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Confined electronic states in quantum rings formed by spatially modulated finite Dirac gap
(FDGQR) in graphene are systematically studied by series-expansion method, and are compared
with those in infinite-mass-boundary and one-dimensional quantum rings. The shape-size effect of
FDGQR is illustrated to be distinct from that in graphene quantum dots. The Aharonov-Bohm
effect in FDGQR is clearly shown by the energy spectrum and the optical-transition probabilities.
The FDGQR coupled with the electrostatic-potential induced nanoring is found useful for modu-
lating the Dirac electronic states and the optical-transition probabilities. These results may help to
understand and to control the quantum behaviors of confined electronic states in graphene.
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I. INTRODUCTION

Synthesis of graphene1 has stimulated a renewed in-
terest in the study of the low-dimension quantum sys-
tems. Since graphene is true two-dimensional material
and exhibits relativistic-like dispersion, it provides a plat-
form to study two-dimensional systems and relativistic
quantum mechanics.2 Besides, the unique properties of
graphene such as the high electron mobility and the val-
ley degeneracy1,3,4 make it a promising candidate for fu-
ture nano-electronics and quantum information devices.

The nanostructures such as nanoribbons,2,11 quantum
dots,2,5,8–14 and quantum rings (QRs)2,5–7,11 based on
graphene have attracted much attention. It has been
illustrated that the confinement of Dirac fermions at a
nanometer scale is not trivial due to Klein’s paradox,15,16

which seriously limits graphene’s potential application
for building electronic devices, because confining carri-
ers are crucial for applications. Some methods have been
proposed to overcome this problem. One way to confine
Dirac fermions is to utilize an electrostatic gate by using
transverse states in the graphene strip10 or introducing a
gap (rest mass) to graphene systems.11 Another way to
confine Dirac fermions is using spatially inhomogeneous
magnetic fields.12 In addition, graphene can be mechan-
ically cut into confinement geometries for electrons.13,14

Recently, the confinement of Dirac fermions by a spa-
tial modulation of the Dirac gap without the application
of external electric and magnetic fields is illustrated.9

What’s more, the QRs based on graphene have become
an interesting topic, because the ringlike geometry has
special electronic states and allows the investigation of
Aharonov-Bohm (AB) effect. In experiment, QRs etched
in graphene by lithographic techniques have been in-
vestigated and the clear AB conductance oscillations
have been observed.17 In theory, the quantum behav-
iors of one-dimensional QRs in graphene and finite-width
QRs with infinite-mass boundary have been studied in

detail.6,7

In Ref. 6, the analytical expressions for the eigenstates
and eigenvalues of carriers confined in one-dimensional
QRs have been obtained. Moreover, in Ref. 7, the
electronic properties of Aharonov-Bohm rings have been
investigated by two different ring systems-a ring with
infinite-mass boundary and a hexagonal ring with zigzag
edges. Interestingly, a spatially modulated Dirac gap in-
duced by a spatially varying potential of the interface has
been reported experimentally in epitaxial graphene.18

In addition, the local strain and/or chemical methods
might also be employed to open up and tune the Dirac
gap.2,9,19–22 Thus, it is of fundamental interest to investi-
gate the quantum behaviors of the QR formed by a finite
Dirac gap (FDGQR) and to reveal the relations to the
QRs with infinite-mass boundaries and one-dimensional
QRs. More importantly, the incomplete localization of
the Dirac fermion in FDGQR permits the coupling be-
tween the FDGQR and other quantum systems, then we
can study the coupling between the FDGQR and the QR
induced by electrostatic potential (EPQR). The distri-
bution of wavefunctions of Dirac fermion and the optical
transition probabilities may be tuned by the coupling ef-
fect, which are beneficial for applications of graphene.
Therefore, in this paper we will explore the size-shape
effect of FDGQR along with its AB effect under mag-
netic flux, and investigate how to modulate the electronic
states by coupling FDGQR with EPQR.

The paper is organized as follows: in Sec. II, we
present the model of FDGQR in graphene, and the series-
expansion method which is employed to calculate its elec-
tronic structures. The numerical results and discussion in
Sec. III show the size-shape effect, AB effect in FDGQR
and the coupling between FDGQR and EPQR, which is
followed by a conclusion in Sec. IV.
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II. MODEL AND METHOD

The low-energy Dirac fermions in graphene are de-
scribed by Dirac-Weyl Hamiltonian.23 Then a QR in-
duced by the modulation of a finite Dirac gap in infi-
nite graphene under electrostatic and magnetic fields is
modeled by the Hamiltonian

Ĥτ = vF~σ · (~P + e ~A) + V I + τMσz , (1)

where vF ≈ 106 m/s is the Fermi velocity, ~P =

−i~(∂x, ∂y) is the momentum operator, ~A is the vector

potential that generates the magnetic field ~B = ∇ × ~A,
V is the electrostatic potential, ~σ = (σx, σy), σz are the
2 × 2 Pauli operators acting on the two carbon sublat-
tices, I is the 2× 2 unit matrix, M is the Dirac gap, and
τ = 1 (-1) labels the K (K ′) valley.
The FDGQR can be spatially divided into three re-

gions including I (0 < r ≤ RM − WM

2 ), II (RM − WM

2 <

r < RM + WM

2 ), and III (r ≥ RM + WM

2 ), where WM

and RM are the width and radius of the FDGQR, respec-
tively. In order to clearly illustrate the quantum behav-
iors of the FDGQR, we first adopt a discontinuous Dirac
gap distribution, expressed as

MS =

{

M0 for regions I and III
0 for region II

, (2)

where M0 defines the depth of the QR.
Although the exact form of a spatially modulated gap

still needs being investigated experimentally, we also
choose a Gaussian profile in this work to simulate a con-
tinuously varying gap.

MC =

{

M0 for regions I and III

C[eλ0(r−RM )2 − 1] for region II
, (3)

where the parameter λ0 can affect the shape of the QR,
and C is chosen so that the MC is continuous at the
interfaces of three regions.
In addition to the spatial modulated gap, a gate elec-

trodes can be suspended above the graphene sheet to
spatially modulate the electrostatic potential V .24,25 The
QRs formed by discontinuous electrostatic potential V
can be expressed as

VS =

{

V0 for regions I and III
0 for region II

, (4)

A slowly varying electrostatic potential V is also cho-
sen as a Gaussian profile.

VC =

{

V0 for regions I and III

C[eλ0(r−RV )2 − 1] for region II
, (5)

where the meaning of the three regions are similar with
those of the FDGQR and the C is chosen so that the V
is continuous at the interfaces of three regions. WV and
RV are the width and radius of the EPQR, respectively.

In the calculations, the cylindrical Dirac gap and elec-
trostatic potential with any kind of radial distributions
can be expanded into power series or be approximated by
a number of square barriers with different heights. The

applied magnetic field ~B = B~z is perpendicular to the
graphene sheet. Under polar coordinates, we adopt the

gauge ~A = (12Br +
D
r )~eθ, where D = 0 for homogeneous

magnetic field and D 6= 0 for inhomogeneous magnetic

field, determined by the continuity of ~A.
For the K valley, the two-component wave function is

ψ+1 = (ϕeilθ , iχei(l+1)θ)T , where ϕ and χ are the radial
parts of the upper and lower components that are used
to describe the electronic states in two carbon sublattices
of graphene, respectively, i is the imaginary unit, and l
is the orbital angular momentum. For convenience, we
set the scales of length and energy as ν0 =

√

~/eB0,
E0 = ~vF /ν0, respectively, and B0 = 1 T. We make
the variable substitutions M/E0 → M , D/ν20 → D,
V/E0 → V , B/B0 → B, and r/ν0 → r. Then from
the Hamiltonian in Eq. (1) we can get the equations for
the radial functions expressed as

{ [

d
dr + l+D+1

r + B
2 r] χ = (E − V −M)ϕ

−
[

d
dr − l+D

r − B
2 r] ϕ = (E − V +M)χ

. (6)

To get the eigenenergies and eigenfunctions, we decou-
ple the Eq. (6) and derive two second-order differential
equations for the radial functions of upper and lower com-
ponents. The ϕ component satisfies

−
d2

dr2
ϕ−

1

r

d

dr
ϕ+ [−(E − V )2 +M2 + (l + 1 +D)B

+
(l +D)2

r2
+
B2

4
r2]ϕ = 0. (7)

The exact solution of such a differential equation can
be obtained from the series expansions around regu-
lar singular, ordinary, and irregular singular points,
respectively.26

For Eq. (7), the series expansion of the solution in the
regular region (0 ≤ r < R0) is

ϕ = rρl

∞
∑

n=0

anr
n, ρl =

√

(l +D)2. (8)

where the a0 6= 0. The series expansion of the solution in
the irregular region (R∞ < r <∞) is (see the appendix)

ϕ = eQ(r)rm
∞
∑

k=0

ckr
−k (9)

where

Q(r) =

{

− |B|r2
4 for B 6= 0

−
√

M2 − (E − V )2r for B = 0
, (10)

m =

{ [

(E − V )2 −M2 + f(B)
]

/|B| for B 6= 0
−1/2 for B = 0

, (11)
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with f(B) = −|B|−(l+1+D)B. R0 and R∞ are chosen
to ensure the proper behaviors of ϕ in the regular and
irregular regions. In the ordinary point region (R0 ≤ r ≤
R∞), we divide it into k small sections [ri, ri+1], where
i is from 0 to k − 1. The solution in each section is
expanded around the center rci = (ri + ri+1)/2 as

ϕ = Ci

∞
∑

n=0

cn(r − rci )
n +Di

∞
∑

n=0

dn(r − rci )
n, (12)

where c0 = d1 = 1, c1 = d0 = 0. The other values of
an, bn, cn, and dn (n > 0) are determined by recurrence
relations.
Using the normalized condition of ψ+1 and the match-

ing conditions that ϕ and χ are continuous at the in-
terface, we obtain the eigenenergies and corresponding
a0, b0, Ci, and Di, i.e., ϕ. The corresponding χ can be
derived from Eq. (6) as follows

χ = −
1

E − V +M

d

dr
ϕ+

1

E − V +M

(

l +D

r
+
B

2
r

)

ϕ.

(13)
The eigenstates of the K ′ valley can also be obtained in
the same way. For each l, we label the eigenstates of
Eq. (7) as (l, n) where n = 0, 1, 2, ... in the order of the
increasing and decreasing eigenenergies for positive and
negative eigenenergies, respectively.

III. RESULTS AND DISCUSSION

It is known that the electromagnetic fields do not cou-
ple the two valleys K and K ′, provided that the fields
vary smoothly on the scales of the lattice constant.27

Thus, for the magnetic barrier,12 homogeneous magnetic
field, and the slowly varying electric field, we can solve
the Dirac equation in each valley separately in the ab-
sence of the inter-valley scattering. Besides, the single-
valley condition exists in topological insulators28,29 and
the fresh presented graphynes30. Therefore, in the follow-
ing discussion, we consider a valley-polarized situation
(K valley) for brevity.

A. Electronic states modulated by Dirac gap

In this section, we investigate the shape-size effect of
FDGQR without applying the electrostatic and magnetic
fields, i.e., V = 0 and B = 0. For FDGQR modeled by
Eq. (2), Fig. 1(a) shows the Dirac gap M0 dependence
of the energy levels, for RM = 50 nm and WM = 20 nm,
with −3 ≤ l ≤ 3 and 0 ≤ n ≤ 1. Meanwhile, in Tab. I,
we give the energy levels when M0=80, 180 meV and the
symbols of the quantum numbers. It shows that, even
without applying external electric and magnetic fields,
both the electrons and holes can be confined. This can be
clearly shown by solution of the series-expansion method
at the irregular singular point (r → ∞). It is well known
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FIG. 1: (Color online) The energy levels of the FDGQR
modeled by Eq. (2) for the case of V = 0, and B = 0 as
functions of the (a) M0 and (b) RM with −3 ≤ l ≤ 3 and
0 ≤ n ≤ 1. The parameters for the rings are (a) RM = 50 nm,
WM = 20 nm, and (b) M0 = 250 meV, WM = 20 nm. The
symbols a, b, c...representing the quantum numbers (l, n)
shown in Tabs. I and II label the energy ordering at (a)
M = 180 meV and (b) RM = 50 nm.

that, in order to form a confined state, the wavefunction
must tend to be zero when r → ∞, i.e., we should first
ensureM2− (E−V )2 > 0 for B = 0 [See Eq. (9)]. It can
also be found from the Eq. (9) that confined states are
formed and the number is infinite for B 6= 0 as the wave-
function always has a decayed tail when r → ∞. These
conclusions are on the basis of the constant forms of the
E, B, and M . It is worthwhile to emphasize that series-
expansion method can also be applied to other systems
to obtain the criterions for forming confined states by
analyzing the confined-deconfined character of the wave-
function at the irregular singular point (r → ∞).

Fig. 1(a) shows that the confined states gradually
emerge from the top or bottom edges (E = ±M0) of
the FDGQR and the absolute value of the energies in-
creases with the increase of the M0 because the confine-
ment increases. The Dirac fermion with large |l| and n
tries to run away from the center of the FDGQR, and
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TABLE I: Energy levels of FDGQR in Fig. 1(a) at M0 = 80, 180 and 500 meV. For comparison, the energy levels with
infinite-mass boundary are also shown. For convenience, a, b, c, d... are adopted to label the levels. The E+ and E− represent
the positive and negative energy levels, respectively.

E+(E−) (meV)
(l, n) M0 = ∞ M0 = 500 M0 = 180 M0 = 80

a:(0,0) a(b)51.5801 (-51.5801) a(b) 48.3722 (-48.3722) a(b)43.4796 (-43.4796) a(b)35.9634(-35.9634)
b:(-1,0) b(a)52.6720 (-52.6720) b(a) 49.5458 (-49.5458) b(a)44.8294 (-44.8294) b(a)37.8067(-37.8067)
c:(1,0) c(d)53.8088 (-53.8088) c(d) 50.7356 (-50.7356) c(d)46.0676 (-46.0676) c(d)39.0054(-39.0054)
d:(-2,0) d(c)57.0824 (-57.0824) d(c) 54.2535 (-54.2535) d(c)50.1096 (-50.1096) d(c)44.4069(-44.4069)
e:(2,0) e(f)58.8175 (-58.8175) e(f) 55.9953 (-55.9953) e(f)51.7424 (-51.7424) e(f)45.4308(-45.4308)
f :(-3,0) f(e)64.2662 (-64.2662) f(e) 61.8478 (-61.8478) f(e)58.4542 (-58.4542) g(α)53.7533(-53.7533)
g:(3,0) g(α)65.8696 (-65.8696) g(α)63.3132 (-63.3132) g(α)59.4738 (-59.4738) f(e)54.1874(-54.1874)
α:(-4,0) α(g)73.4818 (-73.4818) α(g)71.4835 (-71.4835) α(g)68.8165 (-68.8165) α(g)65.6266(-65.6266)
h:(0,1) h(i)155.1672(-155.1672) h(i) 145.4601(-145.4601) h(i)128.8993(-128.8993)
i:(-1,1) i(h)155.2993(-155.2993) i(h) 145.6095(-145.6095) i(h)129.1342(-129.1342)
j:(1,1) j(k)156.1949(-156.1949) j(k) 146.5554(-146.5554) j(k)130.1086(-130.1086)
k:(-2,1) k(j)156.5929(-156.5929) k(j) 147.0060(-147.0060) k(j)130.8152(-130.8152)
l:(2,1) l(m)158.3567(-158.3567) l(m) 148.8638(-148.8638) l(m)132.7113(-132.7113)
m:(-3,1) m(l)159.0260(-159.0260) m(l) 149.6231(-149.6231) m(l)133.8976(-133.8976)
n:(3,1) n(β)161.6052(-161.6052) n(β) 152.3276(-152.3276) n(β)136.6158(-136.6158)
β:(-4,1) β(n)162.5554(-162.5554) β(n) 153.4095(-153.4095) β(n)138.2990(-138.2990)

TABLE II: Energy levels of FDGQR in Fig. 1(b) at R =
10, 15, 26, and 50 nm. For convenience, a, b, c, d... are
adopted to label the level ordering.

E (meV)
(l, n) R = 50 nm R = 26 nm R = 15 nm R = 10 nm

a:(0,0) a)45.5101 a)45.0906 a)43.4713 a)44.2451
b:(-1,0) b)46.7779 b)50.2535 b)65.4888 c)80.9414
c:(1,0) c)48.0013 c)53.6970 c)66.2423 b)95.9937
d:(-2,0) d)51.8000 d)68.8219 e)94.0114 e)115.7722
e:(2,0) e)53.4982 e)69.0769 d)109.4355 d)137.9047
f :(-3,0) f)59.8129 g)86.8899 g)121.5416 h)143.8978
g:(3,0) g)61.0570 f)93.0540 h)136.2453 g)149.6042
h:(0,1) h)136.2131 h)136.3787 f)143.3162 f)176.8420
i:(-1,1) i)136.3971 i)137.4010 i)146.3397 j)186.3949
j:(1,1) j)137.3721 j)141.1689 j)155.9365 i)191.8919
k:(-2,1) k)137.9274 k)144.4248 k)183.9422 l)225.6712
l:(2,1) l)139.8346 l)150.9758 l)185.0007 k)234.4541
m:(-3,1) m)140.7716 m)157.1322 n)215.5440 o)237.2452
n:(3,1) n)143.5289 n)164.6795 o)223.1834
o:(0,2) o)222.4405 o)222.4925 m)223.2250
p:(-1,2) p)222.5617 p)223.3624 p)231.1708
q:(1,2) q)223.1647 q)225.8110 q)239.2700
r:(-2,2) r)223.5255 r)227.9264
s:(2,2) s)224.7223 s)232.5780
t:(-3,2) t)225.3168 t)235.8401
u:(3,2) u)227.0885 u)242.1725

thus, the corresponding states will first disappear with
the decrease of the M0 [as shown in Fig. 1(a)]. There-
fore, the density of states in a FDGQR can be tuned low
enough by the gap [even only one confined state exist in
the FDGQR].

Interestingly, it seems that the E(l, n) = ±E0 should
be established based on the Eq. (7) when V = 0. How-
ever, it is broken by the inhomogeneous Dirac gap con-
finement because the confined states with ±E0, which

satisfy the Eq. (7) and the second-order differential equa-
tion of the other component χ, cannot satisfy the Eq. (13)
simultaneously. Even in this case, the particle-hole sym-
metry remains as E(l, n) = −E(−l − 1, n) [See Tab. I].
This can be clearly illustrated by the Eq. (6). If we sub-
stitute l → −l − 1, E → −E, and ϕ ↔ χ into Eq. (6),
the Eq. (6) is formally invariant under this transforma-
tion. Besides, the E(j, n) 6= E(−j, n) [see Tab. I], where
j = l + 1/2, since the Dirac gap confinement breaks the
effective time-reversal symmetry in a single valley.7

Then we briefly discuss the relevance and differences
between the FDGQR and QR with infinite-mass bound-
ary. Using the infinite mass boundary condition7 ϕ

χ =

1(−1) at r = RM+WM

2 (r = RM−WM

2 ), we obtain the en-
ergy levels of the QRs with infinite-mass boundary. With
RM = 200 nm and W = 20 nm, we get E ·WM = 1.5706
and 1.5749 for states (0,0) and (1,0), respectively, which
are consist well with the results in Ref. 7. Then, we
calculated the energy levels of QRs with infinite-mass
boundary for RM = 50 nm and W = 20 nm to compare
with the energy levels of FDGQR [See Tab. I]. As shown
by the Tab. I, the number of the energy levels of FDGQR
is finite and the energy levels of FDGQR are lower than
the corresponding energy levels of the QR with infinite-
mass boundaries. In addition, the energy level order of
FDGQR is different from that of the QR with infinite-
mass boundaries when M0 is small. With the increase
of the M0, the energy levels of FDGQR gradually ap-
proach to that of QR with infinite-mass boundaries. Be-
sides, for large M0, the energy level ordering of the low-
lying energy levels become the same as that of the QR
with infinite-mass boundaries. Therefore, the QR with
infinite-mass boundaries is the limitation of the FDGQR
with increasing M0.

Now, we move on to the size effect of the FDGQR. Fig.
1(b) presents the energy levels as a function of the RM ,
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for M0 = 250 meV and WM = 20 nm, with −3 ≤ l ≤ 3
and 0 ≤ n ≤ 2. Meanwhile, in Tab. 2, we give the sym-
bols of the quantum numbers and the energy levels when
RM=10, 15, 26, 50 nm. With RM=10 nm and WM=20
nm, it is in fact that the Dirac gap forms a quantum dot.
With the increase of the RM , the system transforms from
the quantum dot to the quantum ring and the energy lev-
els show the corresponding transitions. For RM → ∞ the
energy levels of FDGQR tend to those of a straight two-
dimensional wire. It can be found from Eq. (7) that the
centrifugal term [(l+D)2/r2] of the effective Hamiltonian
decreases with the increase of the RM , which is a factor
for the decrease of the absolute values of the energy lev-
els with the increase of the RM as shown by the energy
levels with l 6= 0 in Fig. 1(b). Thus, we can decrease the
number of confined states in FDGQR by decreasing the
RM . As shown by Fig. 1(b), the confined states with
large |l| and n gradually disappear at the top edges of
the FDGQR with the decrease of the RM , because the
Dirac fermion with large |l| has large centrifugal force
and tends to run away from the center of the FDGQR.

The confinement induced by the outer Dirac gap de-
creases and the area of region II increases with the in-
crease of the RM . Both of them lead to the decrease of
the absolute values of the energy levels. However, the
absolute values of some energy levels with l = 0 increase
with the increase of the RM in some range [see the Tab. II
and Fig. 1(b)]. This abnormal phenomenon results from
the confinement of the inner Dirac gap confinement that
tends to push the Dirac fermion out of the region I. The
Eq. (8) shows that the upper component of the wave
function with l = 0 is nonzero at r = 0. It feels more
compression from the inner Dirac gap. Thus, the abso-
lute values of some energy levels with l = 0 increase with
the increase of the RM in some range when the inner
Dirac gap confinement dominates the energy levels.

The other effect of the inner confinement of the
FDGQR is the variation of the energy level ordering with
the increase of the RM [see Fig. 1(b) and Tab. II]. For
example, the energy level orders show angular momen-
tum transition [f(−3, 0) ↔ g(3, 0)] and quantum number
n transition [f(−3, 0) ↔ h(0, 1) and m(−3, 1) ↔ o(0, 2)]
at RM = 50 nm ↔ RM = 26 nm and RM = 26 nm ↔
RM = 15 nm, respectively. The change of the energy
level is determined by the inner Dirac gap confinement,
outer Dirac gap confinement, and the distribution of the
state. The combined effect of inner and outer Dirac gap
confinement leads to the change of the energy level or-
dering. It is worthwhile to point out that the anomalous
increase of the absolute values of energy levels mentioned
above and the variation of the energy level ordering with
the increase of the RM are absent in the Dirac gap quan-
tum dot because it only has the outer Dirac gap confine-
ment.

What is discussed above clearly shows that in FDGQR,
both the energy levels and the density of confined states
can be tuned by the depth of Dirac gap and the radius of
the quantum ring. The ordering of the energy levels and
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FIG. 2: (Color online) (a) The magnetic flux Φ dependence
of the energy levels of a FDGQR described by Eq. (2) with
−6 ≤ l ≤ 6 and 0 ≤ n ≤ 2. The parameters are RM =
50 nm, WM = 20 nm, M0 = 250 meV, and V = 0. (b)
The corresponding Φ dependence of the NDSME between the
positive energy levels (l, n) and (l′, n′) in (a).

angular momentum transitions may be changed as well.
These characteristics are helpful in the manipulation of
quantum behaviors in graphene nanorings.

B. Electronic states modulated by magnetic field

In order to investigate the AB effect in FDGQR de-
scribed by Eq. (2), we suppose that the magnetic field
only threads through region I and is zero in regions II and
III, which creates a magnetic flux Φ = π(RM − WM

2 )2B
through region I. Fig. 2(a) shows the magnetic flux
Φ dependence of the energy levels, for RM = 50 nm,
WM = 20 nm, M0 = 250 meV, and V = 0, with
−6 ≤ l ≤ 6 and 0 ≤ n ≤ 2. In order to clearly show the
physical picture, we present the energy levels in a large
variation range of Φ. In fact, we need to focus only on
the range of −6 < Φ

Φ0

< 6 [about −4.94 T < B < 4.94 T]
which can be easily achieved in experiments. As the
Dirac fermion is mostly localized in region II, it hardly
feels the magnetic field except being affected by the mag-
netic vector potential. From Eq. (6), we can find that the
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Dirac fermion localized in region II has an effective or-
bital angular momentum

l∗ = l +
Φ

Φ0
, (14)

where Φ0 = h
e is the quantum of magnetic flux [with a

magnetic flux Φ through region I and B = 0 in region II
and III, D = Φ

Φ0

in regions II and III]. Therefore, the
energy ordering based on the angular momentum can be
changed by changing the effective orbital angular mo-
mentum, which shows the angular momentum oscillates
with the magnetic flux [See Fig. 2(a)]. Every energy
level will show a minimum at a certain Φ. With the in-
crease of the Φ, the minima of the energies for different
l appear in the order of decreasing l. These character-
istics of energy spectrum, i.e. the AB effect, are similar
with those of QR with infinite mass boundary7 and one-
dimensional QR6, which show that the space of Φ for the
nearest-neighbor minima is Φ0 and the minima of the en-
ergy levels of different l are the same. However, the Dirac
fermion in FDGQR is not completely localized in region
II due to the finite Dirac gap. Therefore, the space of Φ
for two neighbor minima of the energy levels of FDGQR
is not exactly Φ0. And the minima of the energy levels of
different l are not the same absolutely, but increase with
the decrease of the l [see the inset of Fig. 2(a)]. Besides,
any confined state exists only in a certain region of Φ
and they become deconfined when the Φ is outside this
region [see Fig. 2(a)].
From above discussions, it can be seen that the main

characteristics of AB oscillation of the energy levels in
FDGQR are similar with one-dimensional QRs where the
radial motion of carriers is frozen out. However, the
finite width and finite height of the ring’s confinement
bring new characteristics to the energy spectrum. The
radial motion and the AB effects may be observed in
optical experiments, so we now turn to discuss the the
modulation of the magnetooptical properties of FDGQR.
In the electric dipole approximation, the optical transi-
tions stimulated by a left (right) circular polarized light
which is perpendicular to the graphene sheet are related
to the squared transition matrix element |〈ψf |re

−iθ |ψi〉|
2.

Under the scales in this paper, the non-dimensionalized
squared matrix element (NDSME) can be calculated
as |2π

∫∞
0 drr2(ϕiϕf + χiχf )δli−lf∓1|

2. Considering the
conservation of angular momentum, the angular momen-
tum provided by the left (right) circular polarized light
demands that the selection rule should satisfy li∓ lf = 1,
where -(+) corresponds to the left (right) circular po-
larized light. Fig. 2(b) shows the Φ dependence of the
NDSME between the positive energy levels of 0 ≤ n ≤ 1
and −2 ≤ l ≤ 2 in Fig. 2(a). The NDSME can be re-
markably tuned by the Φ [see Fig. 2(b)], which reflects
the characteristics of the energy spectrum. At certain Φ,
the NDSMEs show extremums. The minima appear in
the order of decreasing li with the increase of Φ, similar
to the energy spectrum, which is a reflection of AB ef-
fect. Besides, for the parameters used in this paper, the

NDSME of the transition between the confined states
with the same n is approximately two order larger than
that of the transition between the confined states with
different n.
It is worthwhile to point out that we also calculated

the spectrum when the homogeneous magnetic field is
perpendicularly applied in the whole area. In this case
the confined states still exist when |E| > M0 because of
the confinement of the magnetic field. Thus, the num-
ber of confined states is infinite. For the homogeneous
magnetic field, the Dirac fermion can feel the magnetic
field in addition to Φ. However, the AB effect reflected
by the change of the angular momentum is still obvious.
In addition, the AB effect in small-size FDGQR is more
obvious. This is because the spaces among energy levels
are generally large for small-size FDGQR [see Fig. 1(b)]
and then the energy levels change in a large range with
the change of Φ and form a clear AB oscillation.

C. Coupling between EPQR and FDGQR

In this section, we explore a coupled system formed by
EPQR and FDGQR. At first, Both of the two kinds of
QRs are chosen as the discontinuous profiles described
by Eq. (2) and Eq. (4), respectively. With B = 0, we
choose the parameters RM = 25 nm, WM = 10 nm, and
M0 = 250 meV for FDGQR and WV = 10 nm, and
V0 = 250 meV for the EPQR. The energy levels as the
function of RV are presented in Fig. 3(a). It can be seen
from the Eq. (9) that, for B = 0 and V =M , the energy
levels of the confined sates should satisfy 0 < E < V +M ,
as the same as the results shown in Fig. 3(a).
When the |RV − RM | is large, the classically forbid-

den barrier between the EPQR and the FDGQR is large.
Thus, the coupling between EPQR and FDGQR is weak
and the electron is mostly confined in either EPQR or
FDGQR. Here the EPQR and FDGQR refer to the spa-
tial divisions as shown by Fig. 3(b)-Fig. 3(g). In this
case, the energy levels in Fig. 3(a) with n = 2, 4 and
n = 0, 1, 3, 5 are similar with the energy levels of the
single EPQR with M = M0 and the FDGQR, respec-
tively. These can be clearly shown by the distributions
of the wavefunctions. It can be seen that the states (1,3)
[See Fig. 3(b) and Fig. 3(d)] and (1,2) [See Fig. 3(e) and
Fig. 3(g)] mostly localize in the FDGQR and EPQR, re-
spectively. Thus, most of the energy levels with n = 2, 4
monotonously decrease but some energy levels with l = 0
do not monotonously decrease with the increase of the
RV , which is similar to the size effect of the FDGQR
[see the discussion in section A]. In contrast, the energy
levels with n = 0, 1, 3, and 5 are almost independent of
the RV for large |RV − RM |. It should be pointed out
that though the |RV −RM | is large the the state (1,3) has
some probability in EPQR [see Fig. 3(b)], this is because
the energy levels (1,3) and (1,2) are very close at those
parameters.
As the |RV − RM | decreases, the coupling between
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FIG. 3: (Color online) (a) The RV dependence of the energy
levels for coupled FDGQR and EPQR with −2 ≤ l ≤ 2.
The coupled FDGQR and EPQR are modeled by Eq. (2)
and Eq. (4), respectively. The parameters are RM = 25 nm,
WM = 10 nm, M0 = 250 meV, WV = 10 nm, V0 = 250 meV,
and B = 0. (b)-(g) The radial distribution of the states (1,3)
and (1,2) at positions marked by b-g in (a), where the regions
filled with with black slant lines and the red color represent
the regions II of EPQR and FDGQR, respectively. (h) The
probability that the Dirac fermion appears in the regions II
of EPQR [PV (l, n)] and FDGQR [PM (l, n)]. (I) The RV de-
pendence of the NDSME. The insets in (h) are schematic di-
agrams of the systems, where the ring filled with black slant
lines and the red ring represent the EPQR and FDGQR, re-
spectively.
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FIG. 4: (Color online) (a) The RV dependence of the energy
levels for coupled FDGQR and EPQR with −2 ≤ l ≤ 2.
The coupled FDGQR and EPQR are modeled by Eq. (3)
and Eq. (5), respectively. The parameters are RM = 50 nm,
WM = 20 nm, M0 = 250 meV, WV = 20 nm, V0 = 250 meV,
λ0 = 1/ν2

0 , and B = 0. (b) The probability that the Dirac
fermion appears in the regions II of EPQR [PV (l, n)] and
FDGQR [PM (l, n)]. (c) The RV dependence of the NDSME.
The insets in (b) are schematic diagrams of the systems, where
the ring filled with black slanted lines and the red ring repre-
sent the EPQR and FDGQR, respectively.

EPQR and FDGQR becomes strong. As shown by Fig.
3(c) and Fig. 3(f), the wavefunctions become extension
within the FDGQR and EPQR and the energy levels be-
gan to deviate from the spectrums of the single FDGQR
or EPQR with M =M0. When the |RV −RM | is smaller
than 10 nm, the FDGQR overlaps with the EPQR. In
this case, the energy levels can be strongly tuned by the
RV and show minima or maxima. In addition, the states
with n = 0, 1, 5 in Fig. 3(a) become deconfined at some
critical points of |RV −RM |.

In order to clearly show the coupling effect and the
modulation of the spatial distribution of the hybridized-
state, we plot the probabilities that the Dirac fermion
appears in either EPQR or FDGQR (in regions II of
either EPQR or FDGQR) as a function of RV , where
PV (l, n) and PM (l, n) represent the probability that the
Dirac fermion appears in EPQR and FDGQR, respec-
tively [see Fig. 3(h)]. When the |RV − RM | is large,
the Dirac fermion of state (1,2) [(1,3)] is localized in
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the EPQR [FDGQR] and the probability that the Dirac
fermion appears in the FDGQR [EPQR] is almost zero
[see Fig. 3(h)]. With the decrease of the |RV − RM |,
the probability that the Dirac fermion appears in EPQR
[FDGQR] begins to decrease [see Fig. 3(h)] because the
coupling becomes strong and the Dirac fermion gradu-
ally transfers from the EPQR [FDGQR] to the FDGQR
[EPQR]. Besides, the Dirac fermion begins to transfer
from the EPQR [FDGQR] to the FDGQR [EPQR] when
RV ∼ 6 nm, which illustrated that the coupling becomes
strong when the energy levels of states (1,2) and (1,3) are
very close.

In Fig. 3(I), we shows the RV dependence of the
NDSME. In this paragraph, we discuss the case of
RV − RM > 10 nm to illustrate that the NDSME de-
pends on the spatial distribution of the wavefunctions
and to show the modulation of NDSME by tuning the
spatial distribution of the wavefunctions. In this case,
the electronic states of n = 3 are localized almost in the
FDGQR, which tend to be unchanged with the increase
of RV − RM . Thus, the NDSME between the electronic
states with n = 3 is almost constant, weakly affected by
RV . In contrast, the electronic states of n = 2 are local-
ized almost in the EPQR for RV −RM > 10 nm, There-
fore, the NDSME between the electronic states with
n = 2 is strongly tuned by the RV and monotonously in-
creases with the increase of the RV because the NDSME
|2π
∫∞
0 drr2(ϕiϕf + χiχf )δli−lf−1|

2 is related to r.

To step further, we illustrate that the NDSME is re-
lated to the overlap between the wavefunctions of the
final and initial states and show the modulation of the
NDSME by tuning the overlap of the wavefunctions. As
shown by Fig. 3(I), the magnitude of the NDSME be-
tween the electronic states with the same n is approxi-
mately two order larger than that between the electronic
states with different n for the parameters in this paper
because the overlap of the wavefunctions with the same
n is larger than that with different n. It is well known
that the small energy space is advantageous for the stim-
ulated transition. However, though the energy space be-
tween the energy levels with n = 2 and n = 3 in Fig. 3(I)
is small for RV − RM > 10 nm, the NDSME is almost
zero and the stimulated transition is forbidden. This is
because the electronic states of n = 2 and n = 3 are local-
ized in EPQR and FDGQR, respectively, and their wave-
functions have little overlap. For |RV −RM | < 10 nm, the
energy space between energy levels of n = 2 and n = 3 is
larger than that of RV −RM > 10 nm, but the NDSME
is larger than that of RV −RM > 10 nm because of the
increasing overlap of the wavefunctions.

One might wonder how the results will change if we
have smooth interfaces instead of the step potential. Here
we consider a smooth interface of the Gaussian profile as
described by Eq. (3) and Eq. (5), respectively. With
B = 0, we choose the parameters RM = 50 nm, WM =
20 nm, M0 = 250 meV, and λ0 = 1/ν20 for FDGQR and
WV = 20 nm, V0 = 250 meV, and λ0 = 1/ν20 for the
EPQR. It can be seen in Fig. 4 that the results are qual-

itatively similar with the results of step potential. On
the other hand, When the |RV −RM | is large, the proba-
bility that the Dirac fermion state (1,2) [(1,3)] appears in
the FDGQR [EPQR] is almost 1 [see Fig. 4(b)], which is
larger than that in Fig. 3(h). This means that the cou-
pling effect of the QRs with large width is more weaker
than that of the QRs with small width.

Therefore, the coupling of the EPQR and FDGQR is
useful for modulating the quantum states and the optical
property in graphene nanorings.

IV. CONCLUSION

In summary, we have explored quantum rings formed
by spatially modulated finite Dirac gap (FDGQR) by ex-
actly expanding the wavefunctions around regular, ir-
regular and ordinary points, respectively in the form
of series. The criterion of the existence of confined
states is given by analyzing the asymptotic behaviors
of the series-expansion wavefunctions around the irreg-
ular point (r → ∞). A finite number of confined states
can exist in the FDGQR without the application of ex-
ternal fields. The change of the energy level ordering
and unusual increase of the absolute values of some low-
lying energy levels with the increase of the radius of the
FDGQR are illustrated, which are absent in the graphene
quantum dots. The energy spectrum and the optical-
transition probabilities clearly show the AB effect of the
incompletely localized Dirac fermion. The Dirac fermion
in the coupled FDGQR and EPQR can be localized al-
most in the FDGQR or EPQR and the optical-transition
probabilities can be tuned. These results may be useful
for understanding and controlling the quantum behaviors
of confined electronic states in graphene. Besides, the ex-
act series-expansion method provides a way to obtain the
state-confinement criterion.
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Appendix:The derivation of the asymptotic solution

for r → ∞

The Eq. (6) can be rewritten in the general form

{

d2

dr2
+

1

r

d

d
−

K
∑

i=−2

wir
i

}

ϕ(r) = 0. (A.1)



9

For r > R∞, the irregular solution can be written in the
form

ϕ(r) = eQ(r)rm
N
∑

k=0

ckr
−k, (A.2)

with

Q(r) =

Nc
∑

i=0

qir
i, (A.3)

where c0 6= 0. Substituting the Eq. (A.2) into the
Eq. (A.1), we can obtain the following form

[

d2

dr2
+ p(r)

d

dr
+ q(r)

]

rm
N
∑

k=0

ckr
−k = 0, (A.4)

where

p(r) = 2

Nc
∑

i=1

iqir
i−1 +

1

r
, (A.5)

q(r) =

Nc
∑

i=2

i(i− 1)qir
i−2 +

Nc
∑

i=1

iqir
i−2

+

(

Nc
∑

i=1

iqir
i−1

)2

−

K
∑

i=−2

wir
i. (A.6)

The order of the series p(r) must be larger than the order
of the series q(r) in order to ensure that the equation has
solutions. The coefficients of the terms of q(r), whose
powers are larger than Nc − 2 must be zero. Therefore,
we get the relations

{

Nc = K/2 + 1
∑Nc

i=j−Nc+2 i(j + 2− i)qiqj+2−i = wj ,
, (A.7)

where j = Nc − 1, Nc, ...2(Nc − 1). Based on Eq. (A.7),
we can obtain











qNc=−√
w

K
/Nc

qi =
1

2iNcqNc
[

wi+Nc−2 −
∑Nc−1

m=i+1m(i−m+Nc)qi−m+Nc
qm

]

.

(A.8)
Then, the Eq. (A.3) is available:

Q(r) =

{

− |B|r2
4 (B 6= 0)

−
√

−(E − V )2 +M2r (B = 0)
. (A.9)

Substituting the obtained Eq. (A.9) into Eq. (A.4), we
can get the m of the Eq. (A.2) as follows

m =

{ [

(E − V )2 −M2 + f(B)
]

/|B| for B 6= 0
−1/2 for B = 0

,

(A.10)
with f(B) = −|B| − (l + 1 +D)B. Then, we can obtain
the recurrence relations for ck of the Eq. (A.2)

ck =
1

a0k
{

min(k,n1+1)
∑

i=1

[ai(m− k + i) + bi]ck−i

+ck−n1−1(m− k + n1 + 1)(m− k + n1)}, (A.11)

where the parameters are n1 = 1, a0 = −|B|, a1 = 0,
a2 = 1, b1 = 0, and b2 = −(l2 + 2lD + D2) for B 6= 0,

and n1 = 0, a0 = −2
√

−(E − V )2 +M2, a1 = 1, and
b1 = −l2 for B = 0.
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