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A simple model is developed for studying the interaction of bright excitons in semiconducting
single-wall nanotubes with charged impurities. The model reveals red shift in the energy of excitonic
states in the presence of impurity, thus indicating binding of free excitons in the impurity potential
well. Several bound states were found in absorption spectrum below the onset of excitonic optical
transitions in the bare nanotube. Dependence of the binding energy on the model parameters, such
as impurity charge and position, was determined and analytical fits were derived for a number of
tubes of different diameter. The nanotube family splitting is seen in the diameter dependence,
gradually decreasing with the diameter. By calculating the partial absorption coefficient for a small
segment of nanotube, the local nature of the wave function of the bound states was derived.

I. INTRODUCTION

Single-wall nanotubes (SWNTs), tiny hollow cylinders
of rolled up graphene sheets, are quasi-one-dimensional
(quasi-1D) structures, since their diameter, in the range
of one nanometer, is much smaller than the length, up to
several hundred micrometers.1–3 Thus Coulomb interac-
tion, enhanced in 1D, determines their electronic and op-
tical properties. The Coulomb interactions (many-body
effects) in SWNTs lead to band gap renormalization4 and
formation of strongly correlated electron-hole pairs, i.e.,
excitons,5–7 with binding energies of the order of sev-
eral hundred meV, much greater than in typical bulk
(3D) semiconductors. Solid understanding of the opti-
cal properties of SWNTs may allow multiple applica-
tions in nanoscale electronics and nanophotonics, mak-
ing them viable candidates for next-generation nanoscale
optoelectronics.8–13

Both theoretical calculations and experimental mea-
surements confirm that the optical properties of SWNTs
are dominated by excitonic effects. Different theoreti-
cal approaches have been used to investigate excitons in
SWNTs, including the variational solution14, or Bloch
equation method combined with the tight-binding ap-
proximation (TBA) for nanotube single-electron band
structure.6 The most precision was achieved within ab

initio approach combining the solution of the Bethe-
Salpeter (BS) equation with DFT GW -correlated quasi-
particle energies.15,16 The crucial role of excitons for
SWNT absorption was confirmed in two-photon exper-
iments in 2005.17,18 Since then the experimental studies
on excitons were extensive.19–23 Various excitonic inter-
actions, such as exciton-phonon coupling,24,25 exciton-
plasmon coupling,26 interaction with external electric
and magnetic fields27,28 have been investigated. Most
recently the focus of research was on the interactions of
excitons with a single charge of mobile (or localized) elec-
tron/hole (thus forming a mobile or localized three-body
trion) and exciton interactions with a point charge impu-
rity ions.29–32 The latter is also subject of our work. A
fundamental theory of the electronic and optical prop-
erties of semiconductors shows importance of impuri-

ties, which are often unavoidable and can alter intrinsic
properties of semiconductor materials substantially. The
single-layer structure of SWNTs makes them extremely
sensitive to the surrounding conditions and provides a
route for electronic doping via adsorption of molecules
with higher (or lower) electron affinity. This can produce
drastic changes in their optical properties.33–36 While the
subject of impurity doping is well understood in bulk
semiconductors, the role and impact of doping in low di-
mensional materials like carbon nanotubes is still under
investigation, and nature of electronic impurity levels in
single-walled carbon nanotubes associated with adatoms
is not fully understood yet.

In this paper, we present a model for interaction of ex-
citons with an immobile charge impurity adsorbed on a
semiconducting SWNT. We demonstrate that this inter-
action can induce exciton localization. We show that for
a given SWNT, the degree of localization, as indicated
by the red shift of the excitonic energy level in a local
vicinity of the impurity, depends on the effective charge
(effective valency) of the impurity ion, Z|e|, and the dis-
tance between the ion and SWNT, d. Corresponding
scaling laws with Z and d will be derived.

The model can be applied to several cases,
for example, to describe SWNT interacting with
charged molecules/atoms adsorbed on its surface37,38 or
nanotube-lanthanide ion complexes in solutions.39 It is
known that the ssDNA-wrapped tubes carry a signifi-
cant surface charge40–42 due to ionization of the DNA
backbone. Thus the model can be relevant for interpre-
tation of the optical shift of the excitonic frequency for
the SWNTs coated with DNA43 (or other ionic polymer44

or surfactant45), the effect formerly attributed to unspec-
ified solvatochromism.46–49 We speculate that the model
can be also applicable to SWNTs placed on a silica sub-
strate, as in the vast majority of optoelectronic devices,
because of significant density of the surface states of silica
which are readily ionized under ambient conditions. The
model should also apply to certain cases of SWNT chem-
ical functionalization. For example, divalent covalent
bonding was shown to preserve original pi-band struc-
ture of the SWNT while adding charge groups placed
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FIG. 1. Schematic representation of the system of a SWNT
interacting with a charged impurity. For a given tube with
the length, L, and diameter, dt, the model parameters include
the effective charge of the impurity ion, Z, and the position
of the ion, rp.

very close to its surface50.
This paper is organized as follows: In Sec. II, we de-

velop the theory of impurity scattering of excitons in
single-wall carbon nanotubes. In Sec. III, we provide
the solution for exciton scattering equation and discuss
numerical results. In Sec. IV, we study the optical ab-
sorption spectrum of carbon nanotubes in the presence
of charged impurities. A short summary concludes the
paper.

II. GENERAL FORMALISM

We consider a SWNT of finite length, L, and diam-
eter, dt, whose excitations are dominated by correlated
electron-hole pairs (excitons), interacting with an impu-
rity ion with the effective charge Z|e| (Z being the effec-
tive valency of the ion) placed at a distance d above the
surface of the SWNT, as shown in Fig. 1. In our model,
we treat the potential of an impurity ion as a point charge
perturbation to the excitons in the pristine SWNT. That
is, we assume that the polarization of the single-particle
electron and hole states of the pristine SWNT due to
impurity ion is negligible so one can use the same single-
particle wave functions even in the presence of the impu-
rity. Explicit form of the single-particle wave functions is
given in the Appendix in Eq. (A2). The total two-body
Hamiltonian of the system, including perturbation, may
be expressed as51

H = HBS +Hint (1)

where HBS = D + 2Kx − Kd is the bare Hamiltonian,
which has translational symmetry of the SWNT lattice.
The diagonal term D = Ec−Ev, is the sum of the quasi-
particle energies for the uncorrelated electron-hole pair,
while Kx and Kd are the exchange and direct Coulomb
interaction matrices52–54.

The operator of interaction is:

Hint(re, rh) =
Ze2

|rh − rp|
− Ze2

|re − rp|
(2)

here re and rh refer to the position vector of the electron
and hole, respectively; while rp refers to the position of
the impurity ion. Since the interaction potential includes
both electron and hole symmetrically and we also assume
electron-hole symmetry in single-particle band structure,
the model gives the same magnitude of perturbation for
both positively and negatively charged impurity. Fur-
thermore, in the second order of perturbation theory im-
plemented below, the exciton binding energy is the same
for either sign of the ion charge.55

It is more convenient to solve Eq. (1) in momentum
space. Then the BS equation can be written as53

HBSA
(n)
α,Q(k) = Ω(n)

α (Q)A
(n)
α,Q(k) (3)

here Ω
(n)
α (Q) is the energy of the nth excitation, α is

the quantum number distinguishing bright (B) and dark
(D) excitons, Q is the center of mass momentum, and

A
(n)
α,Q(k) is the excitonic wave function in the momen-

tum representation. We consider only excitons with zero
total angular momentum which form the lowest energy
manyfold56,57. More rigorous analysis of spin-singlet ex-
citons includes also a doublet state of an exciton with
non-zero total angular momentum (E-symmetry) in addi-
tion to A1 and A2 states, the dark (valley-antisymmetric)
and bright (valley-symmetric) states. In the coordinate
space the exciton wave function, as a solution of the bare
BS equation, can be expressed as a linear combination
of the products of the single-particle electron-hole wave
functions:

Φ
(n)
α,Q(re, rh) =

∑

k

A
(n)
α,Q(k)

[

ψcµk+Q(re)ψ
∗

vµk(rh) +

+(−1)αψcµ̄k+Q(re)ψ
∗

vµ̄k(rh)

]

(4)

here α = 0/1 corresponds to the bright/dark state and
the functions ψcµk(r) are single-particle wave functions,
given in Appendix.
In the presence of the impurity, one has to solve the

scattering problem. The scattered state can be expressed
as

Ψ(i)(re, rh) =
∑

nαQ

C(i)
αnQΦ

(n)
α,Q(re, rh) (5)

where the wave function amplitudes C(i)
αnQ must satisfy

Eq. (1). In the momentum space it reads as:

[

Ω
(n′)
α′ (Q′)δnn′δαα′δQQ′ + Snn′

α,α′(Q,Q′)

]

C(i)
α′n′Q′

= E(i)C(i)
αnQ (6)
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FIG. 2. Convergence of the exciton binding energy, IE , as
a function of the number of included exciton bands, n, for
different lengths of (11,0) SWNT computed for d = 2 Å and
Z = 3, with the impurity position (rp) at the center of the
hexagon: (red) L = 71T , (green) L = 81T , (blue) L = 91T ,
(orange) L = 101T , where T = 0.43 nm is the unit cell length.
Inset panel presents the convergence of the exciton binding
energy with respect to SWNT length, L, for n = 25.

with the matrix elements Snn′

α,α′(Q,Q′) given by

Snn′

α,α′(Q,Q′) = 〈Φ(n)
α,Q|Hint|Φ(n′)

α′,Q′〉 (7)

=

∫

dredrhΦ
(n)∗
α,Q (re, rh)Hint(re, rh)Φ

(n′)
α′,Q′(re, rh)

In principle, the eigenstates, labeled with the new quan-
tum number i, represent scattered states of perturbed
continuum as well as bound states, localized near the
impurity as we will show below.
The impurity binding energy for the ith scattered

state, I
(i)
E , is defined as the difference with the energy

level of the lowest state of unperturbed bright exciton
(n = 1):

I
(i)
E = E(i) − Ω

(1)
B (0) (8)

In what follows, we focus on the binding energy of the
lowest scattered state (i = 1) and for shortcut notations

we use below: IE ≡ I
(1)
E .

III. NUMERICAL SOLUTION OF THE

IMPURITY EQUATION AND DISCUSSION OF

THE RESULTS

The task of solving Eq. (6) can be very formidable.
However, a few approximations can help to reduce the
computational burden. For spin-singlet excitons with
zero total angular momentum, the Hilbert space of so-
lutions of the BS equation consist of the bright (valley-
symmetric) and dark (valley-antisymmetric) subspaces.
The interaction Hamiltonian does not couple bright and
dark exciton manifolds (as derived in Appendix). Thus
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FIG. 3. Exciton energy for an (11,0) SWNT plotted as a
function of the dimensionless momentum QT . The horizontal
bars represent localized states with binding energies Eb = 81
meV and Eb = 46 meV calculated for d = 2 Å and Z = 3.

one can solve Eq. (6) separately for the bright and dark

manifolds and Snn′

α,α′(Q,Q′) is diagonal in α, α′ indexes.
Still, even in the subspace of bright states, the matrix
Snn′

BB (Q,Q′) can be very large since it includes a num-
ber of excitonic states with different Q and n quantum
numbers.
In order to calculate the energy of the lowest state

and IE in the most efficient way we have to reduce the
size of Snn′

matrix. We compute IE(n) as a function
of the n−cut off, and increase n until we reach conver-
gence, as illustrated in Fig. 2 for a (11,0) SWNT. Same
convergence was obtained for Q−cut off. Since we per-
formed our calculations for a finite length nanotube, we
ensure the stability of numerical results with changing
the length of the system. For this particular example
of (11,0) SWNT a cut off length of L = 101T (where
T = 0.43 nm is the unit cell length) and a cut off number
of bands of n = 25 allowed us to achieve convergence for
the exciton binding energy.
Fig. 3 shows the exciton dispersion for pristine (11,0)

SWNT together with the impurity induced bound states
with binding energies Eb = 81 meV and Eb = 46 meV
calculated for d = 2 Å and Z = 3.
We found pronounced dependence of IE on the tube

diameter, dt. In Fig. 4, IE is shown as a function of dt.
All data points branch into two curves for two different
families r = Mod(2n + m, 3) of zigzag tubes. The fam-
ily splitting decreases with increasing dt, as well as the
overall magnitude of IE . This can be due to decreasing
SWNT curvature or due to the total dipole matrix ele-
ment (with respect to the ion position above the SWNT
surface) which decreases with increasing nanotube size.
In order to further investigate this we performed detailed
analysis of the behavior of IE with varying position of the
impurity (and also its charge) for the fixed value of dt.
For a given SWNT, the interaction Hamiltonian Hint

given by Eq. (2) depends parametrically on Z and rp =
x̂(R + d) cos θ + ŷ(R + d) sin θ + ẑz. Dependence of IE
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FIG. 4. Exciton binding energy, IE, as a function of tube
diameter, dt, for the same SWNT-impurity system as shown
in Fig. 2. Series of red and green data points correspond to
zigzag SWNTs of different families, Mod(2n + m, 3).

FIG. 5. Exciton binding energy map plotted vs. surface co-
ordinates of the impurity ion for the same SWNT-impurity
system as shown in Fig. 2.

on the latter parameter is expected to be commensurate
with the symmetry of the SWNT lattice.
2D map in Fig. 5 presents the variation of the exciton

binding energy profile: IE(x, z), where x = (R + d)θ
is the (curvilinear) surface coordinate of the impurity in
the circumferential direction, and z in the axial direction.
The IE(x, z) profile, shown for (11,0) SWNT (within one
unwrapped unit cell) for fixed d = 2 Å and Z = 3, has the
maximum when the impurity is right above the center of
the carbon bond, and the minimum above the center of
the hexagon (as show in the inset of Fig. 2), though the
energy difference is negligible, about 1 meV.
Now, we consider the dependence of IE on d for fixed

x, z. Fig. 6 shows the variation of IE with d for (11,0)
SWNT with the ion position shown in the inset of Fig. 2
and Z = 3. For small separation from the nanotube wall
one can fit the dependence with the exponential function:

IE(d) = I0 exp(−d/d0) (9)

where the amplitude, I0, and the characteristic distance,
d0, vary with the tube diameter, and the effective valency
Z. Table I presents the fitting parameters for 6 zigzag
SWNTs of different diameters.
This exponential fit of the binding energy works well

for the distances 2 Å ≤ d ≤ 20 Å. Since the perturba-

TABLE I. Fitting parameters I0, d0, A α, B and β for several
(n,0) tubes. I0 and d0 are fitted in the range 2 Å ≤ d ≤ 20 Å
for Z = 3; A and α are computed using d = 3 Å; while B and
β are computed for Z = 3 and fitted for d ≥ 22 Å.

tube dt(nm) I0 (eV) d0 (Å) A (meV) α B (meV) β

(8,0) 0.63 0.29 1.71 1.82 3.00 3.78 3.56
(10,0) 0.79 0.25 2.33 3.42 2.71 8.11 3.60
(11,0) 0.87 0.22 2.33 2.94 2.74 4.00 3.58
(13,0) 1.03 0.20 2.89 4.04 2.60 6.98 3.57
(14,0) 1.11 0.19 2.80 3.63 2.63 4.22 3.61
(16,0) 1.27 0.18 3.31 4.07 2.56 5.80 3.48

FIG. 6. Exciton binding energy, IE (log-scale), vs. distance
to impurity, d, for few (n, 0) SWNTs and Z = 3. Dashed lines
show fits in the short- and long-distance limits, Eq. (9,11).

tion due to a single charged impurity is weak, this is the
region of interest to be compared with the experiments.
We remark however that for large distances the dipole
approximation for the field of the exciton becomes valid.
In this approximation, the perturbation due to impurity
may be expressed as

Hint =
−er · eZ(Rcm − rp)

|Rcm − rp|3
(10)

where r = re−rh is the relative coordinate of the exciton,
and Rcm = (re + rh)/2 is the center of mass coordinate.
Therefore, for large distances the binding energy scales
as

IE = B

(

dt
d

)β

(11)

The fitting parameters B and β were computed for sev-
eral SWNTs and the results are summarized in Table I.
We can carry out a similar scaling analysis for the de-
pendence of IE on Z, effective valency of the impurity
ion at the fixed ion position. We found the power law
dependence

IE(Z) = AZα (12)
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FIG. 7. (Left) ρ(ω), density of states (offset for clarity) of (11,0) SWNT computed for the same SWNT-impurity system as
shown in Fig. 2, plotted for different values of the spectral broadening Γ, shown in the legend (note that the curves are offset
for clarity). (Right) Partial absorption coefficient, α(ω, z), computed with 10 meV broadening: (thick blue) far away from the

charged impurity it coincides with the absorption coefficient for the bare SWNT, α(0)(ω); curves from (black) to (red) show
evolution of α(ω, z) in the local vicinity of the impurity.

The fitting constants A and α are summarized in Table
I for zigzag SWNTs for d = 3 Å.

IV. OPTICAL SPECTRUM IN THE PRESENCE

OF IMPURITY

In order to facilitate comparison of our theoretical pre-
dictions with the experiments, we calculate the absorp-
tion coefficient of the system, α(ω).
Within our model we need to include only the states

originated from the bright exciton manifold with the
wave function of ith eigenstate, given by:

Ψ(i)(re, rh) =
∑

nQ

C(i)
BnQΦ

(n)
B,Q(re, rh) (13)

Interaction of the excitons with the light of polarization
~η, is given by the absorption coefficient:58,59

α(ω) =
4π2ω

~nbc

∑

i

|M (i)|2δ(ω − E(i)) (14)

where ω is the photon energy of an incident light, c is
the speed of light, nb is the background refractive index
(nb = 1 for air-suspended tubes), ~ is the reduced Planck
constant, and the matrix element is as follows:

M (i) = 〈GS|~p · ~η|Ψ(i)〉
=

∑

nQ

C(i)
BnQMnQ (15)

here |GS〉 is the ground state of the SWNT and ~p is
the dipole operator. The matrix elements MnQ can be
expressed via the dipole matrix elements of the single-
particle wave functions:

MnQ =
∑

k

A
(n)
B,Q(k)〈ψcµk+Q|~p · ~η|ψvµk〉 (16)

In the absence of the impurity, the excitations of the
system are solutions of the bare BS equation and Eq.
(14) reduces to:54

α(0)(ω) =
4π2ω

~nbc

∑

nQ

|MnQ|2δ
(

ω − Ω
(n)
B (Q)

)

(17)

It is very instructive to visualize all scattered excitonic
states by plotting the density of states (DOS) because
some of those energy levels may have negligible dipole
matrix elements. The finite temperature DOS is given
by:

ρ(ω) =
∑

i

Γ

(ω − E(i))2 + Γ2
(18)

where we replace the Dirac delta function with a
Lorentzian with the line width Γ. The DOS for the (11,0)
SWNT is shown in Fig. 7 (left) for different line width
values of 5 meV ≤ Γ ≤ 28 meV. All curves are off-
set for clarity. We emphasize that appearing shift of the
peak position is solely due to broadening of several neigh-
bor energy states. Two bound levels are clearly seen at
E(1) = 1.054 eV and E(2) = 1.089 eV, both correspond-
ing to the impurity induced localized states, as we prove
next.

The absorption of light with ~ηz (axial) polarization for
the (11,0) SWNT is shown in Fig. 7 (right). Since the
total oscillator strength of non-localized excitonic states,
integrated along the SWNT length, is larger than the one
of the bound state from a single impurity, direct compari-
son of the total absorption is difficult. Thus we introduce
the partial absorption coefficient α(z, ω). In calculating
α(z, ω) we use the dipole matrix element, integrated out
only within a narrow belt with the width T/4, containing
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one ring of carbon atoms:

α(j, ω) =
4π2ω

~nbc

∑

i

|M (i)(j)|2δ(ω − E(i)) (19)

here j labels the ring position within the finite size
SWNT, −L/2T ≤ j ≤ L/2T . Corresponding matrix
element is given by:

M (i)(j) = −e
∑

nQ

∑

sk

C(i)
BnQe

iQ(zs+jT )A
(n)
B,Q(k)×

×Cc
µk+Q(s)(zs + jT )Cv∗

µk(s) (20)

In the absence of impurity one has to replace E(i) in Eq.

(19) with the bare exciton energy Ω
(n)
B (Q), the index of

summation i→ n,Q and use bare dipole matrix element
given by:

MnQ(j) = −e
∑

sk

eiQ(zs+jT )A
(n)
B,Q(k)×

×Cc
µk+Q(s)(zs + jT )Cv∗

µk(s) (21)

Using the line broadening of 10 meV we plot in Fig.
7, right, the spectrum of the partial absorption along the
SWNT axis. The lineshape at large distance from the im-
purity coincides with the bare absorption spectrum (thick
line). At the small distances the same two peaks as in
DOS, red shifted from the bare lowest bright exciton po-

sition Ω
(1)
B (0) = 1.135 eV, show up in the partial absorp-

tion. Since these two peaks are below the onset of the
bare bright exciton continuum they can be attributed to
impurity induced localized states with the binding ener-
gies Eb = 81 meV and 46 meV respectively. Additional
proof of their localization can be presented by visualizing
the wave function, or the local optical DOS.
The partial absorption coefficient map or the local op-

tical DOS, shown in Fig. 8 as a function of the pho-
ton energy and axial position along the SWNT, has the
same low energy spectral features, as seen in Fig. 7. The
bound states have very low optical density far away from
the impurity position at z = 0, with the characteristic
localization length of several nm. This is why the par-
tial absorption is almost the same as in the bare SWNT
outside the central region.

V. CONCLUSION

In summary, we have shown that a single charged im-
purity can induce exciton localization in SWNT. The
states localized by the impurity can have binding ener-
gies ranging from few meV to hundreds of meV depend-
ing on the geometry of the actual SWNT-ion complex.
We calculated this dependence and parameterized it for
three main parameters of the model: the SWNT diam-
eter, dt, the effective charge of the impurity ion, Z, and
the distance of the ion from the surface of the SWNT, d.
The binding energy has a weak dependence on the posi-
tion of the ion on the SWNT surface for the fixed main

FIG. 8. Map of the partial absorption coefficient (per atom)
vs. photon energy, ω, and axial position, z, along the SWNT
for the ~ηz polarization of light for (11,0) nanotube, d = 2 Å
and Z = 3. (top) for bare SWNT; (bottom) in the presence
of impurity at z = 0.

parameters. Thus one may expect that in certain cases
the impurity could be mobile on the tube surface. By
calculating the partial absorption coefficient for a small
circular segment of nanotube as a function of the axial
coordinate, the local nature of the wave function of the
bound states in the vicinity of the impurity was derived.
Localization length of the impurity bound exciton can be
as small as several nanometers for Z = 3, tri-valent ion
at the distance d = 2 Å from the SWNT surface.
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Appendix A: Bare exciton wave functions

The excitonic states of non-perturbed Hamiltonian can
be written as

Φ
(n)
α,Q(re, rh) =

∑

k

A
(n)
α,Q(k)

[

ψcµk+Q(re)ψ
∗

vµk(rh) +

+(−1)αψcµ̄k+Q(re)ψ
∗

vµ̄k(rh)

]

(A1)

here α = 0/1 corresponds to the bright/dark state and
the functions ψcµk(r) are the single-particle wave func-
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tions. The latter can be written in tight-binding approx-
imation (TBA) in the form2

ψλµk(r) =
4

∑

s=1

Cλ
µk(s)ψsµk(r), λ = c, v (A2)

as the linear combinations of the Bloch functions ψsµk(r).
Using four atoms per unit cell in the SWNT one derives:

ψsµk(r) =
1√
4n

1√
Nc

Nc/2
∑

j=−Nc/2

n/2
∑

i′=−n/2

eik(zs+Tj) ×

×eiµ(θs+2πi′/n)U(r−Rsi′j) (A3)

Nc is the number of unit cells in (n, 0) zigzag SWNT of
the finite length, L = NcT , here T is the unit cell length.
The coefficients Cλ

µk(s) are TBA wave function ampli-

tudes, the function U(r − Rsi′j) represents the atomic
orbital localized on site si′j; k is the axial momentum,
defined within the first Brillouin zone:

− π

T
≤ k <

π

T
(A4)

and µ the azimuthal quantum number, while µ̄ stands
for −µ.

Appendix B: Evaluation of matrix elements and

detailed derivation of the coupling between bright

and dark excitons

For excitons with zero total angular momentum, the
Hilbert space of solutions of the BS equation consist of
the bright and dark subspaces: |B〉 and |D〉. We do not
consider E-excitons here because of their non-zero angu-
lar momentum quantum number. Then the Hamiltonian,
Eq.(1), has the form

H =

(

ΩB + SBB SBD

SDB ΩD + SDD

)

(B1)

Coupling between bright and dark excitons is described
by the matrix element Snn′

B,D(Q,Q
′) which may be ex-

pressed as

S
(nn′)
B,D (Q,Q′) =

∑

k,k′

A
∗(n)
B,Q(k)A

(n′)
D,Q′(k

′)

[

GKK −GKK′ +

+GK′K −GK′K′

]

(B2)

where

GKK =

∫

dredrhψ
∗

cµk+Q(re)ψvµk(rh)Hint(re, rh)×

×ψcµk′+Q′(re)ψ
∗

vµk′ (rh)

GK′K′ =

∫

dredrhψ
∗

cµ̄k+Q(re)ψvµ̄k(rh)Hint(re, rh)×

×ψcµ̄k′+Q′(re)ψ
∗

vµ̄k′(rh)

GKK′ =

∫

dredrhψ
∗

cµk+Q(re)ψvµk(rh)Hint(re, rh)×

×ψcµ̄k′+Q′(re)ψ
∗

vµ̄k′(rh)

GK′K =

∫

dredrhψ
∗

cµ̄k+Q(re)ψvµ̄k(rh)Hint(re, rh)×

×ψcµk′+Q′(re)ψ
∗

vµk′ (rh)

(B3)

In semiconducting SWNTs, there are two degenerate val-
leys associated with the K and K ′ points at the corners
of the first Brillouin zone, therefore all exciton-impurity
scattering states can be expressed in terms of the four
G matrix elements. Computation of the matrix elements
GKK is greatly simplified if one takes into account the
electron-hole symmetry of the interaction Hamiltonian:

Hint(re, rh) = Hh(rh) +He(re) (B4)

where

Hh(rh) =
Ze2

|rh − rp|
, He(re) = − Ze2

|re − rp|
(B5)

Each term in Eq. (B3) is the sum of two one-body inte-
grals for an electron and for a hole.
Let us compute GKK exactly. We have

GKK =

∫

dredrhψ
∗

cµk+Q(re)ψvµk(rh)Hint(re, rh)×

×ψcµk′+Q′(re)ψ
∗

vµk′ (rh)

=

∫

drhψvµk(rh)Hh(rh)ψ
∗

vµk′ (rh)×

×
∫

dreψ
∗

cµk+Q(re)ψcµk′+Q′(re) +

−
∫

drhψvµk(rh)ψ
∗

vµk′ (rh)×

×
∫

dreψ
∗

cµk+Q(re)He(re)ψcµk′+Q′(re) (B6)

If we neglect the polarization of the one-electron wave
functions in the presence of the impurity, then one can
use the orthonormality condition of the Bloch functions

∫

dr ψvµk(r)ψ
∗

vµ′k′(r) = δµ,µ′δk,k′ (B7)

to simplify the above equation and finally get:

GKK = Ih(Q,Q
′, k, k′)− Ie(Q,Q

′, k, k′) (B8)
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where

Ih = δk+Q,k′+Q′

∫

drhψvµk(rh)Hh(rh)ψ
∗

vµk′ (rh)

Ie = δk,k′

∫

dreψ
∗

cµk+Q(re)He(re)ψcµk′+Q′(re) (B9)

We can proceed in a similar fashion to compute all the
matrix elements GK′K′ , GK,K′ and GK′,K . It is trivial
to show that:

GK′K′ = GKK , GKK′ = GK′K = 0. (B10)

Therefore, this perturbation potential cannot mix the
bright and dark states. This means that the Hamilto-
nian matrix is block-diagonal. For the bright exciton, for
example, sought solutions should be obtained from the
Hamiltonian:

HB = ΩB + SBB, (B11)

while for a dark exciton from:

HD = ΩD + SDD. (B12)
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