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Abstract

We develop a technique to compute the high-frequency asymptotics of spin cor-
relators in weakly interacting disordered spin systems. We show that the dynamical
spin correlator decreases exponentially at high frequencies, 〈SS〉ω ∼ exp(−τ∗ω) and
compute the characteristic time τ∗ of this dependence. In a typical random configu-
ration, some fraction of spins form strongly coupled pairs, which behave as two-level
systems. Their switching dynamics is driven by the high-frequency noise from the sur-
rounding spins, resulting in low-frequency 1/f noise in the magnetic susceptibility and
other physical quantities. We discuss application of these results to the problem of
susceptibility and flux noise in superconducting circuits at mK temperatures.

Introduction
In many physical systems, the relevant degrees of freedom are discrete degenerate quantum
variables such as spins (electron or nuclear) that interact weakly with each other. At suf-
ficiently high temperatures, the spins are completely disordered and characterized by the
trivial thermodynamic correlators. However, their dynamical properties remain interesting
and important for various applications. The spins generally fluctuate at frequencies of the
order of the typical interaction Jtyp. For some purposes, though, one needs to know the
asymptotics of the spin correlation function at much higher frequencies. In this regime, the
fluctuations and dynamical response are due to the simultaneous excitation of many degrees
of freedom and inherent nonlinearity of the system. The goal of this paper is to develop a
formalism for the computation of the high-frequency spin correlator and to apply the result
to the problem of magnetic (flux and inductance) noise at mK temperatures produced by
paramagnetic spins located at the surface of superconductor.

Specifically, we consider a set of spins described by the Heisenberg Hamiltonian with
random couplings at high temperatures, T � Jtyp. We show that the spin correlator decays
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exponentially with frequency at ω � Jtyp, i.e. 〈SS〉ω ∼ exp(−cω/Jtyp), and compute the
coefficient c in this formula.

The smallness of the high frequency fluctuations has an important consequence when the
interaction, although of the order of Jtyp for the typical pairs of spins, is much larger for a
small but significant number of pairs. This happens, for instance, if the spins are positioned
randomly while the interaction between them falls off fast with distance. Each strongly
coupled pair has two states, the singlet and the triplet. Transitions between those states
require the exchange of a large energy quantum, ∆E = J � Jtyp between the pair and the
surrounding spins. The transition rate is proportional to the dynamical spin correlator at
frequency ∆E, which is exponentially small. As a result, the switching events are rare and
produce noise with, as we show below, 1/f spectrum at very low frequencies. At intermediate
frequencies, the 1/f noise is due to spin diffusion [1].

Our arguments rely on two important assumptions. First, the condition on the tempera-
ture is stricter than in the high frequency case: we need that T � Jtyp ln(Jtyp/ω) if the noise
is measured at low frequency ω = 2πf . The right-hand side of this inequality represents the
transition energy ∆E of the relevant two-level systems; if it is too large, such systems are
frozen. We also assume that there is no efficient energy exchange mechanism between the
two-level systems and an external thermal bath, e.g. electrons or phonons.

One application of our theory is the property of paramagnetic spins on the surface of
superconducting aluminum. These spins, presumably located in the thin Al2O3 film or just
at the metal-insulator interface, are believed to be responsible for the low frequency flux
noise that limits the sensitivity of dc SQUIDs [2, 3] and causes decoherence in superconduct-
ing flux qubits [4–6]. It is very likely that the coupling between the spins is due to RKKY
interaction [1], so their dynamics is controlled by the Heisenberg Hamiltonian. A number
of experiments [3, 7, 8] shows that the 1/f noise at very low frequencies is temperature-
independent fot T ∼ 50 – 500 mK. We take these data as evidence that the inter-spin inter-
action Jtyp is so small that the spins remain in the high temperature regime in the whole
experimental range. Finally, in the superconductor all electronic excitations are gapped,
and direct interaction between the spins and phonons at low temperature is negligible. All
these facts combined together indicate that the spins in the oxide layer on the surface of
aluminium or similar superconductors are described by the model studied in this paper.

A number of recent experimental works indicates [9] that the same oxide layer is respon-
sible for charge noise [10, 11] in superconducting circuits. It remains an open question if the
spins responsible for the flux noise, which is the subject of the current paper, are somewhat
associated with the defects responsible for the charge noise.

A lower bound on Jtyp can be inferred from the recent measurements of the flux qubit
relaxation rate [12]. If we assume that the relaxation is mainly due to the interaction with
the surface spin, then Γrelax ∝ Im〈SS〉ω=∆E, where ∆E is the energy difference between the
two qubit states. The experimental data indicate the persistence of magnetic relaxation
at very high frequencies, at least up to 1 GHz. We conclude that the typical interaction
between the surface spins is Jtyp & 1GHz ∼ 50mK. This is consistent with the observed
spin freezing at ∼ 50mK in some samples [7] as well as a theoretical estimate of the RKKY
interaction, see Section 3.

The theory developed in this paper has many other applications, besides the problem of
magnetic noise in superconducting circuits. It can be applied to many problems in which the
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relaxation of high energy modes is possible only by the simultaneous creation of a very large
number of low energy excitations. Some examples are the relaxation of inverted nuclear spin
polarization in high magnetic fields and a similar problem of magnetization relaxation of cold
atoms following a rapid quench [13] or 1/f magnetic noise observed in a low temperature
calorimeter with superconducting particle absorbers [14].

The paper is organized as follows: we first study high frequency spin fluctuations at
infinite temperature; then we show how the high frequency noise generates low frequency
noise in a model with a broad distribution of coupling parameters. We finally discuss the
application of this model to the problem of flux noise in superconducting qubits.

1 High frequency noise
We consider a set of spins of magnitude S described by the Heisenberg Hamiltonian,

H = −
∑
j<k

Jjk ~Sj ~Sk (1)

with random couplings Jjk. We are primarily interested in the S = 1/2 case because it is most
relevant for the physical applications. Let us fix j and consider the normalized correlation
function for the spin ~Sj (with components Saj , a = 1, 2, 3) in the time and frequency domains:

F (t) =
1

S(S + 1)

〈
Scj (t)S

c
j (0)

〉
, F̃ (ω) =

∫ +∞

−∞
F (t)eiωt dt. (2)

Note that F̃ (ω) is real and positive. This follows from its physical interpretation as the quan-
tum transition probability under a small perturbation V (t) = −hae−iωtSaj + h.c. (To prove
it we note that for any operator X, 〈X2〉ω =

∫ +∞
−∞ 〈n|X

†(t)X|n〉 eiωt dt ≥ 0 if the averaging is
performed over any n eigenstate of the Hamiltonian since 〈X2〉ω =

∑
m δ(En−Em+ω)|Xnm|2

where the sum is over the eigenstates of the Hamiltonian).
In general, the asymptotics of the Fourier transform at large ω are related to analytic

properties of the original function. However, since F̃ (ω) ≥ 0, it is sufficient to consider F (t)
on the imaginary axis: F (iτ) =

∫∞
−∞ F̃ (ω)eτω dω

2π
. If the integral converges for 0 ≤ τ < τ∗, then

F̃ (ω) should decay sufficiently fast, and the real-time correlator has an analytic continuation
to the strip 0 ≤ Im t < τ∗. If, in addition, the integral diverges for τ > τ∗, then F̃ (ω) ∼ e−τ∗ω

for ω → +∞. (Strictly speaking, this expression is valid if we smooth out some unimportant
features, such as peaks at discrete frequencies.)

At infinite temperature, the operator average in (2) is taken over the maximally mixed
state, i.e. 〈X〉 = TrX/Tr 11. The cyclic property of the trace implies that both variants of
the correlation function are even and real. Therefore, the Taylor expansion of the real-time
spin correlator contains only even terms:

F (t) =
1

S(S + 1)

〈
eiHtScj (0)e−iHtScj (0)

〉
=
∞∑
n=0

(−1)nD2n

(2n)!
t2n, (3)

D2n =
(−1)n

S(S + 1)
lim
t→0

〈
d2n

dt2n
Scj (t)S

c
j (0)

〉
=

∫ +∞

−∞
F̃ (ω)ω2ndω

2π
. (4)
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We are interested in the asymptotic behavior of the moments D2n for n→∞. Let us assume
that the power series (3) has a finite convergence radius τ∗. Then F (t) has singularities at
t = ±iτ∗, and the frequency representation of the correlation function decays as e−τ∗|ω| for
large ω. Our main goal is to show that τ∗ is nonzero and finite, and to compute its value.

Physically, the spin correlation function does not completely vanish at high frequencies
only due to nonlinearities that allow for combining the precession frequencies of a large
number of spins. To understand it qualitatively, consider an infinite system in which each
spin is coupled to Z neighbors with interaction strength Jtyp. If an energy quantum ω � Jtyp

is exchanged between a single spin and some external object, it has to be distributed between
other spins and divided into portions of the order of Jtyp. The most efficient processes of
this kind are cascades that correspond to tree-like diagrams and do not involve any back
reaction. Summing over such diagrams is equivalent to the mean-field approximation. It
is generally applicable for Z � 1, but will also produce qualitatively correct results if the
energy has many paths to escape, for example, on a tree with Z > 2.

Thus, we assume that each spin j precesses in the local exchange field ~hj(t) =
∑

k Jjk
~Sk(t)

produced by the spins surrounding it. The fluctuating field ~h(t) = ~hj(t) is characterized by
the correlation function

〈ha(t)hb(0)〉 = g2F (t)δab, (5)

where a, b are spatial indices (a, b = 1, 2, 3) and g2 = S(S+1)
3

∑
k J

2
jk. Using the mean-field

approach, we assume that ~h(t) is Gaussian. The relevant energy scale in this model (corre-
sponding to Jtyp in the qualitative discussion above) is given by g. In this approximation,
the time evolution of each spin simplifies to d~S/dt = ~S × ~h(t), or, in a matrix form,

dSc/dt = [ĥ(t)]caS
a. (6)

Here ĥ is the matrix corresponding to the cross-product with ~h, and [ĥ]ca are its elements:

ĥ =

 0 h3 −h2

−h3 0 h1

h2 −h1 0

 , [ĥ]ca = εcabh
b. (7)

We solve equation (6) in a symbolic form, Sc(t) =
[
T exp

∫ t
0
ĥ(t) dt

]
ca
Sa(0) and average over

the thermal state of the spin: 〈SaSc〉 = S(S+1)
3

δac. Thus, the spin correlator is expressed as
an average over the fluctuating fields:

F (t) =
1

3

〈
Tr

(
T exp

∫ t

0

ĥ(t) dt

)〉
. (8)

Using equations (8) and (5), we recursively compute the first few moments D2n:

D0 = 1,

D2 = 2g2D0,

D4 = 2g2D2 + 10g4D2
0,

D6 = 2g2D4 + 48g4D2D0 + 70g6D3
0.

(9)
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It is unfortunately difficult to pursue this computation much further and find the asymptotic
behavior of the moments. Nevertheless, these recursive formulas give an exact expansion of
the spin correlation function in lower orders:

F (t) = 1− (gt)2 +
7

12
(gt)4 − 97

360
(gt)6 +O(gt)8. (10)

Let us describe a general method for the calculation of the moments. It can be used to
derive equations (9) and continue to higher orders, though we could not obtain a closed-form
expression for D2n. We first use the equation of motion (6) to express the 2n-th derivative
in Eq. (4):

d2nSc

dt2n
=

2n∑
k=1

(
2n− 1

k − 1

)
[ĥ(k−1)]ca

d2n−kSa

dt2n−k
, (11)

where ĥ(k) = dkĥ/dtk. By applying Eq. (11) repeatedly, we obtain an expansion

d2nSc

dt2n
=
∑
m≥2

∑
k1,...,km≥1

k1+···+km=2n

Ck1,...,km [ĥ(k1−1)]ca1 · · · [ĥ(km−1)]am−1,am S
amSc (12)

with the coefficients

Ck1,...,km =
(2n− 1)!

(2n− k1) · · · (2n− k1 − · · · − km−1) (k1 − 1)! · · · (km − 1)!
. (13)

Recall that the spin operators in (12) pertain to site j, and the fields ĥ are linear combinations
of adjacent spins. The field derivatives ĥ(k) can be expressed in terms of further neighbors.
So far all the calculations have been exact. Now we employ the mean-field approximation
and average over the thermal state of the spin, and then over the Gaussian fields. Thus,

D2n =
(−1)n

3

∑
m≥2

∑
k1,...,km≥1

k1+···+km=2n

Ck1,...,km

〈
Tr
(
ĥ(k1−1)ĥ(k2−1) · · · ĥ(km−1)

)〉
. (14)

The Gaussian average in this formula can be evaluated using Wick’s theorem and the explicit
form of the second-order correlator:〈

[h(k)]ab [h(l)]cd

〉
= g2 (−1)

k−l
2 Dk+l

(
δacδbd − δadδbc

)
. (15)

2 Estimates for τ∗
The difficulty in carrying out the above calculation lies in the matrix nature of the fields ĥ.
We now introduce two different approximations, which are expected to shift the answer in
opposite directions by overestimating or underestimating the moments D2n, thus giving a
lower and an upper bound for τ∗. Remarkably, we find that the two bounds are quite close
in value.

In our first approximation, we ignore the noncommutativity of the matrices ĥ(k), or
equivalently, ĥ(t) for different values of t. More exactly, we symmetrize over all permutations
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of those matrices. Let us briefly explain how to use this recipe for equation (14), although it
is easier to start almost from scratch as we will do later. By symmetrizing the combinatorial
coefficients (13), we obtain the expression 1

m!
(2n)!

k1!···km!
. Then we consider an individual Wick

pairing for the product ĥ(k1−1) · · · ĥ(km−1) and relate it to the corresponding paring for the
m-th power of ĥ. The ratio is given by the scalar coefficient (−1)

k−l
2 Dk+l in Eq. (15); there

is one such factor for each pair. Summing over all Wick pairings, we get
〈
Tr ĥm

〉
times a

certain number. It is easy to show that
〈
Tr ĥ2r

〉
=
(
−g2

)r (2r+1)!
2r−1r!

for r > 0. Eventually,
Eq. (14) becomes:

D2n

(2n)!
=

2

3

∑
r≥1

(2r + 1)

r!
g2r

∑
q1,...,qr≥2

q1+···+qr=2n

Dq1−2

q1!
· · · Dqr−2

qr!
. (16)

The solution to this recurrence yields the following expansion of F (t) in lower orders:

F (t) = 1− (gt)2 +
7

12
(gt)4 − 99

360
(gt)6 + ... (17)

Notice the subtle difference from the exact solution (10). We believe that also in higher
orders, the noncommutativity of the field matrices results in smaller values of D2n than the
ones obtained by the present method.

The same approximation can be applied directly to Eq. (8) if we replace the time ordered
exponential with an ordinary exponential:

F (t) =
1

3

〈
Tr
(
exp Ĥ(t)

)〉
=

1

3

〈
1 + 2 cos

∣∣ ~H(t)
∣∣〉 , ~H(t) =

∫ t

0

~h(t) dt, (18)

where Ĥ is the matrix associated with vector ~H. The vector components Ha(t) (a = 1, 2, 3)
are Gaussian fields with the following second moment:

〈Ha(t)Hb(t)〉 = 2g2G(t)δab, (19)

G(t) =

∫ t

0

(t− t1)F (t1) dt1. (20)

Higher moments 〈| ~H|2n〉 (for a given t) are calculated directly by integrating over ~H. Using
the notation x = | ~H|/(2g2G(t))1/2, we find that

〈x2n〉 =

∫∞
0
x2n e−x

2/2 x2dx∫∞
0
e−x2/2 x2dx

= 2n
Γ(n+ 3/2)

Γ(3/2)
=

(2n+ 1)!

2nn!
. (21)

Now we calculate the average in Eq. (18) by expanding cos | ~H(t)| in powers of | ~H|2. The
result is:

F (t) =
1

3

(
1 + 2

(
1− 2g2G(t)

)
e−g

2G(t)
)
. (22)

This equation needs to be solved in conjunction with Eq. (20).
To compute F (iτ), we formally replace t with τ and −g2 with +g2. The numerical

solution exhibits singularities at τ = ±τ∗ for gτ∗ ≈ 1.74. Since the moments D2n have been
overestimated, this gives a lower bound for the true value of τ∗.
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We now make a different approximation to matrix products, exaggerating the noncom-
mutativity. Specifically, we replace the physical S = 1/2 spin for the SU(2) group with an
SU(N) spin and consider the limit N →∞. Let us first introduce the generators of U(N):
these are N × N matrices σαβ (α, β = 1, . . . , N) with the elements [σαβ]µν = δαµδβν . The
SU(N) spin is defined by the traceless matrices

σ̃αβ = σαβ − 1

N
δαβ11. (23)

The generalized Heisenberg interaction is given by the operator 1
N
σ̃αβj σ̃βαk with the matrix

elements 1
N

[
σ̃αβ
]
γδ

[
σ̃βα
]
µν

= 1
N

(
δγνδδµ − 1

N
δγδδµν

)
. Note that if we let σ̃αβ and σ̃βα act on

the same spin (by contracting over a pair of indices, δ = µ), we get 1− 1
N2 times the identity

matrix. For N = 2, this matches the value of SaSa = S(S + 1).
Thus, the full Hamiltonian has the form

H = − 1

N

∑
j<k

Jjkσ̃
αβ
j σ̃βαk . (24)

Each spin j experiences the effective field h̃αβj (t) = 1
N

∑
k Jjkσ̃

αβ
k . In the mean-field approx-

imation, we have:〈
h̃αβ(t)h̃β

′α′(0)
〉

= g2
〈
σ̃αβ(t)σ̃β

′α′(0)
〉

=
g2

N
FN(t)

(
δαα

′
δββ

′ − 1

N
δαβδβ

′α′
)
, (25)

where g2 = 1
N2

∑
k J

2
jk, and the spin correlator is normalized so that FN(0) = 1. Note that

the last term in (25) has no effect when we consider the action of the field on the spin,
because δαβσ̃βα = 0.

The calculation of

FN(t) =
1

N2 − 1

〈
Tr
(
U †N(t) σ̃αβ UN(t) σ̃βα

)〉
, UN(t) = T exp

∫ t

0

i h̃αβ(t1) σ̃βα dt1 (26)

can be performed using the standard diagrammatic technique for matrix models, see Fig. 1 a,b.
The ribbons in the diagrams may actually be changed to double lines. To justify this step,
let us express σ̃αβ in terms of σαβ using (23). The result is:

〈
Tr
(
U †N(t) σ̃αβ UN(t) σ̃βα

)〉
=〈

Tr
(
U †N(t)σαβ UN(t)σβα

)〉
−1, which shows that the ribbon between 0 and t can be changed

as stated (up to the −1 term). We can likewise replace the σ̃βα that enter the expressions for
UN(t), U †N(t). The contributions of the unit operator in (23) to UN(t) and to U †N(t) cancel
each other, therefore the remaining ribbons are also equivalent to double lines.

A great further simplification occurs in the limit of large N [18]. The leading contribution
to FN(t) comes from diagrams that maximize the number of loops for a given expansion order
in g2/N . Such diagrams are planar, and the time evolution factors UN(t), U †N(t) separate;
an example is shown in Fig. 1 c. Thus, in the limit N →∞ equations (25) and (26) become:

〈hαβ(t)hβ
′α′(0)〉 =

g2

N
F∞(t) δαα

′
δββ

′
, (27)

F∞(t) = f 2(t), f(t)11 =

〈
T exp

∫ t

0

ihαβ(τ)σβα dτ

〉
. (28)
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Figure 1: (a) A generic term in the diagrammatic expansion of
〈
Tr
(
U †N(t) σ̃αβ UN(t) σ̃βα

)〉
(for an arbitrary N) using equations (25) and (26). The arrows indicate UN(t) (the propa-
gation from 0 to t) and U †N(t) (moving backward in time); the shaded ribbons correspond to
field correlators. (b) The exact definition of lines and ribbons. Note that that they do not
depend on time: the factors F (tk − tj) are coefficients in front of the diagram. (c) A planar
diagram: one of the leading terms in the N →∞ limit. (d) A diagram for the function f(t)
defined in (28).

The “spin propagator” f(t) can be computed by summing up planar diagrams. Specifically,
f(t) is represented by a single line going from 0 to t and dressed with double lines (the field
correlators) attached on one side; these lines do not intersect, see Fig. 1 d. This diagrammatic
expression leads to the Dyson equation:

f(t) = 1− g2

∫
t>t2>t1>0

dt2dt1f
3(t2 − t1) f(t1). (29)

Curiously, the Taylor expansion for F∞(t) = f 2(t) coincides with the result (10) for F2(t)
up to the sixth order. The numerical solution of Eq. (29) exhibits singularities at t = ±iτ∗
for gτ∗ ≈ 1.78. Thus, the exact value of τ∗ for the original problem should be between 1.74/g
and 1.78/g. Recall that this number is the exponent in the expression for the high frequency
noise spectrum: 〈h2

ω〉 ∝ e−τ∗|ω|.

3 Low frequency noise
The high frequency fluctuations of local effective fields drive the switching dynamics of
strongly coupled spin pairs, and thus determine the noise at low frequencies (provided the
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number of such pairs is significant). We will find the spectrum of the low frequency noise in
a specific model, which has been previously discussed in [1].

Let us consider randomly distributed spins with the two-dimensional density ρ2D on the
surface of a superconductor. The coupling of each spin to the conduction electrons is de-
scribed by the Kondo term in the Hamiltonian: Jj Sαj sα(~rj), where sα(~r) = 1

2
[σα]µν ψ̂

†
µ(~r)ψ̂ν(~r).

The relative coupling strength can be characterized by the dimensionless parameter

λ = J ν =
(
ln(EF/TK)

)−1
, (30)

where ν is the electron density of states per spin projection and TK is the Kondo temperature.
The RKKY interaction between two spins can be expressed as follows:

Jjk = −JjJkν
8πr3

jk

cos(2kF rjk) = J(rjk) cosφjk, J(r) =
λ2

8πν
r−3, (31)

where φjk is random, and rjk is assumed to be much smaller than the coherence length. The
surface is usually covered by an insulator and thus can carry spins with arbitrary coupling
to the conduction electrons, ranging from λ ∼ 1 down to 0. However, only the spins with
TK . Tc are active, the other being quenched by the Kondo effect. This imposes the
constraint λ . 0.1. The typical distance between the spins is rtyp = ρ

−1/2
2D , which defines

the main parameter of our model: g ∼ J(rtyp) = λ2

4πν
ρ

3/2
2D . Spins coupled with this strength

form an infinite cluster, whereas more strongly coupled pairs are rare. If we use the values
ν ≈ 17 eV−1nm−3 (the DOS in aluminum) and ρ2D ∼ 0.4 nm−2 (the typical spin density
measured in several types of films [7, 17]), we get the estimate g . 50mK. The upper
bound corresponds to the spins with the largest value of λ. There are some indications, both
experimental [17] and theoretical [20], suggesting that most localized spins arise from surface
bound state. Therefore we can expect the actual value of g to be close to the upper bound.

The density of pairs with interaction J � g can be found by calculating the probability
that a given spin has a neighbor at the corresponding distance. Such pairs constantly switch
between the singlet and the triplet states at a characteristic rate Γ ∼ g e−τ∗J = g e−cJ/g,
where c is a numerical constant. We estimate the density of pairs in terms of Γ:

dρ

ρ2D

=
1

2
ρ2D 2πr dr ∼ (J/g)−5/3 d(J/g) ≈

(
ln(g/Γ)

)−5/3 dΓ

cΓ
. (32)

Each pair generates a random telegraph noise in any quantity x that is proportional to the
number of pairs in the triplet state; for example, x can be the magnetic susceptibility. This
noise has a Lorentzian spectrum with width Γ, but, for the purpose of a crude estimate, we
may assume that it is concentrated at frequency ω = Γ. Therefore, the total noise spectrum
is proportional to the previously calculated distribution of Γ:〈

(δx)2
ω

〉
∝ 1

ω ln5/3(g/ω)
. (33)

Thus, the magnetic susceptibility noise has a roughly 1/f spectrum at low frequencies. In
the presence of a constant magnetic field, it translates to a 1/f flux noise. Some experimental
data indicate a spontaneous breaking of the time reversal symmetry in spin systems at low
temperatures [19]. Although the exact nature of the symmetry-breaking order parameter
is unclear, it is most likely to exert local fields on the pairs of spins that undergo the slow
fluctuations. In this case, the triplet state is split in energy and produce a net magnetization,
observed as a flux noise.
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