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The piezoelectric response of a material under a nanoscale biased tip scanned across a sample in 

piezoelectric force microscopy (PFM) provides insight into the structure and dynamics of domain 

walls in ferroelectrics.  While the vertical displacements of the tip under piezoelectric deformations of 

the sample has been reasonably explained, the origin of the lateral twisting of the tip remains unclear.  

This poses a serious problem when combining vertical and lateral signals to create vector PFM maps 



of polarization distribution in ferroelectrics.  Using a combination of finite element modeling and 

analytical theory, and by comparison with prior experimental work across a single antiparallel domain 

wall on the (0001) surface of LiNbO3, we unequivocally show that the lateral signal originates from a 

shear displacement of the surface.  We show that there are two types of lateral signals, one arising 

from the d15 shear deformation, and the other from the d22 lateral deformation.  The vertical PFM 

signal surprisingly shows equal contributions from the d33 (leading to normal displacements) and d15 

(leading to shear displacement) coefficients.  We also show that an averaging of the PFM signal over a 

finite contact area of the tip, as experimentally observed, is essential to understanding the line shape of 

the PFM responses across the wall.  After clarifying the origin of the nanoscale PFM signals, we 

conclude that, in general, a vertical signal does not automatically indicate a polarization component out 

of the surface, while a lateral signal does not automatically indicate an in-plane polarization 

component.  Without a detailed theory or simulation especially in materials with nanoscale domain 

structures, ferroelectric relaxors, and morphotropic compositions, such assumptions may lead to 

incorrect domain and wall interpretations.  The proposed model and numerical simulation method 

could be applied to all piezoelectric materials.



 

I. INTRODUCTION   

The defining feature of ferroelectric materials is a built-in spontaneous electrical polarization that is 

switchable with an electric field.  Ferroelectric domains, the regions of uniform ferroelectric 

polarization separated by domain walls, influence all macroscopic properties of ferroelectrics.  While 

electrical and optical techniques have been widely used to probe ferroelectric domains and domain 

walls, more recently, piezoresponse force microscopy (PFM) has emerged as a tool of choice for 

probing and imaging domains structures in conventional1-13 and relaxor ferroelectrics14-17. Converse 

piezoelectric effect induces a strain in the material under an electric field.  Using a nanoscale 

electrically biased tip in contact with the surface of a ferroelectric material, the resultant piezoelectric 

displacements of the surface are then transduced in the form of tip displacements in PFM that are 

detected optically.  The piezoelectric tensor, dijk, is nonzero only in the absence of inversion symmetry.  

Therefore, all ferroelectrics exhibit piezoelectric response, where dijk is linearly proportional to the 

spontaneous polarization Ps.  Beyond imaging, single point hysteresis loop measurements by PFM6, 9, 

18-25 and spectroscopic hysteresis loop imaging26, 27 allowed local probing of polarization dynamics in 

nanoscale, as discussed in detail in many reviews10, 28-30. The capability for probing31, 32 and 

manipulating4, 33 the local polarization reversal on a single defect level has also been demonstrated.  

Quantitative theoretical and simulation methods have become increasingly important in order 

to correctly interpret the PFM images and to understand the fundamental image formation mechanisms 

involved towards extracting the fundamental physical properties of domain walls. The universal 

approach for the calculation of electromechanical response in PFM based on decoupled theory by 

Felten et al.12 and Scrymgeour and Gopalan13 has been developed. Using decoupled theory for PFM 

response of semi-infinite materials, Ref. 34 and 35 obtained analytical expressions for vertical PFM 

resolution function and domain wall profiles, and developed the theoretical framework for 

interpretation of PFM spectroscopy data36-38, which was an important step towards understanding the 



origin of lateral PFM.  Vertical PFM signal refers to the displacement of the tip perpendicular to the 

sample surface undergoing a piezoelectric displacement.   

In comparison to the vertical PFM, the lateral PFM is not completely understood both 

theoretically and experimentally39-42. Lateral PFM refers to the lateral or sideways twisting of the PFM 

tip due to the sample piezoelectric displacements.  Note that a combination of vertical and lateral PFM 

signals are often used in order to create what is referred to as vector PFM plots43, which are then used 

to interpret the direction of ferroelectric polarizations in different domains.  However, a serious 

limitation in this approach  arises from the assumption that the lateral PFM signal originates from 

ferroelectric polarization components in the plane of the sample surface, and vertical PFM originates 

from out of plane polarization components, as is often done44-46. As we show in this article, such a 

simple qualitative interpretation of PFM signals is violated in the vicinity of ferroelectric domain 

walls, and can lead to incorrect domain structure interpretations.  

 

 FIG. 1. Comparison of the two mechanisms explaining the 0° lateral PFM: (a) slope model; (b) effective shear 

model.  In (b), the pivot point is labeled as P, and twisting angle of the cantilever as θ. 

Scrymgeour and Gopalan suggested a slope model13, where topological changes to the sample 

surface results in twisting of the tip under a vertical force pressed against a slanted sample surface (See 

Fig. 1). Jungk and Soergel argued against the slope model and instead proposed a model based on local 

electric field arising from the surface polarization charge near domain walls42, but later ruled out this 

claim41. Paruch et al.39, 40 experimentally confirmed the initial shear model proposed in Ref. 36, and 

presented a preliminary intuitive vertical expansion/contraction mechanism through the sign change of 



the d33 piezoelectric coefficient across an antiparallel domain wall. Soergel et al.41 observed a lateral 

signal at the domain boundaries of LiNbO3, BaTiO3, and KTiOPO4 single crystals and attempted to 

quantitatively compare their results to the existing models, but concluded that both the slope and the 

shear from expansion/contraction models were inadequate. Thus, to date, there is no general agreement 

on the origin of lateral PFM response at the domain walls. This motivates us to perform a thorough 

theoretical and experimental study of lateral PFM signal. Using finite element method (FEM) 

combined with analytical theory and experimental measurements, we have performed a detailed study 

of lateral PFM across a single 180° domain wall in LiNbO3. Our study resolves the major issues 

surrounding the interpretation of lateral piezoelectric response at such a 180° ferroelectric domain wall 

by showing that a shear model (Fig. 1(b)) is correct. However, the origin of the sample shear is more 

complex than assumed before and is dominated by the piezoelectric coefficient d15, instead of those 

proposed in the past expansion/contraction models (d33 and d31)39-41.  The work also predicts two types 

of lateral signals (which are later labelled as 0° and 90° lateral PFM signals), the latter of which was 

not theoretically predicted before, and hence the only experiments13 to show this signal were dismissed 

as an artefact. In addition to FEM simulation, a revised analytical theory is now presented which 

predicts this signal. We also propose an averaging method for all the PFM signals over a finite contact 

area of the tip on the sample surface, which resolves the lineshape arguments raised by Soergel41 and 

leads to the best agreement of the PFM line-shapes across domain walls between theory, simulation 

and experiments. 

 The organization of the paper is as follows:  We discuss the FEM simulation method of the 

PFM process in the decoupled approximation framework in Sec. II, followed by comparing the 

experimental data, FEM modelling, and analytical theory in Sec. III and IV.  Finally, discussion and 

conclusions are given in Sec. V and VI, respectively. 

 

II. FINITE ELEMENT ANALYSIS 



 Finite element method (FEM) was utilized to model PFM using the commercial software 

ANSYSTM. A complete description of the FEM modeling of the PFM can be found in Ref. 13. The 

current work simulates tip shape and field distribution more precisely by using finite element method, 

while Ref. 13 uses an analytical model for calculating the field distribution. In addition, the current 

work assumes true tip-sample contact while Ref. 13 assumes a non-contact geometry with a dielectric 

gap. An actual PFM experiment is performed using an AC voltage with a frequency of f < 100 kHz 

applied to the tip, which is scanned at a rate of ~ 0.1 μm/s in contact with the sample surface.  In 

contrast, the FEM simulations are quasi-static in that the applied voltage is DC, and the tip position 

during the simulation is fixed relative to the sample surface and the domain wall.  The simulation also 

assumes a decoupled approximation framework12, 13, 36, where the potential distribution in the sample 

due to the biased tip is first calculated, followed by the calculation of the piezoelectric displacements 

in response to this potential. A set of full piezoelectric, dielectric, and elastic tensors for LiNbO3
47 

were used as the input parameters, thus providing a rigorous 3D analysis.  

 In our simulation, a thin 180° domain wall was created in the y-z plane of the model coordinate 

system (see Fig. 1), and it corresponds to one of the three degenerate { }0211  planes in LiNbO3.  For 

the x>0 domain, the polarization direction is in the +z direction; for the x<0 domain, the polarization 

direction is in the -z direction. In order to simulate the PFM scan operation on the sample, a series of 

simulations have been carried out with the tip at different positions on the sample surface across the 

domain wall. Our simulations were performed with the same 180° step-like domain wall.  A 

comparison between the FEM results and experiment data indicates that the effect of intrinsic diffusive 

domain wall is so small that it does not have any significant contribution to the PFM signal. 

 



 FIG. 2. Schematic of the PFM measurement across 180° domain wall in FEM simulation. The polarization for the 

right domain points up, while the left domain points down. r is the radius of the circular tip-sample contact area. D is the 

distance between tip center and domain wall.  

 The tip model used in our simulation are disk-type, the same as the one used in Ref. 38. It has a 

cone shaped geometry with a circular disk-type end, which is in true contact with the sample surface 

(Fig. 2). This geometry was confirmed by scanning electron microscopy after experimental scans38, 41. 

In order to make a realistic comparison with experiments, the radius of the circular tip-surface contact 

area is set as r=50 nm for the vertical PFM simulation and r=55 nm for the 0° lateral PFM simulation, 

consistent with experimental PFM scans in Ref. 48. For all simulations, the tip has a length of 10 µm 

with a full cone angle of 30°. A constant electric voltage +5 V is applied to the tip surface and the 

bottom surface of the sample is set as 0 V. The sample in our simulation is a block with the size of 8×8 

×1 μm . In this work, the potential distribution in the sample was first calculated, followed by the 

calculation of the piezoelectric displacements in response to this potential. The bottom surface 

displacements of the sample, Ux, Uy and Uz are confined to 0, corresponding to a clamped bottom 

surface. The meshing was adjusted fine enough to yield results independent of the meshing size.  

 The mechanical boundary conditions at the ferroelectric surface below the tip are an important 

consideration in FEM modelling. In both FEM and decoupled approximation, we consider the surface 

as mechanically free and calculate the local PFM response defined as the surface displacement in the 

central point (r = 0) just below the tip. The limiting case corresponds to the absence of indentation 

(hypothetical case of the weightless and frictionless cantilever) and is consistent with all previous 

theoretical studies12, 13, 34-38. The local PFM response calculated for the mechanically free conditions 

provides the first-order approximation for PFM signal in general. FEM results for both vertical and 

lateral PFM surface displacements were averaged over the contact area (radius of the squashed tip, 

r=a) using the following equation: 
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A derivation of Eq. (1), based on force arguments, is given in Appendix A. The key assumptions in the 

averaging model are that the tip-sample interface is intimate and conformal, i.e., there is no relative 

motion of the tip with respect to the sample surface, and they remain in intimate contact even after 

piezoelectric deformation. The tip surface is coated with metal such as gold, which is soft and 

conforms to very small ( ~ 10 pm) piezoelectric sample surface displacements, keeping the interface 

between them intimate. A pivot point is defined at the top-center of the conical tip (Fig. 1), where the 

cantilever arm joins the cone from where the tip displacement is read using optical means.  The 

displacements of this pivot point are not constrained in the z-direction (Uz,pivot ≠0) which allows for the 

vertical PFM signal detection, but the lateral displacements of this pivot are clamped by the cantilever 

arm (Ux,pivot, Uy,pivot =0) which only allows twisting of the conical part of the tip. If the conical 

tip/sample surface interface displaces in the lateral direction, it will give rise to lateral PFM signal. 

Note that the PFM signal naturally averages in going from the displacement field at the tip-sample 

interface to a single pivot point on the top.   

 

III. Vertical PFM response: Simulations, Theory and Experiments 

 The vertical PFM signal originates from an out-of-plane displacement of the sample surface, 

Uz
28, 30, 43, 49, 50. Shown in Fig. 3 is a cross-sectional and top-down view of a quiver plot and contour 

plot of the z-component displacement of the sample. Unlike Ref. 13 where only surface displacements 

are shown, both surface and depth displacement fields are shown here. For the tip lying in the middle 

of the domain wall, D=0, and for the tip lying 40 nm away from the domain wall, D=40 nm. 



 

 FIG. 3. Cross-section view (a), (b) and top view (c), (e) for the quiver plot of the vertical displacement of the 

sample in the vertical PFM simulation. The tip-domain wall distance, D=0 for (a), (c) and D=40 nm for (b), (e). The radius 

of the circular tip-surface contact area r=50 nm. (d) is the schematic of cantilever direction with respect to the domain wall 

for the vertical PFM scan. The electric voltage applied on the tip is +5 V. The sample generated a positive vertical 

displacement for the left domain and a negative vertical displacement for the right domain.    

 

 The vertical PFM simulation yielded expected results: the left and right domain in Fig. 3 

undergo positive and negative z-component displacements, respectively. The sample surface 

displacement underneath the tip has a non-uniform distribution. Here we compare two interpretations 

of the vertical PFM signal: (1) use the displacement of the center point in the circular contact area to 

represent the tip displacement; (2) integrate the displacement over the circular contact area to give the 

displacement value of the tip according to Eq. (1). After such analysis for each simulation with tip 

lying in different positions away from the domain wall, the results are given in Fig. 4.  

 



 FIG. 4. Comparison of the normalized vertical PFM signal (Uz) from the FEM results, experiment and analytical 

theory. FEM Area Int. indicates the curve is obtained from integration of the z-component displacement over circular tip-

sample contact area as Eq. (1). In comparison, “FEM Center” indicates that the curve is from the exact center point of the 

tip-sample contact region. The experiment data is from Ref. 48. “Theory” indicates the result of analytical theory36, 37. Inset 

shows the non-normalized displacement value from the FEM results and analytical theory. The Poisson's ratio is set as 

ν=0.35 for the analytical theory.  

 

 Also shown in Fig. 4 is experimental data48 with results from analytical theory36, 37. Note that 

Fig. 4 also includes relative phase information based on the data from Ref. 48. One can see from Fig. 4 

that the FEM Area Integration averaging method results have the best agreement with experimental 

data, while the FEM Center result matches well with the analytical theory. When the tip lies 400 nm 

away from the domain wall, both averaging methods from FEM give 70.0 pm for the z-component 

displacement, as compared to 70.9 pm from analytical theory, with a tip bias of +5V. In order to test 

how the tip displacement saturates as it moves away from the domain wall, an additional simulation 

for the tip lying far away from the domain wall was performed. The single domain calculation gives 

the z-component displacement 70.1 pm, which suggests that the vertical PFM signal for the tip lying 

400 nm away from the domain wall already reaches more than 99% of the saturation value. 

 From the vertical PFM simulation, one can see that the FEM model used here with area 

integration treatment (Eq. (1)) shows excellent quantitative agreement with the experiment. This 

provides us confidence in the following lateral PFM simulations. 

 

IV. Lateral PFM 

 In addition to vertical PFM response, two lateral PFM setups are essential to comprehensively 

determine the domain structure. As is shown in Fig. 5, when the cantilever arm is parallel to the 

domain wall, we name it 0° lateral PFM (corresponding to y-LPFM in Ref. 50). When the cantilever is 

perpendicular to the domain wall, we name it 90° lateral PFM (corresponding to x-LPFM in Ref. 50). 

Our FEM simulation results support the interpretation that both types of lateral PFM signals come 

from the lateral displacement of the sample surface36. The x-component displacement of the sample 

surface underneath the tip leads to the torsion of the cantilever in the x-z plane, leading to the 0° lateral 



PFM signal while the y-component displacement of the sample surface underneath the tip leads to the 

torsion of the cantilever in the y-z plane and accordingly gives rise to the 90° lateral PFM  signal. Each 

of these is described in detail below. 

 

FIG. 5. Schematic of  (a) 0° lateral PFM scan and (b) 90° lateral PFM scan 

 

A. 0° lateral PFM 

 For the 0° lateral PFM, the x-component displacement of the sample surface underneath the tip, 

Ux, gives the PFM signal. Thus only the data of x-component displacement of the sample is analyzed. 

Shown in Fig. 6 are cross-section and top view of quiver plot and contour plot of the x-component 

displacement of the sample, with D=0, and D=40 nm.  

 



 FIG. 6. Cross-section view (a), (b) and top view (c), (e) for the quiver plot of the x-component displacement of the 

sample in the 0° lateral PFM simulation. The tip-domain wall distance, D=0 for (a), (c) and D=40 nm for (b), (e). The 

radius of the circular tip-surface contact area r=55 nm. (d) shows the schematic of cantilever direction with respect to the 

domain wall for the 0° lateral scan. The electric voltage applied on the tip is +5 V. 

 

 Fig. 6 clearly shows that the entire sample surface has a lateral displacement along the x-

direction. This leads to a torsion of the PFM cantilever in the x-z plane for a 0° lateral PFM scan. A 

quantitative comparison of 0° lateral scan result from FEM slope model48, experiment48 and analytical 

theory36, 37 are shown in Fig. 7. For the convenience of comparison, ωPFM, defined as the half width at 

half maximum (HWHM), is the half width where the PFM signal decreased to half of its peak 

amplitude. Although the curves in Fig. 7 are similar (with a peak shown when the tip position lies in 

the middle of the domain wall), the effective shear model from FEM calculation predicts ωPFM to be 65 

nm (area integration method) and 54 nm (center point).  In comparison, ωPFM is 102 nm (experiments), 

47 nm (analytical theory) and 8 nm (FEM slope model). Note that the area integration method has the 

best agreement with the experiments, not only in terms of HWHM, but also the shape of the curve near 

the peak, which shows a continuous slope for the experiments and the area integration method, but has 

a discontinuous slope for the other approaches shown.   

 There are still some discrepancies in ωPFM between the experiments and FEM theory using the 

area integration method, which are likely to involve other aspects of surface physics and contact 

dynamics that are not fully captured here. For example, it has been shown that the position of the 

domain wall near the surface is influenced by the high fields under the biased tip leading to a bending 

of the wall towards or away from the wall51, and this could lead to a significant broadening of the 

lateral PFM signal as large as ~10 nm.  



 

 FIG. 7. Comparison of the normalized 0° lateral signal from FEM effective shear model, FEM slope model, 

experiment and analytical theory. The legend is the same as Fig. 4, except the slope model. The experiment data and slope 

model are extracted from Ref. 48. Inset shows the non-normalized value from the FEM results and analytical theory.  

 

B. 90° lateral PFM 

 90° lateral PFM signal reflects the y-component displacement, Uy of the sample surface 

underneath the tip. Fig. 8 displays cross-section and top view of quiver plot and contour plot of y-

component displacement of the sample, with D=0, and D=40 nm. 

 

 FIG. 8. Cross-section view (a), (b) and top view (c), (e) for the quiver plot of the y-component displacement of the 

sample in the 90° lateral PFM simulation. The tip-domain wall distance, D=0 for (a), (c) and D=40 nm for (b), (e). The 



radius of the circular tip-surface contact area r=50 nm. (d) shows the schematic of cantilever direction with respect to the 

domain wall for the 90° lateral scan. The electric voltage applied on the tip is +5 V. 

 

 As shown in Fig. 8, this displacement is qualitatively different from the vertical PFM and the 

0° lateral PFM simulations. The scan results are shown in Fig. 9. 

 

 FIG. 9. Comparison of 90° lateral signal from FEM results, experiment and revised analytical theory. The legend 

is the same as the one in Fig. 4. Note: since the original experiment data from Ref. 13 used arbitrary unit and does not 

provide any phase information, only the normalized amplitude of the 90° lateral scan signal is shown in inset here.  The 

FEM and revised analytical results indicate that the phase of the 90° lateral signal should be reversed when the tip scans 

across the wall. 

 Although the earlier version of the analytical theory36 predicted the correct qualitative vertical 

and 0° lateral PFM signals as experiment, it did not predict the 90° lateral PFM signal shown in Fig. 17 

of Ref. 13. The reason is that among all the piezoelectric constants, d22 is the dominant piezoelectric 

constant giving rise to a 90° lateral PFM signal. The earlier version of analytical theory neglected the 

piezoelectric response from d22. A revised analytical theory accounting for the d22 coefficient is 

presented here (see Appendix B), and it indeed predicts a 90° lateral PFM signal qualitatively similar 

to the FEM calculation, as shown in Fig. 9.  The amplitude of the FEM and analytical theory 

displacements in Fig. 9 (see inset) also qualitatively match with the 90° lateral PFM experiment data 

reported by Scrymgeour and Gopalan13. The experimental 90° lateral PFM signal was reported to be 

~1/10th the 0° lateral PFM signal,13 while the FEM results indicate ~1/5th of the 0° lateral PFM signal; 



thus it is easy to get cross-talk from the 0° lateral PFM signal. The paper reports that even for a 

rotation of ~10° away from the perpendicular position, the 90° lateral signal resembles the 0° PFM 

signal. The data also likely contains background contributions due to electrostatic and other 

instrumental artifacts.  It was thus dismissed prior to this work as an artifact of the measurement 

process. Despite these possible drawbacks, we note here that the qualitative features of the 

experimental data, namely, minimum at the center of the wall, and two peaks in amplitude on either 

side of the wall are clearly distinguishable and resemble the FEM theory as well as the analytical 

theory shown in the inset of Fig. 9.  Further experiments in the future can now revisit this question 

with the benefit of theory and simulations presented here. 

 

IV. RELATIVE CONTRIBUTIONS OF THE DIFFERENT PIEZOELECTRIC 

COEFFICIENTS TO THE PFM SIGNALS 

 Since LiNbO3 belongs to point group 3m, the piezoelectric matrix has 4 independent 

piezoelectric component, d15, d22, d31 and d33. The piezoelectric matrix is given by 
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 This section explores the relative contributions to these three types of PFM signal from the 

various components of piezoelectric tensor. For example, it was shown in the last section that the d22 

coefficient is critical for observing and explaining the 90° lateral PFM. In order to test the relative 

contributions of different piezoelectric coefficients, we performed the following procedure in our FEM 

simulations: the complete dielectric matrix and elastic tensors were kept the same as before, and the 

piezoelectric matrix was modified. For example, for the specific study on how d22 contributes to the 

PFM signal, only this coefficient and others related to it by symmetry considerations were retained, 

and the rest eliminated as follows: 
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TABLE I. The relative contributions of the d15, d22, d31 and d33 coefficients to the three types of PFM signals, calculated 

from FEM (and analytical theory, shown in the parenthesis). Note: Ux, Uy and Uz are calculated when the tip lies at the 

position where the corresponding PFM signal get its maximum, for both FEM calculation and analytical theory. To be 

specific, Ux value in the table is calculated when the tip is on the domain wall (see Fig. 7 ); Uy value is calculated when the 

tip is near the domain wall (see Fig. 9); Uz is calculated when the tip is far away from the domain wall (see Fig. 4).  

 

 d15  d22  d31  d33  Sum Full tensor  

Ux, pm 55.8(56.9) -3.6(0) -2.5(-7.5) 8.9(14.1) 58.6(63.5) 59.7 

Uy, pm 1.4(0) -16.8(-10.3) 0(0) 0(0) -15.4(-10.3) -14.5 

Uz, pm -38.7(-46.2) 1.2(0) 2.3(4.2) -34.1(-25.9) -69.3(-67.9) -69.9 

 

  Table I gives detailed information on how each individual piezoelectric constant influences the 

PFM signal. For vertical PFM, one can clearly see that not only d33, but also d15 contributes a 

comparable amplitude to the vertical displacement, Uz.  In other words, if we attempt to get an effective 

d33 piezoelectric constant by calculating VUd z
eff /33 = (V is the electric voltage applied on the tip), the 

derived effd33  will be significantly larger than the true d33 material piezoelectric constant.  This does not 

necessarily indicate any enhancement of the piezoelectric constant, which is often mistaken in the 

literature52. This point is particularly important in calibration process of PFM experiments. As for the 

0° lateral PFM, Table I indicates that d15 is the dominant factor leading to the torsion of the cantilever 

in the x-z plane. This rules out all the other interpretations based on a dominant expansion/contraction 

mechanism in the domain wall region (contributions from d33 or d31), and confirms the shearing 

(contribution from d15), as the main factor giving the x-direction surface displacement39-41, 53, 54.  For 

the 90° lateral PFM, Table I indicates that d22 is the dominant factor resulting in y-component 

displacement, leading to the torsion of the cantilever in the y-z plane. It agrees with the revised 

analytical theory after taking d22 into consideration (see Appendix B).  



 From Table I, the total surface displacement by simple linear summation of the contributions 

from each of the individual piezoelectric constants is a good approximation of the total piezoresponse 

from materials with full piezoelectric tensors considered. This is also reflected in the analytical theory 

that shows that the piezoresponse under a non-uniform electric field generated by the PFM tip may be 

simplified to a linear function of each piezoelectric tensor component (Eq. 5 in Ref. 37).  In addition, 

Table I also showed the results from the revised analytical theory. Results from FEM and analytical 

theory match well. 

 

VI. DISCUSSION 

 In this paper we used the finite element method to explore an effective shear model in 

explaining the lateral PFM signal. In our simulations, the PFM process is considered quasi-static, 

which calculates the piezoelectric response with constant electric voltage applied to a static tip. This is 

a good approximation if the scan is performed with an AC voltage far away from the resonance 

frequency, and the tip scan speed is much slower than the data collection rate in the PFM experiment 

at each point. In addition, the domain wall in the FEM calculation is assumed to be a sharp thin wall. 

The results from such sharp domain wall assumption matched very well with the vertical PFM 

experiments38. We did not take into consideration any domain wall bending, which may occur in a real 

experiment because the electric field immediately underneath the tip is as large as ~108 V/m when a 

DC voltage +5V is applied on the tip. Such domain wall bending has been observed experimentally, 

where it was reported that the threshold for this domain switching at the wall is ~3 V, which is an order 

of magnitude smaller than that of a single domain region far away from the wall (~ 28 V) 51.  

 In order to understand the origin of lateral PFM signal, Scrymgeour and Gopalan explored the 

slope model (Fig. 1(a)) in contrast to the effective shear model proposed here (Fig. 1(b)). Slope model 

assumed that topographical surface slopes of the sample underneath the tip causes the PFM lateral 

signal13, 55. However, they only took the vertical piezoresponse into consideration and attributed the 

topographical slope to be a result of the vertical expansion and contraction, respectively, on each side 



of the antiparallel domain wall, as shown in Fig. 1(a). The slope model has been criticized since then 

because mechanical analysis in Ref. 40 showed that the lateral contact force generated in the slope 

model is negligible compared with the actual lateral force observed in experiments, which was found 

to be comparable to the vertical force on the tip (10 nN). Several other attempts were reported in the 

literature39-41, 53, 54. Although they all admitted that it is the surface displacement that gives rise to the 

lateral PFM signal, the origin of these displacements, namely, which piezoelectric tensor element 

dominates this lateral displacement was identified incorrectly. Ref. 41, 53, 54 reported explorations of 

two mechanisms, lateral expansion/contraction contribution due to d31 and shearing contributions due 

to d15, to explain the lateral surface displacement. However, they excluded the shear effect due to d15, 

because they argued that the shear deformation was suppressed due to sideways clamping; they then 

concluded that the in-plane displacement chiefly originated from lateral expansion/contraction in the 

"active volume", and attributed it to the d31 sign change across the domain wall. Although the ''active 

volume'' model is helpful in understanding the lateral resolution in vertical PFM signal,54 it assumes 

that the displacements due to the d15 coefficient will be clamped, and only d31 coefficient will have 

contributions to lateral PFM signal. Instead, we find that a lateral shear displacement distribution of 

the active volume is predominantly induced by the d15 coefficient, which is ~20 times in magnitude to 

that from the d31 coefficient (see Table I).   In comparison, Ref. 39, 40 attributed the shear strain to the 

opposite sign change of piezoelectric constant d33 on the two sides of the 180° domain wall. TABLE I 

clearly shows that it is d15, and not d31 or d33, that dominates the in-plane x-component surface 

displacement of the sample and hence, the 0° lateral PFM signal.  

 In addition to the vertical PFM and 0° lateral PFM, the 90° lateral PFM is also indispensable in 

order to get full information on the domain structure. This 90° lateral PFM signal is often obtained 

simultaneously together with the vertical PFM signal during the same scan. For the specific 180° 

domain structure of LiNbO3 studied in this paper, this signal is small compared to the other two PFM 

signals, which is most likely the reason for its neglect in the past. This study showed, for the first time, 

that d22 dominates the 90° lateral PFM signal obtained while scanning the 180° LiNbO3 domain wall.   



 From the FEM study of the three different PFM signals, one important conclusion is that the 

PFM signal cannot be simply thought of as a direct reflection of either in-plane or out-of-plane 

components of polarization. For a 180° domain wall structure, the FEM results show that not only does 

d33 contribute to the vertical PFM signal, but d15 also makes a comparable contribution. Furthermore, 

both experimental observation and numerical calculation showed that there is a comparable lateral 

PFM signal even without net in-plane polarization in LiNbO3. In view of this, one can safely say that a 

measurable lateral PFM signal does not imply that there is an in-plane polarization in the sample. 

 The 180° domain wall is chosen in this study for its simplicity as well as universality, since it is 

present in all ferroelectrics. The FEM analysis method presented here can be applied to analyze any 

other domain wall types, including 90° domain walls in tetragonal and orthorhombic systems, such as 

in BaTiO3 and KNbO3, and 71° or 109° domain walls in rhombohedral systems such as BiFeO3.  

 

VII. CONCLUSIONS 

 The origin of nanoscale piezoresponse across an antiparallel domain wall under a scanned bias 

tip has been theoretically and numerically modeled, and compared with experiments. The results from 

the FEM simulations quantitatively agree with the previously published experimental results. From our 

analysis, the effective shear model leads to lateral PFM signals observed in the experiments, thus 

resolved the outstanding controversy surrounding the origin of this signal. We present a detailed 

discussion of various piezoelectric tensor elements that contribute to the three types of PFM signals. 

For the 180° domain-twin structure in LiNbO3, the vertical PFM signal arises mainly from 

piezoelectric constants d33 and d15, the 0° lateral PFM signal arises mainly from d15, and, it was 

demonstrated that the 90° lateral PFM signal arises from d22. The 90° lateral signal was experimentally 

observed before, but is theoretically predicted here for the first time. The FEM simulation method 

presented here is general, and may be applied to other domain structures in piezoelectric and 

ferroelectric materials. The understanding of lateral PFM signals presented here could be useful in the 



design of shear mode transducers and sensors based on periodic ferroelectric domains with 180° 

walls56-58. 
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IX. APPENDICES 

 

APPENDIX A. Derivation of Equation 1 for Averaging PFM Signal over the Tip Contact Area 

 The simplest model is to represent the contact area between the tip and the sample as an array 

of vertical springs with a spring constant k.  For the sake of generality, in the absence of piezoelectric 

coupling, we assume that the (flat) punch settles to depth, 1z . If we turn on coupling and if there were 

no punch, the surface will adopt the profile, ( )Druz ,,31 ϕ+ (See Figure 1 for definitions). If the punch 

is there, it will shift and it is assumed that the total displacement of the punch is Uz . 

 If the adjacent spring elements do not interact with each other, the local force on each spring 

becomes ( )( )DruUzk zz ,,1 ϕ+− . The total force on the punch becomes 

( )( )∫ ∫
π

ϕϕ+−
π

=
a

zzz drdDruUzrk
a

F
0

2

0
12 ,,

1
     (A1) 

Since the experiment is performed under constant load and without slipping, the force before and after 

the piezoelectric deformation of the sample are equal, and we have 

( )( ) ∫ ∫∫ ∫
ππ

ϕ=ϕϕ+−
aa

zz drdrzdrdDruUzr
0

2

0
1

0

2

0
1 ,,     (A2) 



From which we derive average displacement in Eq. (1) as 

( )∫ ∫
π

ϕϕ
π

=
a

zz drdDrru
a

U
0

2

0
2

,,
1      (A3) 

A similar argument can be made for lateral displacements.  Any relative motion between the tip and 

sample will result in a component force Fz on the vertical springs at the interface between tip and the 

sample.  Since it is assumed that the interface is intimate and there is no relative slip, i.e. 

),,(),,( ,, DruDru tipxsamplex ϕ=ϕ , therefore, any contribution to Fz from the relative slip will be zero.   

However, since the lateral position of the pivot point (Figure 1) is fixed, the tip will twist, where the 

angle of twist, θ is given by HU x /tan =θ , where Ux is the averaged lateral displacement, and H is 

the height of the cantilever tip.  The lateral PFM signal is proportional to this twist. 

 

APPENDIX B: ANALYTICAL THEORY OF 90° LATERAL PFM SIGNAL 

 Perturbation approach for local piezoelectric response in PFM description was suggested by 

Felten et al.12 and Scrymgeour and Gopalan13. It is based on the solution to a decoupled problem. In 

this case, the electric field in the material is calculated using a rigid electrostatic model (no 

piezoelectric coupling); the strain or stress field is calculated using constitutive relations for a 

piezoelectric solid, and the displacement field is evaluated using an appropriate Green’s function for 

an isotropic or anisotropic solid. In this approximation, PFM signal, i.e., surface displacement ( )yx,iu  

at location x induced by the tip at position ( )21 , yy=y  is given in Ref. 36 as: 

( ) ( ) ( ) ( )32211
32211

0
321 ,,

,,
, ξξ+ξ+

ξ∂
ξξ−ξ−∂

ξξξ= ∫∫∫
∞∞

∞−

∞

∞−

yydcE
xxG

dddu lnmkjmnl
k

ij
i ξyx   (B1) 

Here coordinate ( )zxx ,, 21=x  is linked to the indenter apex, coordinates ( )21 , yy=y  denote 

the indenter position in the sample coordinate system y, as shown in Fig. 1 of Ref. 36. Please note that 

the ( )zxx ,, 21  coordinate system in Ref. 36 is left-handed, and equivalent to the (x, y, -z) direction in 

the coordinate system used in the current paper (see Figure 1 and 2) .  Similarly, in place of using y1 in 

Ref. 36, we simply use D to specify the tip position in the current paper. Coefficients lnmd  and kjmnc  are 

position dependent components of the piezoelectric strain constant and elastic stiffness tensors, 



respectively. ( )xlE  is the electric field strength distribution produced by the probe. The Green’s 

function for a semi-infinite medium ( )ξx −ijG  links the eigenstrains llmnjlmn Edc  to the displacement 

field. In the framework of the effective charge model59, 60, electric field distribution could be obtained 

in the form 

( )( ) 2,1,
2/32

3
2
2

2
1

=
+γξ+ξ+ξ

ξ
= i

d
VdE i

i                                               (B2) 

Here 1133 εε=γ  is the dielectric anisotropy factor, d  is the distance from the surface to the point 

charge Q  representing the tip, V is potential applied to the probe. For the disk-shaped electrode 

π≈ 02Rd , where 0R  is the radius of the disk38. 

 It is well known that 3m materials (LiNbO3, LiTaO3) in comparison with tetragonal 

ferroelectrics have additional components of piezoelectric tensor, namely, 

222121112222222211 ,, dddddd −==−=                              (B3) 

(in other words it is one additional non-trivial element). In Voigt matrix notations, 22222 dd ≡ . Using 

(B3) we rewrite the core of (B1) in the form: 
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Here we suppose the elastic isotropy of the material (hence ( )1122111112122 ccc −=  and we neglected 

stiffness components like 131222231123 ,, ccc , which are small for LiNbO3). 

Green’s function tensor for semi-infinite isotropic elastic half-plane is given by Mura61 and 

Landau and Lifshitz62: 
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Here ( ) ( ) 2

3
2

22
2

11 ξ+ξ−+ξ−= xxR  is radius vector, Y is Young’s modulus, and ν  is the Poisson 

ratio. Also note that )1(11221111 ν+=− Ycc . 

All the calculations below are performed for 0=x  (the response directly below the tip) and 

infinitely thin domain walls with profile, ( )201022 sincossign yyd ϕ+ϕ , where the angle 0ϕ  gives 

orientations between the wall and Y-axis, wall is perpendicular to the surface. Y-axis is parallel to the 

one of the mirror planes of 3m system. 

Using Eqs.(B1)-(B5) the contribution of d22 to displacement could be written as: 
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Here ( ) ( ) 2
3

2
2

2
1 ξ+ξ+ξ=ξR . Below we consider 2u , which is nonzero for m3m, by identically zero 

for DW in 4mm ferroelectrics. 

Taking into account the parity of W222, we could rewrite (B6) and (B7b) as 



( ) ( )∫∫∫ ξξξξξξ=
V

appl dddWVdu 321321222222 ,,,0 y                       (B8) 

Here we introduced the range of integration { }0,sincos: 30201 >ξ<ϕξ+ϕξ aV  and distance to the 

wall 0201 sincos ϕ+ϕ≡ yya . Next we introduce spherical coordinate system, 

θ=ξϕθ=ξϕθ=ξ cos,sinsin,cossin 321 rrr , and perform integration on r: 

( ) ( )
( )

( )
( ) θϕθ

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ−ϕθ+

γ
θ

+θ

ϕ−ϕθ+
γ

θ

−ϕθ
π

= ∫∫
ϕ+π

ϕ+π−

π

sin,

cossin
cos

sin

cossin
cos

1
1

,0 222
2

0
22

02

2

2

0
222

0

0

w

d
a

a

d
a

ddaVsigndu y  

(B9a) 
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 For particular case, ( )122 sign yd , when 00 =ϕ , the contribution of d22 to displacement 2u , that 

is nonzero for m3m, is: 
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Here y1 is the distance to the wall. 
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Results of numerical integration of Eq.(B10)-(B11) for LiNbO3 parameters are presented as a dotted 

curve in Fig. 9. 
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