandstructure,
α(ω) = 2/n0(ω) and β(ω) = 0, so the Z-map modula-
tion depends only on δnodd(q, ω):

δZ(q, ω) =
2δnodd(q, ω)

n0(ω)
(7)

The cuprate bandstructure weakly breaks particle-hole
symmetry for energies less than the gap maximum (ω <
∆0), so in this case α(ω) >> β(ω). As a result, the
Z-map modulation is dominated by δnodd(q, ω) in the
cuprates. We use the expressions derived in this section
frequently in our subsequent discussion.

III. SINGLE SITE IMPURITY SCATTERING

Since QPI requires the presence of impurity scatter-
ers, in this section we lay out the formalism for single
impurity scattering, while in later sections we treat an
extended impurity model. We consider three impurity
types in this paper: those that modulate the d-wave
superconducting gap, the bond (nearest neighbor hop-
ping) parameter, and the site energy. The QPI pattern
observed in FT-STS experiments arises from scattering
from multiple impurity types, which can be difficult to
disentangle. However, recent experimental41 and theo-
retical40 work studying the effect of a magnetic field on
QPI has shown that vortices induce gap inhomogeneities
which can scatter quasiparticles. The magnetic field does
not create additional scattering vectors, but enhances in-
tensity at octet q-vectors which originates from scatter-
ing from gap inhomogeneities, so these wavevectors now
can be isolated and studied in detail.

The theory of QPI from various impurity types has
been studied by several authors. Calculations of QPI
from single site and multiple impurities 29,32,42–44 repro-
duce the locations of experimentally measured wavevec-
tors, but the features in the QPI pattern are “streak-like”
rather than “point-like” as in experiment. Zhu et.al 45

studied QPI from multiple impurities, and highlighted
the need for more realistic impurity models. Other works
have shown that many of the discrepancies between the-
ory and experiment can be resolved by considering an
extended long range impurity model,46 or by including
a spatially inhomogeneous chemical potential and super-
conducting gap.47 However, the aim of this paper is to
focus on the generic behavior of the Z-map, and we ne-
glect more realistic impurity modeling.

We now review the formalism for single site impurity
QPI calculations. While we neglect electronic correla-
tions in this work, we do not expect them to change our
overall conclusions, which largely are derived in a fairly
straightforward way based on symmetry arguments. In
addition, we confine our considerations to the low tem-
perature phases where there is strong experimental ev-
idence that there are well-defined quasiparticles. The
BCS Hamiltonian in the Nambu formalism is given by

H =
∑
k

ψ†kΛ̂kψk, (8)

where ψ†k = (c†k↑, c−k↓) and

Λ̂k =

(
εk ∆k

∆k −εk

)
.

Here c†kσ creates an electron with momentum k and spin
σ, εk is the bandstructure, and for our considerations
of the cuprates, we use the d-wave superconducting gap
∆k = ∆0(cos kx − cos ky)/2. The Green’s function is
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given by

Ĝ(k, iωn) = (iωnÎ − Λ̂k)−1 (9)

=
iωnτ̂0 + ∆kτ̂1 + εkτ̂3

(iωn)2 − E2
k

,

where τ̂0 is the identity matrix, τ̂1,3 are Pauli matrices,
and E2

k = ε2k + ∆2
k.

On a lattice of N sites, scattering from a single point-
like impurity at site (0,0) is described by the Hamiltonian

Himp =
∑
r

ψ†rT̂r,0ψ0 + h.c. (10)

where ψ†r = (c†r↑, cr↓) and T̂r,0 = τ̂1,3Tr,0 is the scattering
T -matrix. Contributions to the T -matrix from different
impurity types are classified by how they modify elec-
tron parameters: bond modulations δt and site-energy
modulations δµ occur in the τ̂3 channel, while d-wave
superconducting gap modulations δ∆ occurs in the τ̂1
channel.

Superconducting gap and bond modulations modify
the parameters on the four bonds immediately surround-
ing the impurity site. On a lattice with spacing a the
real space T -matrix is given by

Tr,0 = δm[δ(r−ax̂)±δ(r−aŷ)+δ(r+ax̂)±δ(r+aŷ)] (11)

where δm = δt(δ∆) is the amplitude of the modulation
and the +(-) is for bond (d-wave gap) modulation. Site-
energy modulation occurs only at the impurity site, for
which Tr,0 = δµδ(r − 0). Transforming to momentum
space, the T -matrix is

T̂ gk,k+q = δ∆τ̂1(∆k + ∆k+q) (12)

T̂ bk,k+q = δtτ̂3(tk + tk+q) (13)

T̂ sk,k+q = δµτ̂3 (14)

for gap, bond, and site energy modulations, respectively.
The definition of δ∆k was given above, and tk = cos kx+
cos ky.

From the momentum space form of the T-matrix,
we can already make two important observations about
the energy dependence of the QPI intensity.31 First,
T̂ bk,k+q = 0 for all octet q-vectors when k and k + q lie
along the AFZB. Therefore, for impurities that modu-
late the bond parameter, extinction of QPI at the AFZB
is simply due to the momentum-space form of the T -
matrix, rather than a loss of quasiparticles. Including
next-nearest-neighbor bond modulations lifts the com-
plete extinction of QPI intensity at the AFZB, although
these modulations have a smaller amplitude. Addition-
ally, for superconducting gap modulations, T̂ gk,k+q = 0
for octet q-vectors that connect points of opposite gap
phase (q2,q3,q6,q7). All wavevectors are present for
site energy modulations.

A. Born scattering in a particle-hole symmetric
band

We now classify the different impurity types by
whether they create an LDOS modulation that is even
or odd with respect to bias energy, for the simple case of
scattering in a particle-hole symmetric band. This simple
classification scheme will help us understand the behav-
ior of δZ(q, ω) in the cuprates, where this classification
still holds, but only approximately. The symmetry of the
LDOS modulation due to superconducting gap and site
energy variations already was described in Ref. 48 using
the Bogoliubov-de Gennes equations for a d-wave super-
conductor with classical phase fluctuations. We take a
different approach: we derive the LDOS modulation due
to scattering from a single impurity site using a momen-
tum space T -matrix formalism.

The LDOS modulation for scattering by wavevector q
is30

δn(q, ω) =

∫
d2k

(2π)2
(15)

Im[Ĝ(k, ω + iδ)T̂k,k+qĜ(k + q, ω + iδ)]11

where Ĝ(k, ω + iδ) is the analytic continuation of the
Nambu Green’s function to real frequencies. This ex-
pression can be separated into parts that are even and
odd with respect to bias energy ω:

δn(q, ω) =

∫
d2k

(2π)2
δ(ω − Ek) + δ(ω + Ek)

E2
k+q − ω2

×

δm[f1(k,q) + f2(k,q)/ω] (16)

where δm, f1(k,q) and f2(k,q) depend on the type of
scatterer. For gap modulation

fg1 (k,q) = (∆k + ∆k+q)2 (17)

fg2 (k,q) = (∆k + ∆k+q)(∆kεk+q + ∆k+qεk),

while for bond modulation

f b1(k,q) = (tk + tk+q)(εk + εk+q) (18)

f b2(k,q) = (tk + tk+q)(ω2 + εkεk+q −∆k∆k+q),

and for site energy modulation

fs1 (k,q) = εk + εk+q (19)

fs2 (k,q) = ω2 + εkεk+q −∆k∆k+q.

Noting that for a particle-hole symmetric bandstructure,
εk+Q = −εk for Q = (π, π), it can be shown that

fg2 (k,q) = 0 (20)

f b2(k,q) = 0

fs1 (k,q) = 0

so that for superconducting gap and bond modulations,
the LDOS modulation is purely even with respect to bias
energy, while for site energy modulation, the LDOS mod-
ulation is purely odd.
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As a result, since δZ(q, ω) depends only on δnodd(q, ω)
for a particle-hole symmetric bandstructure, only site en-
ergy modulations contribute to the spatially varying Z-
map. When p-h symmetry is broken, all three types of
impurities cause both odd and even modulations in the
LDOS.

B. Born scattering in a particle-hole asymmetric
band

Having classified the LDOS modulations in a particle-
hole symmetric band, we now turn to a particle-hole
asymmetric bandstructure describing the cuprates:

εk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky

−2t′′(cos 2kx + cos 2ky)−
4t′′′(cos 2kx cos ky + cos kx cos 2ky)− µ (21)

where t, t′, t′′, t′′′, = 0.22, -0.034315, 0.035977, -
0.0071637 eV respectively and the chemical potential µ is
adjusted to control the filling. This bandstructure is ob-
tained from a tight binding fit to ARPES data on nearly
optimally doped Pb-Bi2201 described in Ref. 7. The d-
wave superconducting gap maximum is set to ∆0=35
meV. The uniform DOS n0(ω) for this band structure
in the superconducting state is shown in Figure 2(a).

Fig. 2(b) shows the factors α(ω) and β(ω) (defined
in Eqs. 5 and 6), which control the contributions of
δnodd(q, ω) and δneven(q, ω) to δZ(q, ω), respectively.
The term α(ω) is an order of magnitude larger than
β(ω), strongly enhancing the contribution from δnodd.
Since n0(ω) increases with energy |ω|, especially at neg-
ative bias due to proximity to the van Hove singular-
ity, α(ω) decreases. Thus the Z-map intensity should
decrease with increasing energy, unless the strength of
δnodd(q, ω) increases markedly.

Figure 3 shows |δnodd(q, ω)|, as a function of scattering
wavevector q and energy ω for superconducting gap (pan-
els a-b), bond (c-d), and site energy (e-f) modulations.
Two Brillouin zone cuts are shown, which highlight dif-
ferent octet q-vectors (refer to Fig. 1 for the definitions of
these vectors): q1 and q5 in an anti-nodal (0, 0)→ (π, 0)
cut (panels a, c, and e), and q3 and q7 along a nodal
(0, 0)→ (π, π) cut (panels b, d, and f).

In the anti-nodal cut, q1 and q5 start out with negli-
gible intensity at low energy, and then increase in inten-
sity as energy increases for all three types of modulation
(panels a, c, and e). The effect is most pronounced for
superconducting gap modulation, where the intensity in-
creases by three orders of magnitude. For the nodal cut,
wavevectors q3 and q7 are not present for superconduct-
ing gap modulation (panel b), due to the momentum de-
pendence discussed at the beginning of this section. For
bond modulation (panel d), q3 and q7 both start out
with low intensity at small energies, and then quickly
grow in intensity. This intensity eventually starts to de-
crease with increasing energy. The behavior of q3 and q7
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FIG. 2. (a) Density of states for the band structure defined
in Eq. 21. (b) α(ω) and β(ω) defined in Eqs. 5 and 6. for
< n >=0.73.

in the case of site energy modulation (panel f) is qual-
itatively similar, although both wavevectors continue to
gain intensity at high energies.

In summary, from simple DOS arguments, the Z-map
intensity δZ(q, ω) at all octet wavevectors should de-
crease with increasing |ω| due to the reduction in α(ω).
However, a strong increase in δnodd(q, ω), for example,
at large |ω| in the case of gap modulation, or a peak at
intermediate |ω| in the case of bond and site energy mod-
ulations, could outweigh this behavior, depending on the
overall strength of the impurity scattering. The overall
evolution of the Z-map intensity will depend on the in-
terplay of these two effects, which we will illustrate in the
next section.

IV. SCATTERING FROM AN IMPURITY
PATCH IN SELF-CONSISTENT T -MATRIX

APPROACH

To more accurately describe impurity scattering and
better compare to FT-STS data, we consider the effect
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FIG. 3. Odd part of the LDOS modulation |δnodd(q, ω)|
as a function of scattering wavevector q and energy ω for (a,
b) superconducting gap modulation, (c, d) bond modulation,
and (e, f) site energy modulation. The wavevector q for the
left column (panels a, c, and e) is along the anti-nodal cut
(q = (0, 0) → (π, 0)), while in the right column (panels b, d,
f) it lies along the nodal cut (q = (0, 0)→ (π, π)). The boxes
mark the location of the q-vectors as calculated in the octet
model that lie along the antinodal (q1 and q5) or nodal cuts
(q3 and q7). Intensities are in arbitrary units.

of an extended impurity.31,49 We use an extended patch,
which is embedded in a finite periodic lattice, and cal-
culate the T -matrix self-consistently in real space. The
real space Green’s function is given by

Ĝ(r, iωn) =
1

N

∑
k

Ĝ(k, iωn)eik·r (22)

where Ĝ(k, iωn) is the Nambu Green’s function given in

Eq. 9. The initial real space T -matrix T̂0(r1, r2) gives the
amplitude for scattering between two adjacent sites in
the patch for superconducting gap or bond modulation,
or the amplitude for on-site scattering for site energy
modulation. The T -matrix for scattering between any
points r1 and r2 in the impurity patch is then determined
self-consistently from

T̂ (r1, r2) = T̂0(r1, r2) +
∑
r,r′

T̂0(r1, r
′)Ĝ(r′ − r)T̂ (r, r2)

(23)

(the ω dependence of the Green’s function has been sup-
pressed). The LDOS modulation in real space due to
quasiparticle scattering is given by

δn(r, ω) = − 1

π
Im

∑
r1,r2

(
Ĝ(r− r1)T̂ (r1, r2)Ĝ(r2 − r)

)
11

(24)
and the real space Z-map is

Z(r, ω) =
n0(ω) + δn(r, ω)

n0(−ω) + δn(r,−ω)
. (25)

The Fourier transform (FT) Z-map is then

Z(q, ω) =
1

N

∑
r

e−iq·rZ(r, ω). (26)

The figures shown in the rest of this paper were made
using a 9 × 9 extended impurity embedded in the cen-
ter of a 512 × 512 real space lattice. The magnitude of
the modulation parameters in the initial T -matrix are a
maximum on the bonds in the center of the patch, and
decrease in magnitude within a “Gaussian-like” envelope,
in order to minimize the effect of “ringing” that would
occur from an abrupt fall-off of the T -matrix at the patch
boundaries. Since the impurity in our calculation is em-
bedded in the center of the real space lattice, it creates
an LDOS modulation δn(r, ω), and hence a real space Z-
map Z(r, ω) that is C4 symmetric. As can be seen from
Eq. 26, the Fourier transform of a C4 symmetric quantity
(here Z(q, ω)) is purely real.

Fig. 4 shows the FT Z-map Z(q, ω) for a representa-
tive set of octet q-vectors at three levels of hole doping,
for an impurity that modulates the superconducting gap
and bond parameters (panels a-c), or site energy (panels
d-f). The value of µ in Eq. 21 is varied to control the
hole doping, and the superconducting gap maximum is
set to ∆0 = 35 meV in all cases. Changing the doping
in the system moves the van Hove singularity closer to
the superconducting gap edge (more hole doped) or fur-
ther away (less hole doped), as shown in Fig. 2(a), which
affects the particle-hole asymmetry. As a result, for all
octet q-vectors, the FT Z-map intensity becomes larger
as the system is more strongly hole-doped.

The FT Z-map intensity at q1 (Fig. 4a), q4, and q5

(not shown, but qualitatively similar) has low intensity
until near the energy at which the ends of the CCE cross
the AFZB, when the intensity rapidly increases. Recall
that the QPI intensity is extinguished at the AFZB for
bond modulating impurities, so this increase is solely due
to the LDOS modulation from superconducting gap vari-
ation (see Fig. 3). The FT Z-map intensity at q2, q7

(Fig. 4 b-c), q3, and q6 (not shown, but qualitatively
similar), peaks and then decreases with energy due to the
decrease in α(ω), until the intensity is completely extin-
guished at the AFZB for symmetry reasons as discussed
in Section III.

The behavior of the octet q-vectors in the case of site
energy modulation (Fig. 4 d-f), is qualitatively similar
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FIG. 4. FT Z-map intensity for three different levels of hole doping. The QPI intensity in panels (a)-(c) is extracted from
a Z-map calculation with a “patch” impurity that modulates the bond and superconducting gap parameters. The energy at
which the ends of the CCE cross the AFZB for each doping level are denoted by dashed lines. The QPI intensity in panels
(d)-(f) is extracted from a calculation with a “patch” impurity that modulates the site energy. The behavior is qualitatively
similar to that of bond/gap modulation. The QPI intensity is in arbitrary units.

to that for bond/gap modulation. There is no symmetry
reason for the extinction of FT Z-map intensity at the
AFZB, so q2 evolves smoothly through this boundary.
Because the behavior of the Z-map intensity for site en-
ergy modulation and bond/gap modulation are similar,
the rest of the FT Z-map figures shown in the paper are
computed with only bond/gap modulations. A compar-
ison of the FT Z-maps for these three types of impurity
scatterers, all considered separately, has also appeared in
Ref. 31.

To summarize our results on the energy dependence
of the FT Z-map intensity, we have shown that the en-
ergy and doping evolution of the octet q-vectors reflect
the particle-hole asymmetry in the underlying bandstruc-
ture. We also have shown that the different types of im-
purity scatterers give different q-dependent QPI intensi-
ties, so that the intensity of QPI at certain wavevectors
could be used to identify the type of underlying impurity
scattering. Namely, q-vectors that rise quickly from neg-
ligible intensity at the AFZB can be associated with gap
modulating impurities, while those that peak and then
extinguish at the AFZB are from bond modulations; site
energy modulating impurities can exhibit both of these
behaviors. While these behaviors offer a way to distin-
guish between impurity types, disentangling the effects
of multiple impurity types in one system is still difficult.

In this case, techniques that highlight certain scattering
types, such as the use of magnetic field to enhance octet
q-vectors arising from gap inhomogeneity scattering, as
demonstrated in Refs. 40 and 41, are especially relevant.

In order to facilitate the comparison of FT Z-maps
with DWs in the subsequent sections to the case of pure
superconductivity discussed here, we plot the FT Z-map
Z(q, ω) and spectral function A(k, ω) at three bias en-
ergies in Figure 5. In all subsequent FT Z-map plots in
this paper (Figs. 5, 8, 10 – 12), the filling is set to
< n >=0.73 and the Z(q, ω) intensity color scale for all
panels in each figure is the same, although this scale has
been adjusted between figures for clarity. Note that for
each point in Fig. 4, the QPI intensity at each octet q-
vector was extracted from FT Z-maps like these. Peaks
at wavevectors q2, q3, q6, and q7 are present at low
energies and then extinguish as energy increases, while
wavevectors q1, q4 and q5 appear only at high energy.
The peaks all disperse according to the octet model.

V. LONG RANGE DENSITY WAVE ORDER

We now explore the signatures of DW order in the
Z-map. This is motivated by the observation that the
Z-map intensity is sensitive to particle-hole asymmetry,
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FIG. 5. d-wave superconductivity. Z(q, ω) (left column)
and spectral function A(k, ω) (right column) for |ω/∆0| =
0.075 (a and b), |ω/∆0 = 0.5| (c and d), and |ω/∆DW = 0.85|
(e and f). Here the magnitude of the d-wave superconduct-
ing gap is ∆0 = 35 meV. Blue circles mark the locations of
the octet q-vectors on Z(q, ω), and the ends of the CCE on
A(k, ω), respectively.

as discussed in the previous sections in the context of a
particle-hole asymmetric bandstructure. Since DWs also
break particle-hole symmetry, the Z-map may be a useful
quantity to consider in DW systems. The Z-map could
be used to study any material system with a charge or
spin order; for the case of the cuprates, it could be used
to search for an underlying DW order in the pseudogap
phase.

Here we consider charge order, although spin orders
could be treated in an analogous manner. We study two
different DW orders in this work, illustrated in Fig. 6:
commensurate Q1 = (π, π) order, and incommensurate
checkerboard order. The wavevectors of the checkerboard
order, nesting the flat regions of the Fermi surface near
the antinode for the bandstructure defined in Eq. 21, are
Qx

2 = (0.26π, 0), Qy
2 = (0, 0.26π).6 We focus on these

two DW orders because the (π, π) case is the simplest to

π"

π"

#π"
#π"

kx"
k y
"

Q1"

Q2
x"

Q2
y"

FIG. 6. DW ordering vectors: commensurate Q1 = (π, π)
(red) and checkerboard Qx

2 = (0.26π, 0), Qy
2 = (0, 0.26π)

(blue).

treat, making the underlying physics most clear, while
the checkerboard order has been proposed as a possi-
ble explanation for the checkerboard modulations in the
cuprates. The goal of the next few sections is to identify
the signatures of these DW orders in the Z-map, and de-
termine how to differentiate superconducting QPI from
them. In this section we focus on long range DW order,
while in subsequent sections we consider the coexistence
of superconductivity with DWs, as well as fluctuating
DW order.

We first consider a Q = (π, π) DW with an isotropic
gap ∆DW . The Hamiltonian is expressed in the Nambu
formalism (Eq. 8), where now ψkσ = (ckσ, ck+Qσ) and

Λ̂k =

(
εk ∆DW

∆DW εk+Q

)
,

and the sum in Eq. 8 runs over the reduced Brillouin zone
|kx| + |ky| < π. While the mean-field treatment of the
DW order used in this paper certainly cannot fully ex-
plain the pseudogap in the underdoped cuprates, where
electronic correlations, neglected in this work, are impor-
tant, it can offer insight into generic signatures of DW
order. The CCE are ellipses, as depicted in Fig. 7. Be-
cause a DW order breaks particle-hole symmetry, unlike
superconductivity, the CCE at bias energies +ω and −ω
are of different sizes. Since the CCE are not as sharply
pointed as the superconducting banana-shaped CCE, the
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FIG. 7. CCE for Q = (π, π) long range DW order with
an isotropic gap ∆DW =100 meV. The normal state Fermi
surface is shown with dashed lines.

maxima in Z(q, ω) are more arc-like, as discussed below.
We now turn to the signature of a Q = (π, π) DW

in the FT Z-map, which is computed with the same
self-consistent T -matrix formalism described in Section
IV, except now the Green’s function is derived from the
Hamiltonian given in this section. While in the supercon-
ducting state, maxima in n(r, ω) correspond to minima
in n(r,−ω), in the DW state the modulation patterns in
n(r, ω) and n(r,−ω) are fundamentally different. As a re-
sult, Z(r, ω) does not enhance the strength of peaks as it
does in the superconducting case, rather, separate peaks
appear corresponding to maxima (minima) in n(r,±ω).

The FT Z-map for a Q = (π, π) DW with gap ∆DW =
100 meV is shown in Fig. 8 (panels a, c, and e) for
three bias energies. The sum of the spectral functions
at positive and negative bias energy, A(k, ω)+A(k,−ω),
is displayed in panels b, d, and f. By considering this
sum, the difference between the spectral function at pos-
itive and negative bias energy is clear. A “double-arc”
structure appears in Z(q, ω) at all energies, and becomes
more pronounced with increasing bias energy. This struc-
ture arises because the CCE at positive and negative
bias energy are of different sizes, and the size difference
becomes more pronounced with increasing energy. The
color coded arrows in Fig. 8 mark areas of high inten-
sity in Z(q, ω), and the corresponding scattering vectors
connecting regions of high intensity in the spectral func-
tion from which they arise. At low energy (Fig. 8a, b),
scattering is dominated by a wavevector that connects
the ends of the ellipses and a wavevector that connects
the ellipse centers. Note that because the CCE at ±ω
are slightly different, there is a smearing of intensity in

(a)$ (b)$

(c)$ (d)$

(e)$ (f)$

π 
π 

π 
-π

 
-π

 
-π

 

π π -π -π 

Z(q,ω)$ A(k,ω)+A(k,/ω)$
|ω/ΔDW|$=$0.1$

|ω/ΔDW|$=$0.3$

|ω/ΔDW|$=$0.6$

FIG. 8. Long range Q = (π, π) DW. Z(q, ω) (left column)
and sum of spectral function at positive negative bias energies,
A(k, ω) +A(k,−ω) (right column) for |ω/∆DW | = 0.1 (a and
b), |ω/∆DW | = 0.3 (c and d), and |ω/∆DW | = 0.6 (e and
f). Here ∆DW = 100 meV. Peaks in Z(q, ω) are marked with
arrows color coded with the corresponding scattering vector
in the spectral function.

Z(q, ω) (at the blue arrow). The same two wavevectors
dominate as energy increases; however, at intermediate
energy (Fig. 8c, d), the single peak marked by the blue
arrow in Fig. 8a now splits in two (blue and purple ar-
rows), because the nesting vectors for the CCE at ±ω are
now significantly different, as shown in Fig. 8d. This ef-
fect is enhanced with increasing energy (Fig. 8e, f). The
appearance of these “doubled” peaks in the Z-map is an
indication of DW order, rather than superconductivity.
We note that a doubling of the number of QPI octet
wavevectors from particle-hole asymmetry has also been
discussed in Ref. 25.

For the case of checkerboard order, the Fermi surface
is significantly reconstructed due to the many higher or-
der harmonics associated with an incommensurate order.
Again, due to particle-hole symmetry breaking in the the
DW phase, the CCE at ±ω are different, so the “dou-
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bling” of peaks in the FT Z-map, discussed for the (π, π)
DW, still holds. However, many peaks would appear in
the FT Z-map due to the significant Fermi surface re-
construction, so it may be difficult to differentiate the
“doubled” peaks.

VI. COEXISTENCE OF
SUPERCONDUCTIVITY AND LONG RANGE

DENSITY WAVE ORDER

We now consider superconductivity coexisting with
long range Q = (π, π) DW order. Since the Z-map en-
hances the superconducting QPI peaks due to the co-
herence factors, while it creates a “doubling” of features
due to DW order, a system with both phases will show
an interplay of these two effects. Again, while here we
focus on the particular case of the cuprates, the Z-map is
potentially useful for studying any material system with
possible DW orders coexisting or competing with super-
conductivity.

The Nambu spinors in the Hamiltonian defined

in Eq. 8 now have four components: ψ†k =

(c†k↑, c
†
k+Q↑, c−k↓, c−k−Q↓). The matrix Λ̂k is 4× 4:

Λ̂k =

 εk ∆DW ∆k 0
∆DW εk+Q 0 −∆k

∆k 0 −εk ∆DW

0 −∆k ∆DW −εk+Q


where the sum in the Hamiltonian is over the reduced
Brillouin zone |kx|+|ky| < π. The CCE for coexisting su-
perconductivity and (π, π) DW order are shown in Fig. 9.
Due to the unit cell doubling in the DW phase, shadow
CCE appear outside the reduced Brillouin zone, although
these are suppressed in the spectral function due to the
coherence factors. Because Q = (π, π) does not nest
the nodal region, at low energies, the CCE are banana-
shaped as in the pure superconducting state. Upon in-
creasing energy, the banana-shaped CCE evolve into el-
lipses reminiscent of the CCE in the pure DW phase.

The FT Z-map is evaluated using the self-consistent
T -matrix formalism described in Section IV, except the
T -matrix and Green’s function are now 4 × 4. The FT
Z-map and the sum of spectral functions at positive and
negative bias energies, for coexisting superconductivity
and a Q = (π, π) long range DW are shown in Fig. 10.
The DW has an isotropic gap ∆DW=100 meV, while the
d-wave supeconducting gap maximum is ∆0 =35 meV.
At low energy the DW order has little effect on the spec-
tral function (compare Fig. 10b and Fig. 5b), because
the DW vector does not nest the nodal region. As en-
ergy increases and the DW order causes a bend back
in the Fermi surface, the spectral function at positive
and negative bias energies differs (Fig. 10f). The ends of
the banana-shaped superconducting CCE from Fig. 5 are
marked by blue dots, note that the region of maximum
spectral intensity now shifts away from these points.

kx#

k y
#

%π#

%π
#

π#

π#

ω/Δ0 = 0.25 
            0.5 
            0.75 

FIG. 9. CCE for coexisting superconductivity and Q =
(π, π) long range DW with ∆0 = 200 meV and ∆DW =
250 meV (values chosen for clarity). The normal state Fermi
surface is shown with dashed lines.

Reflecting the energy evolution of the spectral func-
tion, at low energy the FT Z-map is fairly similar to
the pure superconducting case (compare Fig. 10a and
Fig. 5a), although a strong arc-like feature appears due
to scattering between the centers of the CCE (green ar-
row). With increasing energy, the FT Z-map deviates
more from the superconducting case, so that in Fig. 10c
the scattering vectors nesting the ends of the elliptical
CCE show up (purple arrow). Finally, in Fig. 10e, the
FT Z-map is dominated by the scattering vectors due to
the DW, discussed in the previous section, rather than
the octet q-vectors.

VII. COEXISTENCE OF
SUPERCONDUCTIVITY AND FLUCTUATING

DENSITY WAVE ORDER

Despite extensive efforts, the only long range DW or-
ders in the cuprates identified thus far with bulk sensitive
probes are antiferromagnetic spin order in the undoped
insulating compounds, and static spin stripe order in
doped La(2−x−y)(Sr,Ba)x(Nd,Eu)yCuO4.50 As a result, if
the pseudogap arises from a DW order, this order would
likely be of a fluctuating type, which cannot be picked up
by these probes. Motivated by this, we now consider the
scenario of superconductivity coexisting with fluctuating
DW order. We again consider two types of DW order:
commensurate Q = (π, π) order, and incommensurate
checkerboard order with wavevectors Qx

2 = (0.26π, 0),
Qy

2 = (0, 0.26π).
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FIG. 10. Coexisting d-wave superconductivity and Q =
(π, π) long range DW order. Z(q, ω) (left column) and
sum of spectral function at positive negative bias energies,
A(k, ω) +A(k,−ω) (right column) for |ω/∆0| = 0.075 (a and
b), |ω/∆0| = 0.5 (c and d), and |ω/∆0| = 0.85 (e and f). Here
∆0 = 35 meV and ∆DW = 100 meV. Blue circles mark the
locations of the octet q-vectors on Z(q, ω), and the ends of the
CCE on A(k, ω), respectively. New features arising from the
DW order in Z(q, ω) are marked with arrows color coded with
the corresponding scattering vectors in the spectral function.

The fluctuating DW is included as a self-energy term
in the normal state non-interacting Green’s function as
in Refs. 51 and 52:

G0(k, iωn) =
1

iωn − εk − Σk(iωn)
(27)

where the self-energy term is given by

Σk(iωn) =

∫
dqP (q)∆2

DW /(iωn − εk+q) (28)

The function P (q) is a Lorentzian that peaks at the DW
ordering vectors. The superconducting Green’s function
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FIG. 11. Coexisting d-wave superconductivity and Q =
(π, π) fluctuating DW order. Z(q, ω) (left column) and
sum of spectral function at positive negative bias energies,
A(k, ω) +A(k,−ω) (right column) for |ω/∆0| = 0.075 (a and
b), |ω/∆0| = 0.5 (c and d), and |ω/∆0| = 0.85 (e and f).
Here ∆0 = 35 meV and ∆DW = 100. Blue circles mark the
locations of the octet q-vectors on Z(q, ω), and the ends of the
CCE on A(k, ω), respectively. New features arising from the
DW order in Z(q, ω) are marked with arrows color coded with
the corresponding scattering vectors in the spectral function.

is now given by

Ĝ−1(k, iωn) = iωnÎ−
(
εk + Σk(iωn) ∆k

∆k −εk − Σk(−iωn)

)
This modified Green’s function is now inserted into the
self-consistent T -matrix formalism described in Section
IV.

First consider the case of a fluctuating (π, π) DW co-
existing with superconductivity (Fig. 11). Compared to
long range order (Fig. 10), fluctuating order has less ef-
fect on the FT Z-map, at least at low energy. The spec-
tral function is similar to the spectral function without
DW order (Fig. 11b), whereas at higher energies there
is a significant Fermi surface bend back and redistribu-
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tion of spectral weight (Fig. 11d, f). The FT Z-map at
low energy (Fig. 11a) is nearly identical to the FT Z-
map with superconductivity only (Fig. 5a), except the
intensity at the octet q-vectors is already reduced, re-
flecting redistribution of spectral weight by the DW. In
Fig. 11c, new features start to appear in the FT Z-map,
and finally in Fig. 11e the “doubled” peaks from the DW
order completely dominate the FT Z-map (purple and
blue arrows). The signatures of fluctuating (π, π) DW
order coexisting with superconductivity are qualitatively
similar to those observed for long range order, with su-
perconductivity dominating at low energies and the DW
order dominating at larger energies.

The fluctuating checkerboard order coexisting with su-
perconductivity (Fig. 12) causes a significant breakup of
the spectral function at all energies, which is plotted sep-
arately for positive and negative bias energy for clarity.
Note that the spectral function at ±ω looks increasingly
different as |ω| grows. Intensity at the octet q-vectors is
visible in Fig. 12a, however the FT Z-map in Fig. 12d and
g is completely dominated by wavevectors introduced by
the shifted spectral weight. Due to the differences be-
tween A(k, ω) and A(k,−ω), the Z(q, ω) intensity has
separate contributions from each. However, the large
number of scattering vectors obscures the “doubling” ef-
fect clearly visible for (π, π) ordering.

To summarize, these results show that, like a long
range DW order, a fluctuating DW order has a signif-
icant effect on the FT Z-map, and different DW orders
produce markedly different results. Due to particle-hole
symmetry breaking in the DW phase, a “doubling” of
peaks occurs in the FT Z-map, which is evident for a
simple (π, π) order. The Fermi surface is significantly
reconstructed in the case of a checkerboard order, intro-
ducing a large number of new peaks into the FT Z-map.
As a result, the FT Z-map is a useful tool to both iden-
tify the presence of a DW order (for the case of simple
orders, where the peak ”doubling” is clearly visible), and
to distinguish between different types of orders.

VIII. CONCLUSIONS

In this paper we presented a systematic study of the
signatures of superconductivity and DW order in the Z-
map. For superconducting QPI, we showed how impuri-
ties that modulate the bond, superconducting gap, and
site energy parameters can be differentiated by the differ-
ent QPI patterns they produce. We noted that due to its
definition, the Z-map is inherently sensitive to particle-
hole asymmetry, and showed that the evolution of its in-
tensity with energy reflects the underlying particle-hole
asymmetry of the cuprate bandstructure.

In the second part of the paper, motivated by recent
experimental results suggesting a possible DW origin for
the pseudogap in the cuprates, we explored the effect of
both long range and fluctuating DW orders on the FT Z-
map. The reorganization of the Fermi surface by the DW

order introduced new peaks into the FT Z-map. Due to
the particle-hole symmetry breaking in a DW phase, scat-
tering wavevectors at positive and negative bias energies
are different, leading to a “doubling” of the wavevectors
in the FT Z-map. For a simple (π, π) order, the features
can be easily connected to scattering vectors between re-
gions of large intensity in the spectral function. For the
more complicated checkerboard order, this is not possi-
ble. However, we note that different types of DW order
produce very different signatures, providing a means of
distinguishing between them.

As is evident from this discussion, the Z-map contains
a great deal of information. However, due to this com-
plexity, features due to different types of impurity scat-
tering and particle-hole asymmetries of various origins
may obscure the signals from underlying DW orders. In
addition, STS resolution issues and tunneling matrix el-
ements, not considered here, may complicate detection
of the subtle differences in the Z-map patterns from su-
perconductivity and different types of DW order. This
could explain why the signatures discussed in this paper
have not been detected, even if present in the system.

Finally, we note that in the phase diagram of many
materials, there is a proximity between DW order and
superconductivity, for example, the transition from anti-
ferromagnetic spin order to superconductivity as a func-
tion of doping in both the cuprate and pnictide families
of superconductors, coexisting CDW order and conven-
tional superconductivity in NbSe2,53 and the pressure-
induced transition from a CDW to a superconducting
state in the rare earth tritelluride compounds (RTe3).54

As a quantity that can distinguish between these phases,
the Z-map may be useful in unravelling the relation be-
tween superconductivity and charge and spin orders in
many compounds.
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