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Abstract 

Changes in intermittent serrated flow behavior during plastic deformation of Zr64.13Cu15.75Ni10.12Al10, 

a representative glassy metal with characteristic ductility, in response to variant strain rates and 

temperatures were examined. The influence of strain rates and environmental temperatures on the 

stress-time sequence of the plastic strain regime was investigated using comprehensive dynamical, 

statistical, and multifractal analyses. Three distinct spatiotemporal dynamical regimes were 

explored. Under small strain rates or high temperatures, the time-stress sequence exhibited a chaotic 

behavior. Conversely, under large strain rates or low temperatures, a transition to the self-organized 

critical (SOC) state was observed. In addition to chaotic time series and statistical analysis, 

multifractal analysis was also applied to study the crossover between these two unique plastic 

dynamic transitions. This plastic dynamical behavior was elucidated based on the interactions 

between shear avalanches in the glassy metal. 
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I. Background 

    Serrated flow, also known as repeated yielding of glassy metals during plastic deformation, has 

been associated with shear band formation and propagation [1]. The shear banding processes is 

characterized by an accumulation of elastic energy and stress relaxation accompanied by adiabatic 

heating [2]. Various physical parameters and models have been deduced to quantitatively describe 

the ductility of glassy metals [3-8] in the framework of continuum theory [9,10]. A 

phenomenological model, or testing machine-sample system, was schematically designed for the 

purpose of serration event elucidation [11]. Furthermore, the lack of periodicity in intermittent 

serrated flow has necessitated statistical analysis to extract hidden information from these serration 

events [12-15]. The results of such studies suggest that glassy metals with different ductilities may 

present two distinct dynamical behaviors, a self-organized critical (SOC) behavior and a chaotic 

behavior [12,13]. The mechanism of the transition between these two behaviors, however, has not 

been documented. 

Analysis of dynamic behaviors in crystalline materials has revealed several common stress 

serration types. Additionally, observations of distinct deformation band patterns in various materials 

have been linked to certain experimental conditions, such as temperatures and mechanical 

treatments [14]. Based on determination of their characteristics, instabilities of plastic flow at 

different applied strain rates can be classified into three primary categories: SOC behavior, chaotic 

behavior, and random nucleation. The SOC behavior is characterized by the continuous propagation 

of deformation bands near the upper strain rate boundary of plastic instability. At lower strain rates, 

successive formation of distinct and adjacent deformation bands is described as chaotic behavior 

[14]. Throughout the range of intermediate strain rates, these bands are thought to nucleate 
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randomly, which remains a missing connection between SOC and the chaotic behavior in glassy 

metals. 

In order to provide clear evidence of the mechanism occurring at intermediate stages between 

SOC and chaotic behaviors, a multifractal analysis [15] of the stress-time series in the serrated flow 

was conducted in order to identify spatial and temporal shear avalanches in a glassy metal. The 

purpose of the present study was not only to provide an improved understanding of this intriguing 

spatiotemporal behavior but also to define the detrimental influence of the serrated flow behavior on 

the mechanical properties of glassy metals. The glassy metal Zr64.13Cu15.75Al10Ni10.12 was selected as 

the representative model material due to its significant ductility at the room temperature [16]. 

Through modification of environmental temperatures and loading rates, the plastic stress-strain 

response of this glassy metal was investigated by statistical, dynamical, and multifractal analysis.  

 

II. Experimental procedure 

    Alloy ingots of the glassy metal Zr64.13Cu15.75Al10Ni10.12 were prepared by arc melting a 

mixture of pure metal elements (purity >99.99%) in a titanium-gettered argon atmosphere. This 

treatment was immediately followed by suction casting into copper moulds to form rod-like 

samples with a size of Φ2×70 mm. Compressive test specimens were fabricated from these rod-like 

glassy metal samples by means of a diamond saw using water as a coolant, resulting in test 

specimens with a height of 4 mm and a diameter of 2 mm.  

Compressive tests were conducted using a legacy dynamics and fatigue system model 8562 

electric-actuator (Instron) equipped with an environmental box with three strain rates, 2.5 × 10-2 s-1, 

2.5 × 10-3 s-1, and 2.5 × 10-4 s-1. The temperature accuracy of the environmental box maintained at ± 

2 K. To exclude the influence of data acquisition frequency on stress fluctuation sensitivity, data 
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acquisition frequencies of 0.5, 1.0, 10.0, and 100.0 point/s with increasing strain rate were selected. 

After fracture, the surface of specimens were observed by a JEOL JSM-6335F scanning electron 

microscope (SEM). 

 

III. Results 

At cryogenic temperature, the extensometer cannot directly yield accurate strain values. Thus, 

compressive nominal stress-time (σ-t) curves were plotted to reflect the elasto-plastic behavior of 

Zr64.13Cu15.75Al10Ni10.12. Figure 1(a) shows the comparative plot of the σ-t curves at different 

temperatures at a common strain rate of 2.5 × 10-3 s-1, demonstrating linear elastic deformation 

followed by a plastic flow plateau. Temperature reduction induces both yield strength and plasticity 

in the glassy metal, consistent with previous findings [1,17,18]. The strain rate, however, does not 

significantly influence the mechanical properties of the glassy metal. The compression deformations 

at 293 K with different strain rates are representatively shown in Figs. 1(a), (b), and (c).  

The variation in serration events in the plastic regime of the glassy metal achieved by varying 

temperature and strain rate can be characterized by observing the plastic regime near the fracture 

region, as shown in Fig. 2. It is evident that the amplitude of the serration event decreases with 

decreasing temperature, as shown in Figs. 2(a), (c), and (e). At 293 K, the amplitude of the serration 

event was approximately 25 MPa [Fig. 2(a)]. When the temperature was reduced to 213 K, the 

amplitude of the serration event decreased to approximately 5 MPa [Fig. 2(e)]. The serration event 

was completely obscured as temperature continued to decrease. Stress fluctuations resulting from 

machine vibrations and sample to cross-head friction are the primary events obscuring the 

amplitude of the serration events (not shown). Increasing strain rates also highlight the decreased 

serration event amplitude [Figs. 2(a), (g) and (i)]. Strain rate increases from ~10-4 s-1 to ~10-2 s-1 
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result in stress amplitude reduction from ~25 MPa to ~7 MPa.  

After fracture, numerous shear bands can be observed on the surface of glassy metals deformed 

at different strain rates and temperatures. Figure 3 comparatively shows the lateral surface 

morphologies of the fractured glassy metal under three test conditions, demonstrating that all 

specimens exhibit shear facture [Fig. 3; see insets]. With increased strain rate and decreased 

temperature, a larger number of shear bands were apparent on the glassy metal surface compared 

with the number observed at the strain rate of 10-4 s-1 and the temperature of 293 K [Figs. 3(b) and 

(c); arrows indicate banding]. These findings are consistent with previous results [17,18]. 

 

IV. Discussion 

The hidden information apparent in the stress-time response of the glassy metal at different 

temperatures and strain rates can be determined by dynamic analysis, allowing for further 

characterization of the stress-time sequence: {σ(t), (t = 1, 2,……, N)}, where σ(t) is the stress at the 

time of t (Figs. 1 and 2). The range of the stress-time sequence in each stress-time curve is from the 

yield strain to fracture strain. Accurate deterministic dynamical system modeling relies on the phase 

space concept and the collection of possible system states. As an experimentally occurring 

dynamical system, the phase space and mathematical description of the plastic dynamical system in 

the glassy metal are unknown. A phase space reconstruction for the stress-time sequence of {σ(t), (t 

= 1, 2,……, N)} is required to build a proxy of the observed states, as previously described [19]. 

Because the mathematical model of the unknown chaotic dynamical system has equivalent 

geometrical characteristics with the reconstructed m-dimensional phase space, the original chaotic 

dynamics can be studied through reconstruction of the phase space. 

After selecting an appropriate time delay (τ) by the mutual information method [20] and 
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calculating the embedding dimension (m) by the Cao-method [21], the stress-time sequence {σ(t), (t 

= 1, 2,……, N)} can be transformed into a set of {Y(ti), (ti = 1, 2,……, [N-(m-1)]) constituting a 

m-dimension vector of Y(ti) = {σ(ti), σ(ti+τ),……, σ(ti+(m-1)τ)}. Following this transformation, the 

reconstructed m-dimension phase space may be constructed. The delay time, τ, and the embedding 

dimension, m, changing with the strain rates and the temperatures are listed in Tables I and II, 

respectively. Then, according to these values, take an initial point Y(t0) and its nearest neighbor 

point Y(t0
*) in the reconstructed phase space, and denote Y0 =Y(t0

*) – Y(t0). After a period of time, 

the points Y(t0) and Y(t0
*) will transit to Y(t1) and Y(t1

*), correspondingly, and then denote Z0 = Y(t1
*) 

– Y(t1). By means of the least squares method, the matrix, A0 can be constructed to map the 

evolution from Y0 to Z0, where Z0 = A0Y0. By repeating the above steps from Y(t1) to Y(t2) and so 

forth, a list of Ai (where i = 1, 2,……, p) can be calculated. By applying a standard QR 

decomposition for the matrix Ai, where Ai = QiRi, the Lyapunov exponent spectrum can be 

determined: λk = 1
t p−1 −t0

ln(Ri )kk
i=0

p

∑  , where k = 1, 2, ,……, m. Note that different Lyapunov 

exponents of the dynamic system are achieved under different deformation conditions. If the largest 

Lyapunov exponent is negative, the two adjacent points in the dynamical system will be convergent 

(corresponding to a stable state). Conversely, if the largest Lyapunov exponent is positive, then the 

two adjacent points will separately evolve (The Butterfly Effect), representative of chaotic 

dynamics. 

The largest Lyapunov exponents observed during the deformation of the glassy metal at 

different temperatures and strain rates are listed in Tables I and II, respectively. The largest 

Lyapunov magnitude of exponent variation from positive to negative occurred as the strain rate 

increased from 2.5 × 10-4 s-1 to 2.5 × 10-2 s-1 and as the temperature decreased from 293 K to 213 K. 

Thus, it is clear that higher temperatures and lower strain rates are associated with larger positive 
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Lyapunov exponents, suggesting the occurrence of chaotic dynamic behavior.  

The above stress-time sequence uses the largest Lyapunov exponent to characterize the chaotic 

behavior (instable state). According to previous results from studies of single crystals [22], 

polycrystals [23], and nanocrystals [24,25], large negative Lyapunov exponents (stable state) are 

indicative of SOC behavior in the serrated flow. Thus, further statistical analysis of the stress drop 

occurring during each serration event in the current plastic flow are necessary.  

The enlarged stress-time curves shown in the left column of Fig. 2 represent the transition in 

serration events with temperature and strain rates. The corresponding quantity |dσ/dt| clearly reflects 

bursts of plastic activity (Fig. 2; right column). The |dσ/dt| value as the function of time (t) shows 

that this burst of plasticity exhibits roughly same periodicity (time intervals; tn-1, tn, tn+1) between 

any two neighboring serration events. Thus, these events are homogeneous (tn-1 ≈ tn ≈ tn+1) at low 

strain rates (2.5×10-4 s-1 and 2.5×10-3 s-1) and relatively high temperatures (293 K and 223 K) [Figs. 

2(b), (d), and (h)]. Decreasing the temperature to 213 K or increasing the strain rate to 2.5×10-2 s-1 

causes inhomogeneous (tn-1 ≠ tn ≠ tn+1) time intervals (tn) to appear [Figs. 2(f) and (j)], suggesting 

that serration events at relatively lower temperatures (< 213 K) or higher strain rates (> 10-2 s-1) lack 

any typical time scale. This finding is characteristic of SOC behavior [26].  

Therefore, by referring to the largest Lyapunov exponents in Table I and II, the inhomogeneous 

time interval distributions and largest negative Lyapunov exponents suggest the possible occurrence 

of SOC behavior at low temperatures and high strain rates. To confirm this finding, the statistical 

distribution of the stress drop size of serration events was investigated [Fig. 2(a)]. The plastic flow 

of glassy metals has been previously shown to be dominated by shear avalanches [27]. From the 

stress-time curves (Fig. 1 and 2), a stress drop (Δσ) can be constructed to characterize the elastic 

energy relaxation process. This construct can also reflect the shear avalanche length of each 
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serration event [10]. Noise influences have been shown to cause small serrations in the elastic stage 

that emerge during the plastic deformation stage [10]. Due to this effect, the serration events were 

removed before the stress drop reached 2 MPa, as deduced by linear fitting of the elastic regime in 

the stress-time curve (not shown), prior to statistical analysis of the stress drops [12]. Since plastic 

strain results in drift of the stress drop value, stress drop normalization was carried out to eliminate 

statistical error [12]. Through linear regression fitting, the plot of stress drop versus time baseline 

[f(t)] was obtained. The statistical distribution of the normalized stress drop is given as: S(Δσ) = 

Δσ/f(t), where S(Δσ) is the probability density at the stress drop of Δσ (Fig. 4). Peak distributions 

are observed in chaotic behaviors, such as the plastic deformation occurring at temperatures of 293 

K and 223 K and strain rates of 10-4 s-1 and 10-3 s-1 [Figs. 4(a), (b), (d), and (f)]. At higher strain 

rates (> 10-2 s-1) and lower temperatures (< 213 K), the statistical distribution of the stress drop 

values evidence a monotonic decrease [Figs. 4(c), and (e)]. These distributions eventually lead to a 

power-law relation: S(Δσ) ~ Δσ-α [Figs. 4(c) and (e); insets]. The stress drop generates a shear band 

pattern following a fractal structure [28], characteristic of a power-law relation. These observations 

indicate that shear banding may self-organize to a critical state [12]. Thus, a power-law distribution 

of the shear avalanche will occur spatiotemporally [29], further suggesting a dynamic behavior 

transition to the SOC state as the temperature decreases or strain rate increases [14].  

Due to the lack of periodic structure, the ductility of the glassy metal is governed by shear 

banding rather than by the motion of crystalline defects [30]. Furthermore, this shear banding is 

likely to be associated with the serration event [10]. Before shear banding occurs, an elastic strain 

field forms in the elastic energy accumulation regime of each serration event [31]. The size of this 

elastic strain field is approximately 500 µm, a value much larger than the 100 µm inter-space 

between neighboring shear bands (d) [Fig. 3(a); cf.]. This indicates interference between 



 9

neighboring elastic strain fields. As stress drops during serration events, elastic energy is relaxed 

and the elastic strain field subsequently disappears. In higher strain rate ranges (>10-2 s-1), energy 

accumulation time decreases and becomes equivalent to relaxation time (tI / tr ≈ ∼ 1) [Table III; cf.], 

suggesting failure of the elastic strain field to totally relax during this limited time. This promotes 

the formation of new shear bands adjacent to existent bands in the temporal space. Thus, new shear 

bands are formed in the field of the unrelaxed elastic strain field. Overlap in the elastic strain field 

can result in a hierarchy of length scales [14], leading to SOC behavior. At lower strain rates, such 

as 10-4 s-1, energy accumulation time (tI) is approximately 40 times larger than relaxation time (tr) 

(Fig. 2; Table III). At this strain rate, the elastic strain field can be fully relaxed, and no spatial 

correlation between shear bands is apparent. This is characteristic of chaotic behavior.  

Dynamic propagation of the shear band is associated with shear transformation zones (STZs). 

STZs are usually formed in the plastic zone in front of the shear band tip [32]. Also, STZ formation 

and assembly results in shear banding. As the environmental temperature decreases to the cryogenic 

temperature, the size of STZs will expand [17]. This observation indicates that the creation of STZs 

requires higher activation energies [5]. Thus, the propagation of shear bands may become more 

difficult at the cryogenic temperature. The frozen propagation of shear bands may thus facilitate the 

nucleation of an increasing number of subsidiary shear bands, as observed by direct observation of 

specimen surfaces [Fig. 3(c); cf.]. These subsidiary shear bands are characterized by small serration 

events (Fig. 2). The decreased amplitude of these serration events corresponds to temperature 

decreases and dispersal of elastic energy. Cumulatively, these findings indicate that the system 

exhibits a dynamic transition between the chaotic state and the SOC state at intermediate 

temperatures and strain rates.  

In the glassy metal, a plastic dynamic transition from SOC to chaotic behavior was observed 
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with decreasing strain rate or increasing temperature. The boundary between these two dynamical 

behaviors, however, remains unclear. To clarify this issue, a multi-fractal analysis was applied to 

study the crossover of the plastic dynamics transition [14]. 

The stress burst sequence was defined as: ψt = { dσ dt , t = 1, 2,……, K} (Fig. 2). This 

sequence can be divided by time scales ( tΔ ) into time intervals: N = N( tΔ ). Each time interval 

includes m points. The probability in the ith time interval is measured by: ∑∑
==

+=Δ
K

j
j

m

k
kimi tp

11
/)( ψψ . 

A scale-less band exhibits pi(Δt) ∼ Δtα, where the exponent α is the singularity strength. At different 

i values, a series of α can be obtained. Denote the range of multifractal spectrum by Δα = αmax - 

αmin, which reflects the probability distribution of the whole fractal structure. If Δα is equal to zero 

(in theory) or small enough to approach to zero, the uniformity of the probability distribution 

suggests that a single fractal exists. Conversely, if Δα is relatively large compared to the value in 

the single fractal case, nonuniformity indicates a multifractal state. The multifractal spectrum may 

be calculated using the previously described partition function method [33]. If Nα( tΔ ) is the 

number of time intervals ( tΔ ) with singularity strength α, then N( tΔ ) generalizes to 

)(-~)( α
α

fttN ΔΔ , where f(α) is the singularity spectrum. This reflects the fractal dimension of the 

subset characterized by the singularity strength α. If the partition function is defined as 

( ) ∑=Δ
i

q
iq ptχ , where q is the weighting factor, the fractal scale-less band exhibits the following 

scale relations: ( ) )(~ q
q tt τχ ΔΔ , where τ(q) is the scaling exponent. Then, α, f(α) can be evaluated 

by ( )( )= d qq
dq
τα

 
and ( )= ( )- ( )f q q qα α τ⋅ , a Legendre transformation. 

The multi-fractal spectrum [α, f(α)] for the temperature 253 K at the strain rate 2.5×10-4 s-1 and 

the temperature 293 K at the strain rate 2.5 × 10-3 s-1 are shown in Figures 5(a) and (b), respectively. 

Figure 6(a) shows a multifractal range of Δα as the temperature increases from 203 K to 293 K, at a 
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strain rate of ~10-4 s-1. The largest Δα value is observed at intermediate temperatures, indicating a 

multifractal burst. At a constant temperature of 293 K and an increasing strain rate from 2.5 × 10-4 

s-1 to 2.5 × 10-2 s-1, a peak Δα value also appears in the transition stage [Fig. 6(b)]. This finding 

indicates a multifractal burst at the strain rate of 2.5 × 10-3 s -1. Figures 6(a) and (b) illustrate 

multifractal bursts in the transition region of the spatiotemporal dynamics of the serrated flow. The 

plastic dynamics of the glassy metal transition from a disordered state (chaotic state) to an 

intermediate state (multifractal state) and finally to an ordered state (SOC state) are shown to 

correlate with increasing strain rates and decreasing temperatures. 

 

V. Conclusions 

Chaotic time series analysis, statistical analysis, and multifractal analysis studies indicated that 

the plastic dynamics of Zr64.13Cu15.75Ni10.12Al10, a representative glassy metal, are characterized by a 

transition from the chaotic state to the SOC state through an intermediate multifractal state. This 

transition was shown to be correlated with both increasing strain rates and decreasing temperatures. 

Furthermore, the intermediate state was characterized by the presence of multifractal bursts, and 

disorderly shear branches were observed at small strain rates. With increasing strain rates and 

decreasing temperatures, however, interactions between shear branches were implicated in the 

formation of a multifractal structure. The final result of this plastic dynamic behavior is the 

transition to a self-organized state with a complete fractal structure. This represents a natural 

transition between the disordered and ordered stages in glassy metals.  
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Figure captions 

 

Fig. 1 Nominal stress-time curves of the Zr64.13Cu15.75Al10Ni10.12 glassy metal at different 

temperatures and strain rates. (a) Comparative stress-time curves deformed at three 

temperatures. (b) Stress-time curve deformed at a temperature of 293 K and strain rate of 

~10-4 s-1. (c) Stress-time curve deformed at a temperature of 293 K and strain rate of ~10-2 s-1. 

 

Fig. 2 Enlarged stress-time curves of the Zr64.13Cu15.75Al10Ni10.12 glassy metal at different 

temperatures and strain rates, along with a plot of the corresponding dtdσ  curves. Note: tn 

indicates the processing time of one serration event.  

 

Fig. 3 Surface morphologies of the fractured Zr64.13Cu15.75Al10Ni10.12 glassy metal at different 

temperatures and strain rates. (a) Fracture at a strain rate of ~10-4 s-1 and temperature of 293 K. 

(b) Fracture at strain rate of ~10-2 s-1 and temperature of 293 K. (c) Fracture at strain rate of 

~10-4 s-1 and temperature of 213 K. 

 

Fig. 4 Statistic distribution of stress drop [S(Δσ)] of the Zr64.13Cu15.75Al10Ni10.12 glassy metal 

deformed at different temperatures and strain rates. The power-law distribution of the stress 

drop is indicated in the inset. 

 

Fig. 5 (a) Multi-fractal spectrum ( , ( ))fα α  for the temperature 253 K at the strain rate 2.5×10-4 s-1: 

[ 5, 5]q∈ − + . (b) Multi-fractal spectrum ( , ( ))fα α  for the temperature 293 K at the strain 

rate 2.5×10-3 s-1: [ 5, 5]q∈ − + . 
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Fig. 6 (a) Range of multifractal spectrum Δα vs. the temperature at a strain rate of ~10-4 s-1. (b) 

Range of multifractal spectrum Δα vs. applied strain rate at a temperature of 293 K.  
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Table I The time delay, τ, the embedding dimension, m, and the largest Lyapunov exponents, λ1, vs. 

strain rate at temperature of 293 K. 

 

Strain rate (s-1) 2.5×10-4 2.5×10-3 2.5×10-2 

τ 

m 

λ1 

4 

7 

0.268 

28 

7 

0.002 

4 

6 

-0.003 

 

 

Table II The time delay, τ, the embedding dimension, m, and the largest Lyapunov exponents, λ1, vs. 

the temperature at strain rate of ~10-4 s-1. 

 

Temperature (K) 293 273 253 223 213 

τ 

m 

λ1 

4 

7 

0.268 

14 

10 

0.198 

11 

8 

0.050 

33 

10 

0.002 

26 

8 

-0.0008 

 

 

Table III The elastic accumulation time (tI) and the stress relaxation time (tr) in serration events at 

different strain rates and temperatures. 

 

Strain rate (s-1) Temperature (K) tl (s) tr (s) tI / tr 

10-4 293 ~4.321 ~0.122 ~40 
10-4 273 ~2.853 ~0.121 ~30 
10-4 253 ~2.374 ~0.123 ~20 

10-4 223 ~1.322 ~0.364 ~4 

10-4 213 ~0.813 ~0.392 ~2 

10-3 293 ~0.244 ~0.096 ~3 
10-2 293 ~0.020 ~0.022 ~1 
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