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We analyze the effect of exchanging quasiholes described by Gaffnian quantum Hall trial state
wave functions. This exchange is carried out via adiabatic transport using the recently developed
coherent state Ansatz. We argue that our Ansatz is justified if the Gaffnian parent Hamiltonian has
a charge gap, even though it is gapless to neutral excitations, and may therefore properly describe
the adiabatic transport of Gaffnian quasiholes. For nonunitary states such as the Gaffnian, the result
of adiabatic transport cannot agree with the monodromies of the conformal block wave functions,
and may or may not lead to well-defined anyon statistics. Using the coherent state Ansatz, we find
two unitary solutions for the statistics, one of which agrees with the statistics of the non-Abelian
spin-singlet state by Ardonne and Schoutens.



I. INTRODUCTION

The study of fractional quantum Hall (FQH) liquids has lead to the discovery of rich classes of topological phases.
The rapid progress in the theoretical exploration of this particular niche of correlated electron systems was made
possible by the development of a set of principles for the construction of “fixed point” or “prototype” wave functions
for possible FQH phases, as pioneered by Laughlin® and then greatly expanded by other seminal contributions.?®
This progress was compounded by the discovery of a link between these special wave functions and conformal field
theory (CFT).? Via this link the topological quantum field theory describing a state can be inferred, which for some
cases of interest is non-Abelian.? The possibility of anyonic quasiparticles with non-Abelian braiding statistics may be
the most spectacular implication of this field theoretic mapping, and its experimental verification remains a profound
challenge to date, with topological quantum computing being a proposed application.®” Even in theory, a direct
verification of the implied field theoretic mapping is nontrivial, and involves the calculation of adiabatic transport
of quasiparticles using full many-body wave functions. This is still difficult in general, but has been possible for
Abelian states® and recently for p + ip wave superfluids and Moore-Read-type quantum Hall states.” ' The general
interpretation of analytic trial wave functions as describing topological phases is thus well accepted whenever these
wave functions are related to the conformal blocks of a unitary rational CFT. In this case, the field theoretic mapping
described above implies that the statistics of quasihole-type excitations, as defined through adiabatic transport, is
directly encoded in the monodromies of the associated conformal blocks.?'? This means that for such conformal block
wave functions, adiabatic transport is the same as analytic continuation in the quasihole coordinates, and Berry phase
effects are trivial. This then allows one to obtain the quasihole statistics directly from wave functions, but without
explicitly calculating the Berry connection, or Wilczek-Zee connection, that defines adiabatic transport.'3'4 Indeed,
in many cases of interest, this remains a profound technical challenge.

In addition to wave functions arising from unitary CFTs, there is also considerable interest in analytic trial states
that are similarly related to nonunitary CFTs.#1® The physical interpretation of such states remains much more subtle.
Here, the field theoretic mapping employed in the unitary case does not lead to a topological quantum field theory that
can serve as the low energy effective theory of the state in question. In particular, the conformal block monodromies
cannot be interpreted to describe adiabatic transport, as they do not result in unitary transformations on states. In
contrast, adiabatic transport describes (a limit of) the time evolution governed by a Hermitian Hamiltonian, and is
therefore always described by a unitary transformation. For such reasons, it has been argued®!0:15717 that states
obtained from nonunitary CFTs describe gapless critical points within the phase diagram of quantum Hall states,
especially in those cases where a local parent Hamiltonian for the state exists. Examples of the latter kind include the
Haldane-Rezayi (HR) state,* and the state now known as Gaffnian.!® In this work, we focus on the Gaffnian, which
has surfaced in the literature as early 24 years ago,'® and was independently rediscovered and characterized through
a fixed many-body clustering property in Ref. 19, as well as through its connection with CFT in Ref. 15, whereby its
functional form can be understood as that of a two-component Halperin state.?’ In Ref. 15, it was further argued to
be critical.

The question arises what hidden orders can be identified in such nonunitary states, whether they be remnants of
topological orders or orders of a different kind. Unfortunately, there is currently no efficient and universally applicable
method to test for the topologically ordered?' nature of a state directly through the study of ground state properties.
Much progress along these lines has recently been made through the analysis of entanglement spectra,??23 which are
directly related to edge spectra. It has been argued that the edge spectrum of the Gaffnian is inconsistent with that
of any unitary CFT, and that this contradicts the existence of a gap in the bulk spectrum,'® which is required for
a topological phase. In principle, topological orders can be detected through nonlocal order parameters,?* though
it remains difficult to explicitly construct such objects for general non-Abelian topological orders in microscopic
quantum Hall wave functions. The situation is similar in quantum magnetism. There, nonlocal operators detecting
a topological phase can be directly constructed for toy models?® defined on highly constrained Hilbert spaces where
a gauge structure is explicit (see Ref. 26 for a general discussion). However, such order parameters generally remain
elusive in models where similar physics is emergent within the low energy sector of a larger Hilbert space (e.g., Ref.
27). The situation is much simpler in one-dimensional systems exhibiting a Haldane or Luttinger liquid phase. The
hidden orders of these phases can be probed through nonlocal objects measuring squeezed particle configurations,?8:2
and their origin is quite manifest, e.g., in certain limits of Luttinger liquids where the wave function assumes a
special factorized form.?033 For topological orders, on the other hand, the most direct probe that can, in principle,
be implemented at a microscopic wave function level is the study of the braiding statistics of localized elementary
excitations.

In this paper, we are interested in some formal properties of the Gaffnian state. We ask the question whether the
Gaffnian trial wave functions may define some unitary anyon model through the holonomy calculated along exchange
paths. Somewhat more physically speaking, this corresponds the the adiabatic transport of trial state quasiholes in
the presence of a finite size gap. Indeed, this question is mathematically well defined. The quasihole trial states



can be characterized as the unique zero-energy eigenstates (zero modes) of a local parent Hamiltonian.!519 For given
quasihole configuration, the associated conformal block wave functions define a finite-dimensional subspace, which
can be interpreted as a fiber over a point in the quasihole configuration space. The question is thus whether the
holonomy associated with exchange paths in this configuration space induces well-defined statistics. It is clear from
the outset that if this is so, the holonomies must be quite different from the conformal block monodromies, since these
holonomies give rise to unitary transformations on fibers. Physically, this is clear from the fact that these holonomies
describe the adiabatic transport of quasiholes protected by a finite size gap. Mathematically, it follows from the fact
that the Wilczek-Zee connection is a unitary connection.

The question defined above can be rigorously addressed only by calculating the Wilczek-Zee connection from the
given analytic wave functions. Unfortunately, we do not know how to do this for the Gaffnian state. Instead, we will
use this question as a testbed for a recently developed coherent state method3* 3% to calculate adiabatic transport
of quasiholes based on the “thin torus” (TT)34 6 or “dominance”!®47 59 patterns of the wave function, which are
closely related to “patterns of zeros”.51 2% This method has been shown to be quite efficient for a number of interesting
states based on unitary CFTs, but has thus far not been applied to the nonunitary case. Our motivation to clarify
the applicability of this method to a nonunitary state is twofold. A negative result (no consistent anyon model)
would further strengthen the case that the TT limit contains information about the gapped or gapless nature of the
underlying state. This has been explored by one of us recently for the HR state,* though not with regard to statistics.
On the other hand, if a consistent anyon model is obtained, we can argue that this is at least a very plausible scenario
for the holonomies defined by the Gaffnian quasihole states, as we will further elaborate below.

The coherent state method is based on the assumption of adiabatic continuity between states defined on a torus with
arbitrary aspect ratio and corresponding states in the thin torus limit. It further rests on general assumptions about
a coherent state Ansatz for localized quasiholes in terms of adiabatically continued T'T states. Detailed arguments
in favor of this Ansatz have been given in Ref. 36. Some of these arguments, in particular the justification for the
factorized form of the Ansatz (see Eq. (3) below), also rest on a notion of locality, which is more subtle in a gapless
state. We argue however, that the necessary assumptions still apply, as long as there is a finite gap in the charge
sector of the system, independent of the existence of gapless neutral excitations. The scaling of the charge gap of the
Gaffnian state has been discussed in some detail in Ref. 55, but at the moment, the question whether it remains finite
in the thermodynamic limit has not been conclusively resolved to the best of our knowledge.

We finally note that there is a close connection between T'T patterns and CFT fusion rules, which has been elaborated
in Refs. 56 and 57. In terms of the data used to construct an anyon model, there is thus some similarity between the
present method, and the procedure of constructing F-matrices consistent with given fusion rules, using the axioms
of modular tensor categories.?® Indeed, the two methods have so far given consistent, if not always identical, results
in the unitary cases.?® Some differences between these two approaches are worth noting. While the connection with
tensor category theory can be physically justified using the general framework of local quantum field theory,?® the
assumptions used in the coherent state approach are not field theoretic in character. Indeed, the F-matrix, although
it could be ultimately constructed, does not directly appear in this approach, and none of the defining consistency
equations of this approach make reference to it. Moreover, the coherent state method, being ultimately based on
adiabatic transport, could not in principle lead to a nonunitary anyon model in its current formulation. A secondary,
but non-negligible motivation for this work is thus to shine further light onto the connection between these two
different methods in the context of a nonunitary state.

The paper is organized as follows. In Section IT we will summarize our calculation, which leads to two closely related
anyon models of Fibonacci type. All details are relegated to two Appendices. In Section III, we discuss our results,
and make contact with the non-Abelian spin singlet (NASS) of Ref. 60. The findings from the adiabatic calculation
are contrasted with the quasiparticle state counting of the Gaffnian state on the sphere in Section IV, where a finite
size gap and exact parent Hamiltonian can be used to give a complementary perspective to the thin torus patterns
alluded to before. We conclude in Section V.

II. BRAIDING STATISTICS THROUGH THE COHERENT STATE METHOD

Our method to extract the statistics of a state from thin torus patterns, based on the assumptions discussed in the
Sec. I, has been documented in detail in a recent paper.3® Here we will describe its setup for the Gaffnian state, and
focus on differences that arise compared to the discussion of the (k = 3) Read-Rezayi state® as given in Ref. 36.

The thin torus patterns of the bosonic ¥ = 2/3 Gaffnian, and their relation to the underlying minimal model CFT,
have been thoroughly discussed by Ardonne.®® These patterns can be identified in the usual way3* 6 when wave
functions on the torus are considered in the formal limit of an “extreme aspect ratio”, e.g. L, > 1,L, < 1. (Here
and in the following, we set the magnetic length g equal to 1.) The patterns emerging in this limit are occupancy
numbers in a suitably chosen Landau level basis on the torus (see, e.g., 36), describing the trivial non-interacting
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2 11101101100200200200110110||—1+s| 2 —s

3 (1101100101011011010110110 1 0

TABLE I. ¢ = 0 thin torus patterns for a two-quasi-hole Gaffnian state, and the offset functions of the associated domain
walls. The elementary domain wall strings are in bold, and the orbital positions, 3n;, are underlined. Patterns for ¢ = 1(—1)
can be obtained by shifting each occupancy number one orbital to the right (left), and the shift functions obtained using

fj(c7 a) = fj(a) +ec.

product state resulting in this limit. For the six degenerate Gaffnian ground states, these patterns read 200200.. .,
020020. .., and 002002. .., which we will call “(200)-type”, or 011011..., 101101..., and 110110..., which we refer
to as “(011)-type”.

As usual, 3446 we will assume that states defined on a “bulk torus”—L, > 1, Ly > 1-—can be evolved adiabatically
into the thin torus limit described above, where the evolution is governed by the Gaffnian parent Hamiltonian'® with
slowly varying aspect ratio. Likewise, states with quasiholes on the bulk torus are assumed to evolve into elementary
domain walls between ground state patterns. There are three elementary domain wall strings: 100 and 001, which
occur between (200)-type and (011)-type ground states, and 010, which occurs between two different (011)-type ground
states. These domain walls may link various different combinations of ground state patterns, thus forming charge 1/3
solitons. Representative examples are given by the strings ...01101100200200... and ...011011010110110.... All
charge 1/3 domain wall patterns occurring in the TT limit are locally given by translated and/or inverted versions of
these two types of strings. This establishes a notion of “fusion rules” in the TT limit.?®

The thin torus states are naturally labeled by the positions of the domain walls together with a topological sector
label—i.e., a label identifying the sequence of patterns between the domain walls. We use the notation |ay, ..., an; ¢, @)
for the TT states appearing in the limit L, > 1,L, < 1, and |a1,...,as;c,a) for the states appearing in the
L, < 1,L, > 1 limit. The latter are simple product states in a “rotated” or dual Landau level basis?* 3%, and must
be well distinguished from the states |ay,...,an;c,a). Here, the a; label the orbital positions of the domain walls.
For the topological sector labels, we follow the convention of 36, where a labels classes of sectors that are related by
translation (a “supersector”), and for given «, ¢ = —1,0, 1 distinguishes the three translationally related members of
each class. Below we will also use translational properties to define a unique convention for how the ¢ labels are to
be assigned. As usual®, the domain wall positions can change only by multiples of a certain “stride” within each
topological sector (here, multiples of 3), and are thus of the general form a; = 3n; + f;(c,a). fj(c,a) is an offset
factor that depends on the sequence of domain walls (i.e., the topological sector and the domain wall in question).
For symmetric domain walls, its value is uniquely determined by symmetry. However, for asymmetric domain walls,
a certain ambiguity exists a priori in how to define the domain wall position precisely with respect to the adjacent
orbitals. This is accounted for by the shift—or asymmetry—parameter s. See Ref. 36 and table I for details.

By the assumption of adiabatic continuity, the “bare” domain wall states, |ay, ..., an;c, @) and |ay, ..., an; ¢, @), give
rise to two different complete sets of zero energy states (zero modes) of the Gaffnian parent Hamiltonian, for any aspect
ratio of the torus. These two mutually dual zero-mode bases are obtained by adiabatically evolving the respective
bare states by means of a slow change in aspect ratio, and are denoted by |ay,...,an;c,a) and |ag,...,a,;c, q)
respectively (with the dependence on aspect ratio understood). These types of states generally describe quasiholes
that are localized in = or y, respectively, at the domain wall positions, and are delocalized in the perpendicular
direction (respectively y or x). Their completeness within the zero-mode space implies that states with localized
quasiholes (in both = and y) can be obtained by forming proper linear combinations. For these coherent states, with
n quasiholes localized at complex positions h; = hj, + ihj,, the following Ansatz has been motivated in previous
works (see Ref. 36 and references therein):

Ve {B1) =N DY T bauilhysrag) las,... anie, ) (1)

a1<...<an j=1

Wea({hD)) =N D" [ bai(hy Fay)lar, ... an;c,a) (2)

a1<...<an j=1
with the Gaussian amplitude form factor

1

S(hjy + 8(ev, j)/k)kaj — y(hjz — kaj)?| | (3)

Pa,j(hj, a;) = exp {



and its dual counterpart ¢o j(h;,a;) = ¢a j(—ihj, a;)|—r. Here, k = 21/L,, & = 27/L,, and §(c, j) can be shown?6

to be 0 or , taking on the same value for symmetry-related (translation or inversion) domain walls. A" and N are
normalization factors. The factor 1/3 in the exponent is the inverse of the domain-wall stride mentioned above, or
the quasi-hole charge.

It is the availability of this “dual” description (1), (2) and its behavior under modular S-transformations (essentially,
exchange of the roles of the x and y coordinates) that makes the torus topology preferred within the coherent
state approach. It must be emphasized, however, that the above coherent states are valid®® only for well-separated
quasiholes: Eq. (1) is valid when |hj; — hiz| > 1 for all ¢, j, and Eq. (2) when |hj, — hiy| > 1 for all 4, j. When both
conditions are satisfied, Eqs. (1) and (2) describe the same zero modes for given quasihole positions, and must be
related by a linear transformation:

[Yeal{h}) = 3wl a0 (R Werar ({RD)). (4)

c,a!

Here, o labels different “configurations” of the quasiholes, i.e., components of the quasihole configuration space that
can be connected without violating the conditions |h;; — hiz| > 1, |hj, — hiy| > 1. We define these configuration-
labels with respect to quasihole configurations in the infinite plane. Toroidal periodicity leads to an equivalence
between various triples (o, (¢, ), (c/,a’)) that will be taken into account later. The transformation described by
uﬁ,’p,aa,({h}) must also be unitary, since states in different topological sectors are generally orthogonal.

A lot is known about the transition functions ug . , ,,({h}) from the properties of the zero-mode basis states—
lai,...,an;c,a) and |ag,. .., a,; ¢, a)—under magnetic translations alone.?® Their dependence on h, (c,¢’), and (a, o)
separates into the following factorized form:

g et oo ({h}) = w({P}) Me,e €3 o (5)
with u({h}) and M, fully determined by translational symmetry:

u({h}) = exp Zhﬂhw , (6)

e2mi(L—1)/3 ,—2miL/3 e2mi/3

&
1 . )

M = \[ e—27r'LL/3 1 627TZL/3 . (7)
3 o2mi/3 o2miL/3  2mi(L—1)/3

The h-independent product M, &7 , may be identified as the topological S-matrix of the problem. We will now
summarize how the missing information about £ ,, can be obtained within this formalism, and subsequently this
information can be used to gain knowledge about f)raiding. For details we refer the reader to Ref. 36.

Further constraints on the matrix {7 ,, can be obtained by moving (via adiabatic transport) the positions of some
of the n quasiholes across the boundaries of a rectangular coordinate chart on the torus, which we fix once and for
all (see Fig. 1). It is important to note that this can be done while maintaining |h;, — hig| > 1 and |hjy, — iyl > 1.
Therefore, the result of this adiabatic transport can be worked out directly from the coherent state expressions, and
this leads to new consistency conditions on the £ ., matrix. We begin in a configuration c—e.g., the one shown in
Fig. 2 —and carry out this process in two steps. First, we consider the adiabatic transport of the upper right particle
along a path that moves it further to the right. As soon as the particle crosses the right boundary of our coordinate
chart, the particle reappears on the left boundary. Viewed in this coordinate chart, the quasihole configuration has
changed from o to a new configuration g, (o). At the same time, with the particle that was formally rightmost now
being leftmost, the topological sector label (the sequence of patterns appearing in the L, — 0 limit) of the state
has changed. If a was the label of the topological (super-)sector initially, the new label F(«) is easily found from

the associated thin torus patterns.?¢ Thus, while the transition function expressing the duality relation (4) is defined

9z (o)
F(a),a’

thereafter. Is is easy to work out a condition enforcing continuity across the boundary, relating these two matrices,

in terms of {7 ,, right before crossing the boundary of the coordinate chart, it is defined in terms of § right

36
£9:(0) = B~ dingle—2miL/3—iLo(@n) [3=i/3 52, 8(ak) | go
x diag[e 27 en (/3] (8)

where the argument of diag]...] specifies the a-th diagonal entry of a diagonal matrix. The matrix B is defined
as Ba,ar = 0q,F(ar)- A similar process can be considered where the topmost quasihole of a configuration o moves
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FIG. 1. Two quasiholes, one stationary and one moving across the boundary, on a torus which is shown in a “repeated zone
scheme”. The stationary quasihole is at the bottom of the figure. Initially the moving quasihole (which starts at the dotted-line
circle) is ordered second, and the system is in some configuration o. After that quasihole moves across the boundary it becomes
the first, and the system is in configuration g (o).

FIG. 2. The configuration oy is the one in which the leftmost (first) quasihole is bottommost, the next to the right (second) is
the next above, and so on.

up, crossing the upper boundary of the coordinate chart, becoming the bottommost quasihole in the resulting new
configuration g, (o). The analogous continuity condition on the { matrices reads,

gov(o) = diag[e_%if"(a)/?’]fa
% diag[e—QTriL/?)—iLzS(a,n)/S—i/B Sk 5(a,k)]B. (9)

The purpose of Egs. (8) and (9) is twofold: They connect £ matrices for different quasihole configurations, which will
be essential in describing braiding processes, and they impose constraints on any given £ matrix. To see the latter,
focus on the quasihole configuration shown in Fig. 2, which we will now refer to as o;. It is easy to see that o is
invariant under the two moves described above performed in succession, i.e., gy(9z(0or)) = or. Hence, Egs. (8) and
(9) together constrain the matrix elements of £77.



FIG. 3. Exchange path for two quasiholes at positions h; and h;y1. First, the quasihole at h;41 is dragged to hs. There the
coherent state representation is changed from the original basis to the dual basis using Z°. That quasihole is then dragged to
hs, and the state is changed back to the original basis using Z°". The quasihole at hp, now the i-th, is moved to h., then both
quasiholes are moved to their final positions: The quasihole at h; goes to h;+1 and the quasihole at h. goes to h;. Using the
coherent state Ansatz, this gives rise to Eq. (12).

Yet another way in which the transition functions and hence the &-matrices are related for different quasihole
configurations is by mirror symmetry. In the presence of a constant magnetic background field, mirror symmetries
exist only in conjunction with time-reversal symmetry, which we will leave understood. The operators 7, and 7,
associated with mirror reflections across the z and y axis are therefore anti-linear operators. It is then simple to find
relations between the ¢é-matrices using these operations,3®

£97+(?) = (B,) " diag[e?H/3 X (R (¢7)*

x diag[e2™/3 S(1+6(0k)/m) fu(0)] (10)
€97(9) = diag[e?mi/3 X (1+0(ak)/m) fir(e)] (g0 )*

X diag[eiL/?’Z’c 6(a’k)]Br~ (11)

In the above, g, (o) is the configuration that is the mirror image of ¢ under 7, and similarly g, (¢). The matrix B,
appearing above is defined by (B;)a,a’ = 0q,F, (o), Where Fr(a) is the (super-)sector resulting from an inversion of
the patterns associated with the (super-)sector a. Operating 7, and 7, in succession on a system in the configuration
o1 gives o7 again, i.e., gr, (9-,(01)) = o7. In this way Egs. (10) and (11) allow us to further constrain the elements
of £771.

To braid two quasiholes, we adiabatically transport them along the path in Fig. 3. To this end, we consider a
configuration o where both quasiholes are adjacent both in terms of their x and their y coordinates, i.e., they can
be exchanged without violating |hj, — hiz| > 1 or |hjy, — hsy| > 1 for any other pair of quasiholes. The result of
the adiabatic transport can then be worked out directly from the coherent state Ansatz (1) given known transition
functions, i.e., the matrices £7.34736 It can be expressed as follows:

|¥q) |¥1)

|Wa) : |Wa)

— eiPanz (271 (12)

W) (W)
Here, ®ap is the Aharonov-Bohm phase, equal to the charge of a quasihole, —1/3, times the area enclosed by the

braiding path. The quantities |¥,) are the three-component column vectors with entires [¢)c o). Z7 is the matrix
€7@ M (where we identify the states |1, ) with a formal tensor product basis |a) ® |c)). o is the initial configuration



Thin torus pattern H fi(@) ‘ f2(a) ‘fg(a)
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TABLE II. ¢ = 0 thin torus patterns for a three-quasihole Gaffnian state, and the offset functions of the associated domain
walls. The elementary domain wall strings are in bold, and the orbital positions, 3n;, are underlined. Patterns for ¢ = 1(—1)
can be obtained by shifting each occupancy number one orbital to the right (left), and the shift functions obtained using

fi(e,@) = fi(a) +c

of the quasiholes, and ¢’ the other configuration that occurs during braiding (Fig. 3), i.e., the one obtained from o
by crossing the line hj, = h;; or the line hjy, = hgy.

It turns out that the result of braiding is always block diagonal in the c labels, i.e., the braid matrix =7 (E",)T is
of the form x;(n) ® I, _xe..., where we call x;(n) = £7(¢7)T the “reduced” braid matrix associated with a counter-
clockwise exchange of the i-th and i+ 1-st of n quasiholes. This fact is a direct consequence of translational invariance.
Moreover, x;(n) is found to be independent of the initial configuration o, as one would expect.

The various constraint equations discussed so far still admit many solutions for the braid matrix. This is chiefly
due to the fact that the asymmetry parameter s introduced above is still undefined. A final set of constraint equations
comes from the imposition of certain locality constraints on the braid matrix that can be motivated directly from
the thin torus patterns.?>36 Said succinctly, we mean by locality that the result of braiding should only depend on
the sequence of three ground-state patterns forming the two domain walls associated with the braided quasiholes,
and that only the pattern in the middle may change as a result of braiding. The constraint equations following from
this, combined with the above symmetries, then lead to a discrete set of (usually intimately related) solutions for the
statistics. We will discuss the full set of constraint equations and their solutions in App. A for the two-quasihole
case, and in App. B for the three-quasihole case. Here we will summarize the results of this calculation by giving the
(reduced) braid matrices obtained from it for both two and three particles:

X1(2) — 5(1,2)(5(2»1))T

—iTa

e
— —im/3 eimap=l  g2ima,—1/2 | (13)

672171'0,%071/2 @71

x1(3)

- 5(17273) (5(2,173))1‘

621'7”1
2ima

_ —in/3 €

=€ eimap—1 8721'71'(1()071/2 ’ (14)
e—2i7ra<p—1/2 90_1

where a = £1/5, and ¢ is the golden ratio, ¢ = (1 + v/5)/2. Here, the rows and columns refer to the a-supersectors
of Tables I and II. The parameter s is found to have one of two values: s = 2 —3a/2. Just as in the case of the k =3
Read-Rezayi state discussed in Ref. 36, there are thus two solutions, one for each sign of a, which are related by an
Abelian phase and complex conjugation. In the above, we have also fixed a gauge degree of freedom associated with
unitary transformations.

Together with the locality constraint described above, these two matrices determine the result of braiding any
adjacent pair in a state of n quasiholes. A “tensor representation” of the statistics just as discussed in Ref. 61 can
then immediately be constructed in complete analogy with Ref. 36.

III. DISCUSSION OF COHERENT STATE RESULTS

The two solutions obtained in the preceding Sec. II are related to one another simply by complex conjugation and
an overall Abelian phase. They describe Fibonacci anyons and are thus closely related to those obtained for the &k = 3



Read-Rezayi (RR) state using the same method.36 In essence, the solutions obtained from the RR patterns and those
obtained here are the same up to an Abelian phase. This statement excludes “global exchange paths” on the torus
involving processes such as the one depicted in Fig. 1, as we will further explain below. This close correspondence
between the solutions found from RR and Gaffnian patterns is a manifestation of level-rank duality between the
associated SU(2)3 and SU(3), fusion rules, respectively. This duality was also discussed by Ardonne®® in terms of
domain walls. It is manifest in the Bratteli diagrams of Fig. 4, which in the present context represent the rules for
domain wall formation between ground state patterns for the respective states. Note, however, that there is a three
to two correspondence between the topological sectors in both cases, rather than one-to-one. This is so since each
sector, i.e., each path in the Bratteli diagram, is threefold degenerate under translations in the Gaffnian case, but
only twofold in the k¥ = 3 RR case (at filling factor 3/2). The correspondence between Gaffnian and RR sectors is
perfect if we limit ourselves to the n — 1 generators of the braid group o0;,41, ¢ = 1,...,n — 1, which exchange the
i-th and 7 + 1-st quasihole. These generate the full braid group in the plane, but not on the torus. On the torus,
these generators leave certain subspaces of topological sectors invariant, which all start and end in the same pattern
in the topological sector label. These subspaces for the Gaffnian are then in correspondence with similar subspaces
for the RR state, in the sense that there are isomorphisms between them that commute with braiding, except for an
overall Abelian phase. This correspondence, however, gets spoiled by the inclusion of the remaining generators on the
torus, which mix the subspaces. This happens differently for the Gaffnian and the RR case, since there are six such
subsectors in the former case, but only four in the latter.

The subtle differences between our solutions for the Gaffnian and the RR case on the torus are of a piece with the
difference in overall Abelian phase. It is well known that the overall Abelian phase could in principle assume any value
in planar geometry, but on the torus, it is constrained by the topological degeneracies characterizing the state. In the
coherent state method, one source of phase differences is the factor ¢/3 in the coherent state Ansatz, Eq. (3), which
is generally related to the “stride” of the domain wall in a given topological sector, which equals 3 in the present case
and 2 in the RR case. This stride is of course identical to the center-of-mass degeneracy. In particular, one may see
that the equations obtained from global processes such as the one shown in Fig. 1 are quite sensitive to this stride
and the associated phase (see Eq. (A1) below). In view of the importance of these processes in our method, and the
fact that they spoil the correspondence between Gaffnian and RR topological sectors as explained above, it may not
be clear a priori that the consistency equations we obtain in both cases admit closely related solutions, in the sense
discussed. That this is so can be traced back to the fact that the translational degree of freedom, ¢, decouples early
on (see below Eq. (5)), and the remaining « degree of freedom is fully analogous in both cases. This is how rank-level
duality becomes manifest in the present formalism. For similar reasons, our solutions for the Gaffnian and RR states,
which were both obtained at the maximum (bosonic) filling factor, could be generalized quite easily to lower filling
factors, which differ only through the increasing translational degeneracy.

As emphasized initially, the Fibonacci-type solutions we obtained are distinct from the anyon model associated
with the conformal block monodromies of the Gaffnian state. The latter describes so-called Yang-Lee anyons, whose
relation to Fibonacci anyons and the associated Galois duality has enjoyed much interest recently.?:%3 Yang-Lee
anyons are associated with nonunitary F-matrices consistent with the SU(3)2 fusion rules. It has been known for
some time, however, that the same fusion rules admit unitary solutions of the Fibonacci type also; these are realized
by the NASS state of Ref. 60. Indeed, it is not difficult to perform checks confirming that one of our solutions, that
corresponding to s = 17/10, agrees exactly with the monodromies of the NASS state (including the overall phase).
The dominance patterns of the NASS state have been discussed more recently,% and it seems clear that the calculation
presented here can be carried over to this state without essential changes. In all, this confirms once more for the case
of SU(3), that the coherent state Ansatz produces a subset of all unitary anyon models consistent with given fusion
rules.

In the case of the unitary NASS state, our results support the usual conjecture that the holonomies associated with
adiabatic transport agree with conformal block monodromies. In the case of the Gaffnian, things are more subtle.
We have argued that in this case, provided that the coherent state Ansatz is justified, the holonomies give rise to
well defined Fibonacci anyon statistics, possibly (given the twofold ambiguity of our solution) identical to those of
the NASS state. In particular, we believe that our Ansatz is indeed well justified if the gap of the Gaffnian parent
Hamiltonian does not close in the charge sector. Even so, the statistics found by our Ansatz may just be a formal
property of Gaffnian trial wave functions, that may not be robust to general perturbations. Also, corrections in the
quasi-hole separation may be of power-law type, rather than decaying exponentially. Nonetheless, these observations
may shine new light on the formal connections between the Gaffnian and the NASS state, which have been discussed
previously.?® We leave more rigorous investigations into this matter for future studies.
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FIG. 4. Bratteli diagrams depicting the ¢ = 0 patterns in the RR state (top) and the Gaffnian (bottom). Valid topological
sectors on the torus are represented by paths which start at the left, take one step right (either up or down) for each quasihole
in the state, and end on the same type of ground state pattern—(200)-type or (011)-type—as they began, minding periodic
boundary conditions. There is a one-to-one correspondence between the paths in the lower diagram and the patterns in Tables
I and II, and also between the valid paths in the upper and lower diagrams. This latter correspondence is how the SU(2)3 and
SU(3)2 rank-level duality manifests in terms of patterns. It should be noted that for each sector which corresponds to a path
in one of these diagrams, there is for RR an additional sector related to the first by translation, and two additional translated
sectors for the Gaffnian.

IV. GAFFNIAN QUASIPARTICLE STATE COUNTING

As emphasized, the above considerations crucially depend on the existence of a finite size gap, which singles out
a zero mode sector of the Gaffnian parent Hamiltonian for any finite system size. We further assume that this zero
mode sector can be organized into a basis of states that are naturally labeled by certain patterns, or partitions. An
important consistency check of this assumption is obtained by counting the dimension of the zero mode subspace of
the parent Hamiltonian for given quasi-hole number, and comparing it to the counting of partitions. Such counting is
interesting in its own right, as it leads directly to the notion of exclusion statistics 5. For this section, we will focus
on spherical geometry®%:67, and describe for the specific example of the Gaffnian parent Hamiltonian a systematic
procedure to organize the zero mode space into a basis of states that have well defined root partitions. We note that
this counting can also be carried out by utilizing analytic properties of trial wave functions.!®
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We investigate the Gaffnian quasiparticle properties by considering a trial Hamiltonian at filling v = 2/5 for fermions
and v = 2/3 for bosons including the appropriate spherical shift. (Without loss of generality, we discuss the bosonic
version in the following.) The trial Hamiltonian can be constructed from the clustering properties of the Gaffnian
state!519: consider an occupation-number basis n()\) = {n,,(\),m = 0,1,2,...} where m runs over all Landau level
orbitals with angular momentum L, = mh. X labels the partition of a given many-body state on the sphere, where
N (A) is the multiplicity of m in A\. A dominance rule X\ > p is defined for different partitions A and g when p can
be obtained from A through squeezing, i.e. a sequence of two-particle operations m; — m/ and m; — mj such that
my1 < mj < mb < mg which conserves total momentum mj +mg = m} +mj. The Gaffnian is characterized by a root
partition n§ = 200200 ...002'%4® where all other partitions with non-zero weight follow from it through squeezing.
A positive semidefinite trial Hamiltonian for which the Gaffnian state characterized by n§ is an exact and, at that
filling, unique zero mode is given by!%:19,68,69

H =V +Vy, (15)

where V]Q labels the M-body pseudo potential projector of relative angular momentum (%970,

For exact finite size diagonalization of (15), a neutral gap separates the Gaffnian ground state from the other
states. It is a challenging task to decide from available system sizes whether this neutral gap extrapolates to a finite
value or to zero in the thermodynamic limit'®®>. The current upper limit of accessible system sizes is approximately
located at N = 20 particles”!, for which all spherical symmetries as well as even specific polynomial symmetries such
as the product rule, which links different coefficients of the monomial expansion of the Gaffnian state, have to be
exploited*® 72, Assuming that the gap eventually has to close due to the non-unitarity of the Gaffnian, it appears such
that it scales as 1/N. This in turn might allow for a suitably defined finite size protection of quasi particle braiding
where the system would be considered finite but still large enough to separate the different quasiparticles.

The increase of magnetic flux starting from the Gaffnian ground state filling leads to a multiply degenerate zero
energy level in the spectrum of (15) as we induce quasihole excitation modes on the sphere, while there are only finite
energy levels as we decrease the magnetic flux and induce quasiparticle excitations. An appropriate scaling of the
charge gap following from there is even harder to determine than for the neutral gap. The main reason for this is
that since energies at different magnetic flux enter the computation of the charge gap, absolute and relative finite size
corrections between different sphere sizes have to be taken into consideration™74. Preliminary numerical evidence
accordingly indicates that the thermodynamic charge gap value as obtained from finite size numerics sensitively
depends on the details of the extrapolation procedure®. As a result, while finite size representations of the Gaffnian
trial Hamiltonian exhibit a finite gap, no conclusive statement can be drawn about the thermodynamic limit. In
particular, it cannot be distinguished either whether both the neutral and the charge gap are zero or whether the
Gaffnian might be a gapless incompressible state,”® where only the charge gap is finite.

Instead of investigating the thermodynamic limit, we exploit the finite size gap of the Gaffnian to analyze its
quasihole properties. In particular, as the squeezing property not only applies to the Gaffnian ground state but also
to the quasihole states, we derive the quasihole root partitions and extract the generalized Pauli principle of the
quasiholes from the explicit microscopic realization of the Gaffnian. Given a k-dimensional null space of the Gaffnian
Hamiltonian (15) which represents the quasihole states, we expect to find as many different root partition as there
are zero energy states. Consequently, it is not so that all non-zero weights found in the null space eigenstates are
generated from one highest weight partition. In addition to ordering the basis states with respect to the dominance
rule if applicable, we identify the independent dominance branches®® and isolate the root partitions n?Z(N , Ng) of the
null space, where i = 1,...,k, Ng denotes the magnetic flux and N the number of particles. As an exémple, consider
the N = 6 bosonic Gaffnian state at Ng = 6 with its unique ground state partition nf (6,6) = 2002002. Increasing
the magnetic flux to Ng = 7 gives a two-dimensional null space where we extract the root partitions 719’71(67 7 =

20011002, n§’2(6, 7) = 11011011. This would agree with the quasiparticle counting of the Abelian hierarchy state at

analogous filling%% 6. The Gaffnian quasiholes, however, exceed the number of hierarchy quasiholes as soon as we add
two magnetic fluxes, where we find 8 null modes according to the root partitions

n§i-1...s(6,8) = 200101002, 200020002, 200011011, 110110002, 110101011, 110020011, 101101101, 020020020.  (16)

We have investigated the Gaffnian up to NV = 12 and 3 magnetic fluxes added, and find that the quasihole root
partitions obey the state counting of the generalized Pauli principle with the (2, 3) admissibility rule where we allow
all partitions with not more than 2 particles in 3 consecutive orbitals*”48. This also confirms that the quasi particle
state counting (for more than one magnetic flux added) exceed the number of quasi particle states of the Abelian
hierarchy state at the same filling®®-7, hinting the non-Abelian nature of the Gaffnian quasiparticles. In particular, we
have confirmed that the counting of partitions and the number of zero modes perfectly agree, and that the associate
Jack polynomials exhaust the zero mode space. For the counting of zero modes, formulas have been given based on
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a study of analytic trial wave functions.!® Elsewhere we will report on how to re-derive these formulas in terms of
patterns, and how to generalize these formulas to the torus geometry.””

V. CONCLUSION

In this paper, we have analyzed the effect of exchanging quasiholes described by Gaffnian quantum Hall trial state
wave functions via adiabatic transport, based on a coherent state Ansatz in terms of adiabatically continued thin-torus
zero modes. We have argued that this Ansatz may correctly describe the holonomies of Gaffnian quasiholes as long
as the charge sector of the state remains gapped. In this case, we find that the statistics obtained are either closely
related, or in fact identical, to those of the NASS state, though this property will not be topologically protected. The
non-Abelian nature of the Gaffnian quasiparticles can similarly be inferred from the analysis of the quasihole root
partitions on the sphere. The similarity to the NASS state is of a kind with the statement that these states have the
same fusion rules, though their conformal block monodromies are different, and are non-unitary in the Gaffnian case.
Our results appear to confirm in yet another case that the coherent state Ansatz in general produces a subset of all
unitary anyon models consistent with the fusion rules of the underlying state. In all unitary cases studied so far, this
subset includes the conformal block monodromies, which for unitary states are generally believed to be tantamount
to adiabatic transport.3
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Appendix A: Two-quasihole Solution

To work out the braid group for n quasiholes with general n, one needs to consider only braiding for pairs of
quasiholes associated with all possible pairs of domain walls, as given by all possible combinations of three ground
state patterns. Locality then implies that all the other ground state patterns appearing in the topological sector label
will not affect the result of braiding. To this end, we will solve for the reduced braid matrix in the simple cases of n = 2
(here) and n = 3 (in Appendix B). Together, these results can be used to construct braid matrices for n-quasihole
states, since these cases exhaust all possible sequences of three ground state patterns separated by domain walls.

The set of constraint equations to solve for the reduced braid matrix come from enforcing the unitarity of the &
matrices, the locality condition discussed in the main text, and the global path relations Eqgs. (8) and (9). We will
begin by enforcing the latter. As discussed above, we can apply Egs. (8) and (9) in succession to constrain £7! because
o1 = gy(9=(or)). Applying these two equations, with the data from Table I, results in the constraint equation

Ap~! Ap
=\ Ap 0 1 Ap~t o0 ) (A1)
-1 -1

where p = —exp [-27mi(1 + 5)/3], A = exp [-27i(L/2+ 1)D/3], and D = 0 or 1 if the 0 parameter for the 100-type
domain walls is 0 or 7, respectively. Equation (A1) is satisfied when

[SYRRST 13
£ =| &2 p*n —Apbs |- (A2)
§31 —Ap€3r €33

Mirror symmetry, Eqs. (10) and (11), can also produce a constraint equation because g, (g-, (o)) = o7. However, in
the case of two quasiholes, applying Eqgs. (10) and (11) in succession results in the trivial equation, £77 = £77.
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The process of solving for the reduced braid matrix is similar to the solution given for n = 2 in Ref. 36. We gain
the following equations by demanding that £°7 is unitary,

™% = 200~ Ppénia + nPps’, (A3a)
™/ = 2mPpey? — €457, (A3b)
0=An~Pp’6° + AnPpt 1 — AnPp%e 57, (A3c)
0=n"P&: (—p*11 + Apéia) + nPpéiséss, (A3d)

where 7 = exp (—27i/3). Two additional equations come from the requirement that braiding is local; as said above,
this means that the result of braiding should only depend on the sequence of three ground-state patterns forming the
two domain walls associated with the braided quasiholes, and that only the pattern in the middle may change as a
result of braiding. Imposing these locality considerations tells us that x1(2) must be of the form

- 00
xi@2)=10- -1, (A4)

“n

where “”s are unknown, potentially nonzero, matrix elements for which we will solve. By applying the form in Eq. (A4)

to the matrix x1(2) = £71 (%! /)T derived from adiabatic transport, the zero elements give two more independent
constraint equations,

0=n"P(1+p°)n&a — AnPE 5% (Aba)
0=n""&; (&1 — Apéra) + n”&sss. (A5b)

Solving this system of six equations, (A3) and (A5), is formally similar to the solution in the Appendices of Ref.
36, so the details will not be repeated here. Just as in that reference, there are two solutions: A special solution in
which p = 41,

1 .
&%= 577Dem/3pfly (Aba)
§12 = Ay, (A6b)
§13 =& =0, (A6c)
£33° = =€/, (A6d)
which produces the reduced braid matrix
p 0 0

xi@=e""1op 0 (A7)

00 e—i7r/3

(but we will show in Appendix B that this solution is inconsistent with the equations from three-quasihole braiding),
and the consistent solution,

D in/3
&,° = 7?1 ip;gv (A8a)
§12 = Ay, (A8b)
&2 =n"(p+p 0%, (A8c)
&2 =n"(+p 0%, (A8d)
5332 = n_D(l —p)2§112, (ABe)

which produces the reduced braid matrix

X1(2) = e ™
p! 0 0
0 plp+p~t—1) ™1 —p)/p+pt |- (A9)
0 +e ™PA1—p)y/p+p! p+p -1
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This two-quasihole reduced braid matrix is the same as that in Ref. 36 except for two features: The D-dependent
phase on the off-diagonal elements (though this will later be removed with a unitary transformation), and the overall
Abelian phase, which here is e~/ and in Ref. 36 was e'™/2.

Appendix B: Three-quasihole Solution

The solution for the reduced braid matrix of three quasiholes begins similarly to that for two quasiholes. We first
constrain £7! using global path relations, Egs. (8) and (9), and mirror symmetry, Egs. (10) and (11). Applying the
former two in succession and filling in the data from Table II gives the constraint

=1 x £ D ; (B1)

where p is defined as in Appendix A, and A = exp [~27i(L/2 + 1)D/3]. This definition for A is seemingly the same
as that for A in Appendix A, but in the case of two quasiholes L = 1 modulo 3, and here L = 0 modulo 3.
The two mirror symmetry equations, (10) and (11), can be applied in succession to 77 to give

1 1
0 nP 0 n P
o1 = o1 . B2
€ n—D 0 6 nD 0 ( )
1 1
Equations (B1) and (B2) together constrain £°7 to be of the form
11 12 T]_~D§12 S

o1 — G2 PP —Ap&a —A'pty . (B3)

n P ;p&z 77713172511 —Apéiy
&1 —A7'pEy —Apéa a4

The structure of this matrix is almost identical to the corresponding matrix €7+ in Ref. 36, save that the D-dependent

phases n° and A are different. There, A was defined such that A2 = ¢/™P whereas here A2 = ¢%mP/3 = p=D_ We

might then find a braid matrix with a non-trivial dependence on D. However, the symmetry relations in Egs. (8), (9),

(10), and (11) also have additional D-dependent phases compared to their corresponding forms in Ref. 36, and we will

see that by following the same steps as in that reference to find the braid matrix solution, all the D-dependent phases

will conspire to cancel save for those on the off-diagonal elements which can be removed via a unitary transformation.
By requiring that £97 be unitary, we find the following constraint equations,

1=lénl + 2|62 + 6l (B4a)
0= A&y, " + AP0, — plél® — pléual, (B4b)
0=&n (€0 = 2871 pE" ) + &aa” s, (B4e)
1=3¢n|” + |&ual®- (B4d)

The locality of braiding tells us not only that some elements of x1(3) must be zero, as was the case for two quasiholes,
but also that the 2 x 2 block with off-diagonal elements must be equal to the equivalent 2 x 2 block in x1(2). This is
because the sequences of ground state patterns of the domain walls associated with the quasiholes to be braided are
the same for those two supersectors in the two- and three-quasihole cases. In other words, x1(3) must be of the form

x1(3) = e~/

plp+pt+1) +£ei™P/3(1 —p)y/p+p !
+e (L —p)/p+pt prp 1
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if Eq. (A9) is the correct reduced braid matrix for two-quasiholes, and of the form

X1(3) _ 6271'2’/3 . 7 (BG)
p 0
0 672’77/3

with p = &4, if Eq. (A7) is the correct matrix (which we will show is not the case). We find our constraint equations by
equating the product x1(3) = £77(£°7 /)T, obtained from adiabatic transport, with the forms above. We can perform
the two solutions in parallel by using only the elements of Egs. (B5) and (B6) that are zero in both. This produces
the constraint equations

0=p*€,% — A%(p — 1)p&1,? — p2E14°, (B7a)
0= A(p— D)p*enérn + A%pg% — P62, (B7b)
0= —&4 |p€11 + A(P - 1)512} + &14844. (B7c)

The set of constraint equations, (B4) and (B7), is solved when

9 67;91
" = ma (B8a)
G2 = A6y, (B8b)
&= +p " —1&,% (B8c)
En>=e"p+p ' - 1§, (B8d)
(B8e)
which produces the reduced braid matrix
X1 (3) — e—iﬂ-/3+i01 >
1
1
p(l _ p) :l:ei92+’i7rD/3p D +p—1 -1 (Bg)
iei@g—iﬂ’D/i%p P +p—1 —1 e2i02(1 _ p)

Just as in Appendix A, Eq. (B9) is the same reduced braid matrix as was found in Ref. 36 for three quasiholes,
except that here the off-diagonal elements have an additional D-dependent phase and the overall Abelian phase is
different.

We have yet to enforce consistency between the 2 x 2 blocks in the two- and three-quasihole braid matrices; to do
so we equate Eq. (B9) to Egs. (B5) and (B6) in turn. The latter produces a contradiction, because the off-diagonal
elements of Eq. (B9) are not zero for p = +i. Thus Eq. (A6) is not a consistent solution for two quasiholes, and Egs.
(A7) and (B6) are not consistent braid matrices. Enforcing consistency between Egs. (B5) and (B9) implies that

p+p =0, (B10)

where ¢ is the golden ratio, ¢ = (14 1/5)/2. In other words,
p = exp <:|:Z;T> , (B11)

or, if we define a = £1/5, p = exp (ima). This is all the same as in Ref. 36. However, here the s parameter is
defined differently in terms of p than in Ref. 36; we have defined p = —exp [-2mi(1 + $)/3], so the s parameter is
also constrained to be

s=2-%- (B12)
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Consistency also implies
e = p? (B13)
ez =1, (B14)
The expressions for x;(2) and x1(3) in Eqs. (13) and (14), respectively, have been simplified with respect to Eqgs.
(A9) and (B9) and have undergone a unitary transformation in which each state is multiplied by (—e!™P/3)#200,

where #200 is the number of 200200. .. strings in the thin torus pattern associated with that state. This unitary
transformation removes the dependence on the unknown parameter D.
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