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Abstract

The G band Raman intensity is calculated for twisted bilayer graphene as a function of laser

excitation energy based on the extended tight binding method. Here we explicitly consider the

electron-photon and electron-phonon matrix elements of twisted bilayer graphene to calculate the

resonance Raman intensity. The G band Raman intensity is sensitive to the laser excitation energy

and the twisting angle between the layers as a result of folding the electronic energy band structure.

The Van Hove energy singularity, which is an electron transition energy between the conduction

and valence bands, depends on n −m of the twisting vector (n,m). The relative intensity of the

G band as a function of twisting vectors is presented, which should be useful for the experimental

identification of the twisting angle.

PACS numbers: 78.67.Wj,78.30.-j,73.22.Pr
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I. INTRODUCTION

The physical properties of few layer graphene depend on the number of graphene layers

and its stacking structure. For instance, the electronic band structure is highly sensitive

to the structure of few layer graphene1, and the AB Bernal stacked odd (even) layer num-

ber graphene has (doesn’t have) linear energy bands near the Dirac point2,3. The optical

conductance of trilayer ABA stacked graphene is observed to be higher than that of ABC

stacked graphene4. Thus it is important to reveal a relation between the crystal structure

and the physical properties of few layer graphene. In particular, since bilayer graphene can

be constructed by folding monolayer graphene to overlap with the original graphene layer,

we can generally make incommensurate bilayer graphene. Twisted bilayer graphene has been

observed in scanning tunneling microscope (STM) experiments5,6 and in electron-diffraction

studies in a transmission electron microscope (TEM).

When the upper or lower layer of AB stacked bilayer graphene rotates about an axis

perpendicular to the graphene surface, a super structure with a much larger unit cell than

that of graphene appears at a specific rotation angle. Such a bilayer graphene is called

twisted bilayer graphene, which has a unique electronic band structure7,8. The structure of

twisted bilayer graphene has been observed experimentally as a Moiré pattern on the surface

of graphite9–11, few layer graphene12, and twisted bilayer graphene itself using STM5,6 and

Raman spectroscopy13–15. Several groups have shown that the Fermi velocity for twisted

bilayer graphene decreases with decreasing rotation angle relative to that for monolayer

graphene16–19. In order to utilize the twisted bilayer graphene in a semiconductor device,

we need to know the rotation angle of twisted bilayer graphene for a large spatial region in

a quick way compared with STM or TEM measurements.

Resonance Raman spectroscopy (RRS) has been used to study optical properties of

graphene related systems20. The resonance Raman spectra give us rich information to char-

acterize not only the number of graphene layers but also the stacking order21. For instance,

the G’ band intensity, its spectral width, and Raman shift tell us the number of graphene

layers22. Recently, we found that the Raman shift and intensity of the M bands, which

are relatively weak Raman peaks compared with the G and G’ bands, appear in the range

from 1,700 cm−1 to 1,800 cm−1 depending on the stacking order (ABA or ABC stacked)

and the number of graphene layers4,23,24. Moreover, one of the M bands disappears in the
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spectra from incommensurate bilayer graphene (which is not AB stacked bilayer graphene)

samples23 because Raman active M bands are sensitive to the symmetry of bilayer graphene

and because the origin of some M bands are related to the motion of the out-of-plane trans-

verse optical phonon mode. Since the electron energy dispersion relations of twisted bilayer

graphene depend on the rotation angle, it is expected that a specific relevant behaviour ap-

pears in the Raman spectra of twisted bilayer graphene. New Raman peaks were observed

and discussed by using the double resonance Raman scattering process in the D-band region

without disorder13 and at 1, 435 and 1, 625 cm−1 for the given rotation angles 15◦ and 6◦14

in the Raman spectra of twisted bilayer graphene.

Recently the strong G band intensity enhancement of twisted bilayer graphene at a specific

Elaser was reported
25–27. It is considered that such a behaviour gives us information to help

evaluate the rotation angle of a twisted bilayer graphene sample using only resonance Raman

spectroscopy. The purpose of this paper is to study the G band spectra of twisted bilayer

graphene as a function of laser excitation energy (Elaser) and the rotation angle between the

two graphene layers. In this paper, we calculate the G band Raman intensity of twisted

bilayer graphene as a function of both Elaser and the twisting angle and we compare our

calculations with experiments to find a relation between the rotation angle of a twisted

bilayer graphene sample and Elaser. In section II, the basic theory of twisted bilayer graphene

and the calculation method are shown. In section III, we show and discuss the calculated

results. The summary is given in section IV.

II. METHOD

The solution to define the periodic structure of a twisted bilayer graphene was discussed

by several groups7,8,17–19,28,29. According to the previous work, we introduce a twisting vector

to the first layer of a bilayer graphene lattice (black color in Fig. 1),

T
(1)
TW = na1 +ma2, (1)

where, n and m are integers (0 < m < n) such that gcd(n,m) = 1 (gcd is an integer function

of the greatest common divisor of two integers), a1 = a(
√
3/2, 1/2) and a2 = a(

√
3/2,−1/2)

are the primitive lattice vectors for the first graphene layer, and a = |a1| = |a2| = 0.246

nm is the lattice constant of graphene. For simplicity, we assume that the two layers have a
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common origin. If there is a commensurate unit cell in the twisted bilayer graphene, another

twisting vector T
(2)
TW = pa1 + qa2 (p and q are integers) should appear in the first graphene

layer. T
(2)
TW is obtained by rotating T

(1)
TW using a rotation matrix R(φ):

T
(2)
TW =pa1 + qa2 = R(φ)T

(1)
TW

=

[

n cosφ+ (n+ 2m)
sinφ√

3

]

a1 +

[

m cosφ− (2n+m)
sin φ√

3

]

a2, (2)

where, R(φ) is a rotation matrix for rotation by an angle φ around the axis that is perpen-

dicular to the surface of the twisted bilayer graphene:

R(φ) =





cos φ − sin φ

sinφ cosφ



 . (3)

Here coefficients n, m, p, and q are integers used to construct a commensurate twisted

bilayer graphene. φ is a multiple of 60◦ from Eq.(2). Without losing generality, we can

select φ = 60◦. Thus super lattice vectors T
(1)
TW and T

(2)
TW which define the unit cell of

twisted bilayer graphene are given by

T
(1)
TW = na1 +ma2, (4)

T
(2)
TW = R(60◦)T

(1)
TW = (n+m)a1 − na2. (5)

The lattice constant T is given by

T =
∣

∣

∣
T

(1)
TW

∣

∣

∣
=

∣

∣

∣
T

(2)
TW

∣

∣

∣
= a

√
n2 + nm+m2. (6)

The T
(1)
TW vector can also be described in the twisted second layer by using the primitive

lattice vectors a′

1 and a′

2, and integers n′ and m′ for the second graphene layer (red color in

Fig. 1):

T
(1)
TW

′

= n′a′

1 +m′a′

2 = n′R(θTW)a1 +m′R(θTW)a2. (7)

Here, we used the fact that ai
′ = R(θTW)ai (i = 1, 2) and θTW is the twisting angle between

the two graphene layers. Since
∣

∣

∣
T

(1)
TW

∣

∣

∣
=

∣

∣

∣
T

(1)
TW

′
∣

∣

∣
, we get

n2 + nm+m2 = n′2 + n′m′ +m′2 (n 6= n′, m 6= m′). (8)

The simplest solutions of Eq.(8) for (n′, m′) are n′ = m and m′ = n. In Table I we list all

possible (n′, m′) pairs for a given (n,m) obeying T < 10a by numerical calculation. However,
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TABLE I. Possible pairs for (n′,m′) for a given (n,m) obeying T < 10a by numerical calculation

combined with cos(θTW), the twisting angle θTW, and the energy of the Van Hove singularity E11.

Some particularly interesting and exceptional solutions ((n′,m′) 6= (m,n)) are listed. Correspond-

ing E11 values (see below) are listed, too.

(n,m) (n′,m′) cos(θTW) θTW E11 (eV)

(n,m) (m,n) Eq.(12) Eq.(18)

(6,5) (1,9) 161/182 27.80◦ 1.20

(5,3) (0,7) 77/98 38.21◦ 1.57

(9,1) (6,5) 169/182 21.79◦ 1.20

(9,1) (5,6) 161/182 27.80◦ 1.20

we found some exceptional properties for this solution. In Table I, we list some exceptional

solutions for (n′, m′) which satisfy Eq.(8). For example we obtain (n′, m′) = (0, 7) for

(n,m) = (5, 3). In order to obtain θTW, we use the fact T
(1)
TW

′

= T
(1)
TW and from Eqs.(4) and

(7), we get

na1 +ma2 = n′R(θTW)a1 +m′R(θTW)a2. (9)

From Eq.(9), the following simultaneous equations are derived:

√
3(n′ +m′) cos(θTW)− (n′ −m′) sin(θTW) =

√
3(n +m),

√
3(n′ +m′) sin(θTW) + (n′ −m′) cos(θTW) = n−m. (10)

We multiply the first (second) equation of Eq.(10) by
√
3(n′ +m′) ((n′ −m′)), and add the

two equations of Eq.(10), to obtain

cos (θTW) =
nm′ + n′m+ 2(nn′ +mm′)

2(n′2 + n′m′ +m′2)
. (11)

In the standard solution of Eq.(8) given by n′ = m and m′ = n, we get

cos (θTW) =
n2 + 4nm+m2

2(n2 + nm+m2)
. (12)

Here θTW = 0◦ (60◦) corresponds to AB (AA) stacked bilayer graphene. It is noted that for

the commensurate lattice the rotation axis can be taken through an atom which is overlapped
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FIG. 1. (Color online) The unit cell for (n,m) = (3, 2) twisted bilayer graphene. Here, t1 =

3a1 + 2a2, t2 = 5a1 − 2a2, t
′

1 = 2a′

1 + 3a′

2, T =
√
19a, N = 76, and θTW = 13.17◦. The second

graphene layer (red) is rotated by θTW relative to AB stacking.

for the two layers. In Fig.1 the number N of carbon atoms in the unit cell of twisted bilayer

graphene is given by

N = 4

∣

∣

∣
T

(1)
TW × T

(2)
TW

∣

∣

∣

|a1 × a2|
= 4(n2 + nm+m2). (13)

For example, Fig. 1 shows the unit cell for (n,m) = (3, 2) twisted bilayer graphene. Using

Eqs. (6), (12), and (13), we obtain θTW = cos−1(37/38) = 13.17◦, T =
√
19a, and N = 76.

The reciprocal lattice vectors g1 and g2 of twisted bilayer graphene are given by

g1 =
1

n2 + nm+m2
[nb1 + (n+m)b2], (14)

g2 =
1

n2 + nm+m2
[mb1 − nb2], (15)

where b1 = 2π/a(1/
√
3, 1) and b2 = 2π/a(1/

√
3,−1) are the reciprocal lattice vectors of

graphene. The vectors b1 and b2 can be expressed in terms of g1 and g2 as follows:

b1 = mg1 − ng2

b2 = ng1 + (n+m)g2. (16)

The angle between g1 and g2 is 120◦. The K point of graphene Kg = (2b1 + b2)/3 =

[(2n+m)g1 + (n+ 2m)g2]/3 is folded to the Γ (K) point of twisted bilayer graphene when

mod (n − m, 3) = 0 ( mod (n − m, 3) = 1, 2), respectively. The M point of graphene

Mg = (b1 + b2)/2 = [(n+m)g1 +mg2]/2 would be folded to the Γ point of twisted bilayer

6



graphene if both n and m are even numbers. However, such a case should be excluded

because in these cases gcd(n,m) = 2 and a smaller unit cell can be taken. Thus for any

cases of (n,m), Mg is folded to the M point of twisted bilayer graphene which is defined by

(g1+g2)/2 etc. Here it is important to know the distance of the M points of twisted bilayer

graphene from the Dirac points (K or Γ depending on mod (n−m, 3) as shown above) in

zone-folded k space, since we see a Van Hove singularity in the joint density of states at the

M point of twisted bilayer graphene (see Fig. 2).

The electron energy dispersion for twisted bilayer graphene is calculated based on the ex-

tended tight binding method30,31. We adopt the tight binding parameters given by Porezag et

al32. Since the transfer and overlap integral matrix elements between carbon atomic orbitals

are given by a function of distance between the center atom and its neighbor carbon atoms,

the transfer and overlap matrices can be calculated by using a commensurate twisted bilayer

graphene structure. We have reported in previous papers, the optical transition energy of

single wall carbon nanotubes (SWNTs)33, the Raman intensity of few layer graphene4,24,

and the Raman intensity of the radial breathing mode of SWNTs34 as calculated by the ex-

tended tight binding method and we have compared the calculation results with experiments

quantitatively using the tight binding parameters4,24,33,34. In this paper, the tight binding

parameters for the transfer integral matrix elements are multiplied by 1.19 to reproduce

experimental results35. We assume that the interlayer distance of twisted bilayer graphene

has a constant value of 0.38 nm for simplicity25.

For the calculation of the phonon energy dispersion and electron-phonon interaction, we

use the force constant model to calculate the phonon frequencies and eigenvectors36,37. We

assume that the interlayer interaction between different graphene layers of twisted bilayer

graphene is negligibly small for the LO and iTO phonons at the Γ point, which are associ-

ated with the G band, and are not so sensitive to θTW because the LO and iTO phonons

are in-plane lattice vibration modes27. Moreover, the interlayer interactions for both in-

plane and out-of-plane phonon modes are sufficiently weak and not sensitive to the stacking

structure4,23,24,38. Thus we can use the phonon frequencies and eigenvectors for monolayer

graphene as an approximation to calculate the resonance Raman G band intensity for twisted

bilayer graphene for simplicity.
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The resonance Raman intensity is given by

I(Elaser, ω) =
∑

j

∣

∣

∣

∣

∣

∑

a

Melop(j, b)Melph(b, a)Melop(a, j)

(Elaser − Eaj)(Elaser −Eaj − ~ω)

∣

∣

∣

∣

∣

2

, (17)

where Eaj = (Ea − Ej) + iγ, and j, a, and b denote, respectively, the initial state, the

excited state, and the scattered state of an electron, while Elaser, Ej , Ea, and ~ω denote

the energies of the excitation light, the initial and excited energies of an electron, and the

phonon energies, respectively. Here we assume that the broadening factor γ is a constant

value 0.1 eV22 independent of Elaser. Melop is an electron-photon matrix element between

the ground and excited states39,40, Melph is an electron-phonon matrix element from the

initial state to the final state coupled by the G band phonon41–43. In this calculation we

only consider a rotation about the axis which is perpendicular of the surface of the twisted

bilayer graphene sample. Translation and other effects will be discussed elsewhere. We

assume that the spectral width and Raman shift of the G band of twisted bilayer graphene

doesn’t depend on the twisting angle θTW in our calculation range27.

The Raman measurements were conducted by using a WITEC CRM200 Raman system

with an objective of NA = 0.95 and a grating of 600 lines. The excitation laser lines of

633nm, 532nm, 488nm and 457 nm were chosen. The twisting angle is measured by the

optical microscope image of folded bilayer graphene25.

III. RESULTS AND DISCUSSION

Figure 2 shows the energy bands and joint density of states of (a) (3, 2), (b) (7, 4), and (c)

(7, 5) twisted bilayer graphene. From the energy band structure shown in Fig. 2, the joint

density of states around the M points becomes large (arrows in Fig. 2) compared with that

around the K points. Thus it is expected that a strong optical absorption occurs around the

M points in the folded Brillouin zone when Elaser is close to the energy separation between

the π and π∗ bands around the M points, which we call E11. Note that the Fermi velocity

and E11 both decrease with decreasing θTW
16–19. A strong optical absorption intensity can

therefore be expected for a very small angle twisted bilayer graphene. However, for small

θTW, in which the reduction of the Fermi velocity is significant, T (g1 or g2) becomes large

(small), and thus E11 becomes much smaller than the energy of visual light and thus we

cannot observe any resonance Raman effect for small E11.
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FIG. 2. The energy bands (left) and the joint density of states (right) (JDOS) for (a) (3, 2), (b)

(7, 4), and (c) (7, 5) twisted bilayer graphene. The joint density of states becomes large around the

M points due to the band folding effect discussed in this paper. In the case of (7, 4) twisted bilayer

graphene, the Kg point of graphene is folded to the Γ point of twisted bilayer graphene.
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FIG. 3. The calculated G band intensity (circles) as a function of the laser excitation energy for (a)

(n,m) = (3, 2) (θTW = 13.17◦) and (b) (4, 3) (θTW = 9.43◦), respectively. The solid line denotes

the joint density of states for each twisted bilayer graphene. The G band intensity enhancement

occurs at the singular point of the joint density of states vs energy curve in Fig. 2.

In Fig. 3 we plot the G band Raman intensity as a function of Elaser from 1.5 to 2.7

eV for (a) (n,m) = (3, 2) (θTW = 13.17◦) and (b) (4, 3) (θTW = 9.43◦) twisted bilayer

graphene, respectively. Circles denote the calculated G band Raman intensities. In Fig. 3,

the joint density of states is shown as the solid line. An enhancement in the G band intensity

occurs at the high joint density of states point due to the strong optical absorption intensity

occurring in this Elaser range. Thus we can point out that the origin of the G band intensity

enhancement of twisted bilayer graphene comes from the resonance around the M points of

twisted bilayer graphene. The tendencies shown in the calculated results agree well with the

experimental results by Ni et al25. Very recently, Havener et al. reported the G band Raman
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FIG. 4. (Color online) The energy gap at the Van Hove singularity point as a function of the

twisted angle θTW of the twisted bilayer graphene. The data points for each family n − m =

constant are connected by a line. The black, blue, and red symbols are mod (n − m, 3) = 0,

mod (n −m, 3) = 1, and mod (n −m, 3) = 2, respectively. The circle and plus symbols denote

E11 and E22, respectively.

intensity as a function of θTW for given Elaser = 2.33 eV26 and the maximum G band intensity

in their work corresponds to θTW = 12.5◦. We tentatively assign their twisting vector to

(3, 2) whose θTW = 13.17◦ and E11 = 2.50 eV. We also assign the data (θTW = 10.5◦

and Elaser = 1.96 eV) given by Kim et al.27 to (7, 5) whose data show θTW = 10.99◦ and

E22 = 1.91 eV. Thus the definition of the twisting vector is important for describing the

twisted bilayer graphene. In terms of a characterization parameter the twisting vector is

similar to the chiral vector (n,m) for single wall carbon nanotubes44.

Figures 4 and 5, respectively, show the energy separation between the electronic energy

bands at the Van Hove singularity point, Eii, as a function of the twisting angle θTW and

the lattice constant T of the twisted bilayer graphene. Here, the points corresponding to

the family mod (n −m, 3) = constant and mod (n −m, 3) = 0, 1, 2 are each connected

by a line in Figs. 4 and 5, respectively. The symbols are mod (n − m, 3) = 0 (black),

mod (n −m, 3) = 1 (blue), and mod (n − m, 3) = 2 (red). Eii increases with increasing

θTW for the n−m = constant family and Eii is inversely proportional to the lattice constant

T due to the band folding effect. In the case of mod (n − m, 3) = 1, 2, since the Dirac

point of twisted bilayer graphene is at the K point, the energy gap is roughly proportional

to the distance |KM| = 2π/3T if we don’t consider the effect of the reduction of the Fermi

velocity16–19 or the trigonal warping effect45 in order to obtain a simple relation between

E11 and T . On the other hand, in the case of mod (n − m, 3) = 0, the K point of
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FIG. 5. (Color online) The energy gap at the Van Hove singularity point as a function of the lattice

constant T of twisted bilayer graphene on a log-log scale. a = 0.246 nm is the lattice constant of

graphene. Each family n−m = constant is connected by a line. The black, blue, and red symbols

are mod (n−m, 3) = 0, mod (n−m, 3) = 1, and mod (n−m, 3) = 2, respectively. The circle

and plus symbols denote E11 and E22, respectively.

twisted bilayer graphene is folded to the Γ point because the K point is at (2g1 + g2)/3, as

mentioned above. Thus it is considered that the E11 energy is roughly proportional to the

distance |ΓM| = 2π/
√
3T . Since we use the fact that |ΓM| =

√
3|KM|, there are two groups

of points, namely mod (n−m, 3) = 0 and mod (n−m, 3) = 1, 2, as shown in Fig. 5, for

which the ratio of the E11 of mod (n −m, 3) = 0 to that of mod (n−m, 3) = 1, 2 for a

given lattice constant T is
√
3. If we use the linear energy dispersion E(k) = ±

√
3γ0ka/2 of

graphene to consider the energy dispersion of twisted bilayer graphene without the reduction

of the Fermi velocity, then E11 is given by

E11 =











2πγ0a/T ( mod (n−m, 3) = 0)

2πγ0a/
√
3T (others)

. (18)

In Fig. 5, we plot the relation of Eq.(18) by dashed lines, in which we adopt the fitted value of

γ0 = 2.92 eV. The G band Raman intensity enhancement occurs when choosing the energies

in Figs. 4 and 5 for Elaser in the experiment.

Figure 6 shows the ratio of the experimental G band Raman intensity for the twisted

bilayer graphene IG(TBLG) to that for graphene IG(SLG) as a function of Elaser. The sym-

bols are for the twisting angles 10.8◦ (star), 13◦ (triangle), and 25.3◦ (square), respectively,

and follow the tentative assignment. The G band intensity enhancement of θTW = 13◦

occurs for Elaser at 2.7 eV which is consistent with the results of (3, 2) in Fig. 3(a). For
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FIG. 6. (Color online) Experimental results of the ratio of the G band Raman intensity for the

twisted bilayer graphene IG(TBLG) to that for graphene IG(SLG) as a function of Elaser. The

symbols are for the twisting angles 10.8◦ (star), 13.0◦ (triangle), and 25.3◦ (square), respectively.

the experimental results that 10.8◦ refer to, we can assign (7, 5) for (n,m). However the

energy separation near the M point for (7, 5) is 1.12 eV which is much smaller than the

experimental results at Elaser = 2.32 eV (532 nm) in Fig. 6. When we plot the energy dis-

persion and JDOS of (7, 5), we found the second (the third) peak, that we call E22 at 1.91

eV (E33 at 2.20 eV) as shown in Fig. 2(c). Thus we conclude that the experimental results

of 10.8◦ is (n,m) = (7, 5) and the enhancement occurs at E33. The k point which gives

E22 (E33) for (7, 5) is located at the middle point K2 along the Γ−K direction (near the Γ

point), respectively. Since for the |KK2| = |KM|/
√
3 relation in the folded Brillouin zone,

the E22 energy for mod (n − m, 3) = 1, 2 twisted graphene appears at the same energy

as E11 for mod (n − m, 3) = 0 twisted bilayer graphene. In Fig. 5 we also plot E22 for

mod (n −m, 3) = 1, 2 and we confirm that E22 for mod (n −m, 3) = 1, 2 twisted bilayer

graphene appears in E11 for mod (n−m, 3) = 0 graphene. E33 of (7, 5) is located near the

Γ point, since E33 ∼ 2E11 which results from the fact |KΓ| = 2|KM|. For 25.3◦ the result of

Fig. 6, (16, 7) (θTW = 25.46◦) is possible. Here, the lattice constant of (16, 7) is T = 20.42a.

If we consider a finite resonance window of the energy specified by γ in Eq.(17) to calculate

the Raman intensity, the value of the joint density of states for the G band Raman intensity

enhancement decreases with increasing lattice constant T due to the band folding. Thus it

is expected that the G band intensity enhancement effects for small twisting angles or for a

large lattice constant T value is not strong compared with that for large twisting angles.

It is expected that the G band Raman profile like Fig. 3 will help researchers to explain the

12



experimental characterization of their sample to obtain a value for θTW from their measured

Moiré patterns, since E11 depends not only on θTW but also on the lattice constant T . For a

large T , we should consider the resonance effect of E22 which was observed in the case of 10.8◦

of Fig. 6. However, since the k point of Eii (i > 2) is not near the M point in the Brillouin

zone, the story becomes complicated. The detailed analysis of E22 for mod (n−m, 3) = 0

and higher Eii will be reported elsewhere.

Recently, Carozo et al. reported an experiment showing the Raman peaks at 1, 435

and 1, 625 cm−1 for the given twisting angles 15◦ and 6◦, and the theoretical analysis of

the Raman shift and transition energy as a function of the twisting angle for the peaks

to assign the twisting angle14. When we apply our analysis to these Raman peaks, it is

expected that we observe the enhancement effect in the Raman profile for these peaks like

the G band Raman profile at the certain (n,m) and laser excitation energy within the

resonance condition. Using their results, we tentatively assign their twisting vector (5, 4)

whose θTW = 7.34◦ and E22 = 2.54 eV for their twisting angle 6◦. On the other hand, the

resonance condition of the Raman peak (∼ 7 eV) for their twisting angle 15◦ is too large for

we to measure14. The detailed analysis will be reported in future work.

IV. SUMMARY

In this work, we calculated the G band intensity of twisted bilayer graphene as a function

of laser excitation energy. The G band intensity enhancement of twisted bilayer graphene is

shown to be related to its Van Hove singularity and to the joint density of states near the

M point in the zone-folded Brillouin zone. The laser excitation energy at which the G band

intensity enhancement occurs for each twisting angle is found to decrease with decreasing

twisting angle. The Van Hove singularity energy Eii is inversely proportional to the length

of the twisting vector. Moreover, Eii depends on n−m of the twisting vector (n,m).
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19 E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Phys. Rev. B 82,

121407 (2010).

14



20 A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman Spectroscopy in Graphene

Related Systems (Wiley-VCH, 2011).

21 L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, Phys. Rep. 473, 51 (2009).

22 J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, Carbon 47, 1303

(2009).

23 C. Cong, T. Yu, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, ACS Nano 5, 1600 (2011).

24 K. Sato, J. S. Park, R. Saito, C. Cong, T. Yu, C. H. Lui, T. F. Heinz, G. Dresselhaus, and

M. S. Dresselhaus, Phys. Rev. B 84, 035419 (2011).

25 Z. Ni, L. Liu, Y. Wang, Z. Zheng, L.-J. Li, T. Yu, and Z. Shen, Phys. Rev. B 80, 125404 (2009).

26 R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, Nano Lett. 12, 3162 (2012).

27 K. Kim, S. Coh, L. Z. Tan, W. Regan, J. M. Yuk, E. Chatterjee, M. F. Crommie, M. L. Cohen,

S. G. Louie, and A. Zettl, Phys. Rev. Lett. 108, 246103 (2012).

28 J. M. Carlsson, L. M. Ghiringhelli, and A. Fasolino, Phys. Rev. B 84, 165423 (2011).

29 P. Moon and M. Koshino, Phys. Rev. B 85, 195458 (2012).

30 V. N. Popov, New J. Phys. 6, 17 (2004).

31 G. G. Samsonidze, R. Saito, N. Kobayashi, A. Grüneis, J. Jiang, A. Jorio, S. G. Chou, G. Dres-
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