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In this paper we discuss two-dimensional holographic metals from a condensed matter physics
perspective. We examine the spin structure of the Green’s function of the holographic metal,
demonstrating that the excitations of the holographic metal are “chiral”, lacking the inversion
symmetry of a conventional Fermi surface, with only one spin orientation for each point on the Fermi
surface, aligned parallel to the momentum. While the presence of a Kramer’s degeneracy across the
Fermi surface permits the formation of a singlet superconductor, it also implies that ferromagnetic
spin fluctuations are absent from the holographic metal, leading to a complete absence of Pauli
paramgnetism. In addition, we show how the Green’s function of the holographic metal can be
regarded as a reflection coefficient in anti-de-Sitter space, relating the ingoing and outgoing waves
created by a particle moving on the external surface.

I. INTRODUCTION

The past few years have seen a tremendous growth of
interest in the possible application of “holographic meth-
ods”, developed in the context of String theory, to Con-
densed matter physics. Holography refers to the applica-
tion of the Maldacena conjecture1, which posits that the
boundary physics of Anti-de-Sitter space describes the
physics of strongly interacting field theories in one lower
dimension. The hope is to use holography to shed light
on the universal physics of quantum critical metals2–4.
This paper studies the spin character of the holographic
metal, showing that its excitations are chiral in charac-
ter, behaving as strongly spin-orbit coupled excitations
with no inversion symmetry and spin aligned parallel to
their momentum (see the end of this section).
Quantum criticality refers to the state of matter at

a zero temperature second-order phase transition. Such
phase transitions are driven by quantum zero-point mo-
tion. In contrast to a classical critical point, in which
the statistical physics is determined by spatial configu-
rations of the order parameter, that of a quantum crit-
ical point involves configurations in space-time with a
diverging correlation length and a diverging correlation
time5–7. There is particular interest in the quantum criti-
cality that develops in metals, where dramatic departures
from conventional metallic behavior, described by Lan-
dau Fermi liquid theory8,9, are found to develop. Met-
als close to quantum criticality are found to develop a
marked pre-disposition to the development of anisotropic
superconductivity and other novel phases of matter10,11.
The strange metal phase of the optimally doped cuprate
superconductors is thought by many to be a dramatic
example of such phenomena11.
In quantum mechanics, the partition function can be

rewritten as a Feynman path integral over imaginary
time.

Z = Tr
[

e−βH
]

=

∫

D[O] exp
[

−
∫ h̄

kBT

0

dτL(O, τ)
]

(1)

where L is the Lagrangian describing the interacting sys-

tem and τ the imaginary time, runs from 0 to h̄/(kBT ).
Inside the path integral, the physical fields O are periodic
or antiperiodic over this interval. The path integral for-
mulation indicates a new role for temperature: whereas
temperature is a tuning parameter at a classical critical
point, at a quantum critical point it plays the role of
a boundary condition: a boundary condition in time8.
When a classical critical system is placed in a box of fi-
nite extent, it acquires the finite correlation length set
by the size of the box. In a similar fashion, one expects
that when a quantum critical system with infinite cor-
relation time is warmed to a small finite temperature,
the characteristic correlation time becomes the “Planck
time”

τT ∼
h̄

kBT
(2)

set by the periodic boundary conditions. This “naive
scaling” predicts that dynamic correlation functions
will scale as a function of E/kBT . Neutron scatter-
ing measurements of the quantum critical spin correla-
tions in the heavy fermion systems CeCu6−xAux and
UCu5−xPdx

12,13 do actually show E/T scaling. The
marginal Fermi liquid behavior of the cuprate metals that
develops at optimal doping is also associated with such
scaling. The most direct approach to quantum critical-
ity, pioneered by Hertz6,7, in which a Landau Ginzburg
action is studied, adding in the damping effects of the
metal. Unfortunately, the Hertz approach predicts that
naive scaling only develops in antiferromagnets below two
spatial dimensions. Today, the origin of E/T scaling in
the cuprates and heavy fermion systems, and the many
other anomalies that develop at quantum criticality con-
stitutes an unsolved problem. A variety of novel schemes
have been proposed to solve this problem, mostly based
on the idea that some kind of local quantum criticality
emerges14,15, but at the present time there is not yet an
established consensus. The hope is that holography may
help.
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Holographic approach

To understand the new approaches, we start with a
discussion of the Maldacena conjecture, which proposes
that the partition function of a quantum critical (con-
formally invariant) system can be re-written as a path
integral for a higher dimensional gravity (or string the-
ory) problem. In the “physical” system of interest the
space-time dimension is d while in the gravity problem
there is an extra coordinate r and the space time dimen-
sion is D = d+ 1.

The Maldacena conjecture can be written as an iden-
tity between the generating functional of a d dimensional
conformal field theory, and a d + 1 dimensional gravity
problem, ZCFT[j] = Zgrav[φ]

〈

e−
∫
ddx j(x)O(x)

〉

CFT
=

∫

D[φ] e−
∫
dr

∫
ddxLgrav [φ] (3)

Here j(x) is a source term coupled to the physical field
O(x), corresponding for instance to a quasi-particle. The
right hand side describes the “Gravity dual”, where the
gravity fields φ(x, r) must satisfy the boundary condi-
tion that they are equal to the source terms j(x) on
the boundary limr→∞ φ(x, r) = j(x). This condition
establishes the relation between the variables of the d-
dimensional field theory and the d+1 dimensional gravity
problem in (3). The lower dimensional theory is confor-
mally invariant, which implies that the state is critical
in space time, i.e quantum critical. From a condensed
matter perspective, the equality of the two sides implies
that the physics of the quantum critical system of inter-
est can be mapped onto the surface modes of a higher
dimensional gravity problem (Fig. 1).
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FIG. 1: Illustrating the surface excitations “propagating” into
the bulk. The vertical axis is the physical coordinate of the
critical theory (CFT), while the horizontal axis is the AdS
coordinate r. A physical picture for r is obtained as follows.
Consider the injection and removal of a particle on the bound-
ary of the AdS space, separated by a distance x, When the
point of injection and removal are nearby, the Feynman paths
connecting them will cluster near the boundary, probing large

values of r. By contrast, when the two points are far apart,
the Feynman paths connecting them will pass deep within the
gravity well of the Anti-de Sitter space, probing small values
of r close to the black hole. In this way, the additional dimen-
sion tracks the evolution of the physics from the infra-red to
the ultraviolet.

The notion that condensed matter near a quantum
critical point might acquire a simpler description when
rewritten as a gravity dual seems at first surprising, es-
pecially considering that the higher dimensional dual is
a “string theory” of quantum gravity. The essential sim-
plification occurs in the large N limit. Here, most of the
understanding derives from the particular case where the
Maldacena conjecture has been most extensively studied
and corroborated – a family of SU(N) supersymmetric
QCD models with two expansion parameters: a gauge
coupling constant g and number of gauge fields N2, as
summarized in Fig. 2. The corresponding gravity dual, is
a string theory with “string coupling constant” gstr and
a characteristic ratio lstr/L between the string length lstr
and the characteristic length of the space-time geometry
where the string resides. While gstr controls the ampli-
tude for strings to sub-divide, changing the genus of the
world-sheet, lstr constrains the amplitude of string fluc-
tuations. The correspondence implies

g ∼ gstr, gN ∼ (L/lstr)
4 (4)

N
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FIG. 2: Schematic diagrams for the critical (CFT) theory.
Region A can be computed perturbatively on CFT side but
is highly non trivial on the string theory side. This paper
is about region B where critical theory is strongly correlated
but computable with GR. The real physical models have only
N = 1, 2 and g ∼ 1 and thus are in the center of the diagram.

Each point of fig. 2 has a dual string description. For
large N and small g (region A) the critical theory can be
computed in perturbation series but a string description
is extremely complicated. Some have even suggested this
might be way of solving string theory by mapping it onto
many body physics16. The focus of current interest in
holographic methods is on region B, in the double limit
g,N →∞, that corresponds to lstr → 0 or just classical
gravity. In this sense then, the Maldacena conjecture, if
true, provides a new way to carry out large N expansions
for quantum critical systems. Since we don’t yet have a
working large N theory for quantum critical metals, this
may be a useful way of proceeding. A similar philosophy
has also been applied in the context of nuclear physics,
as a way to place a theoretical limit on the viscosity of
quark gluon plasmas17.
The field is at an extraordinary juncture. On the one

hand, it is still not known whether the Maldacena con-
jecture works for a much broader class of models, yet on
the other, the assumption that it does so, has led to an
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impressive initial set of results. In particular, a charged
black hole in Anti-de Sitter space appears to generate
a strange metal2–4, with a Fermi surface at the bound-
ary of the space and novel anomalous exponents in the
self-energy. A fascinating array of results for the strange
metals have been obtained, including the demonstration
of singlet pairing18 and even the development of de Haas
van Alphen oscillations in the magnetization in an ap-
plied field19.

Motivation and results

This paper describes our efforts to understand the ram-
ifications of these developments. One of the motivat-
ing ideas was to develop a better physical picture of the
strange metal. We were particularly fascinated by the at-
tempt to describe high Tc superconductivity by Hartnoll
at al20,21 (see22 for review): in the presence of a charge
condensate in the bulk, the boundary strange metal de-
velops a singlet s-wave pair condensate18. The formation
of singlet s-wave pairs indicates that the strange fermions
carry spin, motivating us to ask whether there is a para-
magnetic spin susceptibility associated with the strange
metal. This led us to examine the matrix spin-structure
of fermion propagating in the strange metal.
Spin is a fundamentally three dimensional property of

non-relativistic electrons, and in the absence of spin-orbit
coupling it completely decouples from the kinetic degrees
of freedom as an independent degree of freedom, a com-
mon situation in condensed matter physics. By contrast,
in the holographic metals studied to date, the particles
are intrinsically two dimensional. For these particles, de-
rived from two component relativistic electron spinors,
there is no spin. One way to see this is to look at two
components of the fermion, which describe the electron
and positron fields in two dimensions, leaving no room
for spin. How then is it possible to form a spin-singlet
superconductor from these fields, when there is no spin
to form the singlet?
In this paper, by examining the spin structure of holo-

graphic metals we contrast some important similarities
and differences between holographic metals and real elec-
tron fluids. In our work we have two main results:

1. We show that the excitations of the strange metal
are chiral1 fermions, with spins orientated parallel
to the particle momenta. Near the FS the Green’s
function becomes

Gw→0 =
Z(w)

ω − vFσ · k+Σ(ω)
+Gincoh (5)

The strong spin-momentum coupling generated by
the term σ · k means that the Fermi surface pre-

1 Here we use “chirality” in the sense adopted by condensed mat-
ter physics, to mean the helicity or handedness of a particle.

serves time-reversal symmetry, but violates inver-
sion symmetry. In particular, a simple spin reversal
at the Fermi surface costs an energy 2vFkF , so that
the spins are preferentially aligned parallel to the
momenta to form chiral fermions. In this way, spin
ceases to exist as an independent degree of freedom
in two-dimensional holographic metals, as opposed
to a spin degenerate interpretation (45). One of
the immediate consequences of this result is that
the most elementary property of metals, a Pauli
susceptibility, is absent.

2. We identify an alternate interpretation of the holo-
graphic Green’s functions2 as the reflection coeffi-
cient of waves emitted into the interior of the Anti
de Sitter space by the boundary particles, as they
reflect off the black hole inside the anti-de Sitter
bulk. Namely

G =MkR(ω,k) (6)

where R is the reflection coefficient associated with
the black hole and Mk is a known kinetic coef-
ficient. For bosons Mk = 1 while for fermions
Mk = M(ω,k) has more involved structure (44).
The reflection R contains the information about
the branch cuts and excitation spectra.

We discuss the full implications of these results in the
last section.

II. BACKGROUND FORMALISM

Our goal is to determine the holographic Green’s func-
tions using linear response theory. Here, for completeness
we provide some of the background formal development3.
For details, we refer the reader to extensive reviews23–26.
The main conjecture1 connecting currents j in lower

dimensional CFT and fields of the bulk gravity (as a limit
from string theory)

ZCFT[j] = Zgrav[φ] (7)

where φ and j are related by the boundary condition

j(x) = lim
r→∞

φ(r;x)rd−∆ (8)

the power of r reflects the scaling dimension of the source
dim[j] = ∆ − d. The source is coupled to the physical
field, better thought as quasi particle, denoted by O(x).
∆ is the conformal dimension of that field dim[O] = ∆,
namely

ZCFT[j] =

〈

exp

[
∫

ddxj(x)O(x)
]〉

CFT

.

2 We only use G to denote the retarded Green’s function.
3 Throughout the paper all the quantities are dimensionless in-
cluding e.g. temperature.
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This generating functional determines the physics of the
quantum system. The gravity part can be computed clas-
sically

Zgrav = e−Sgrav , (9)

derivatives of the generating functional Z[j] determine
the Green’s functions of the fields O

〈O〉 ≡ δZ[j]

δj

∣

∣

∣

∣

j=0

= lim
r→∞

r∆−d δSgrav[φ]

δφ
, (10)

The holographic Green’s functions can be obtain from
the quadratic components of the action. The equation
of motion then has two independent solutions near the
boundary

φ = Ar∆−d

in-going
+ Br−∆

out-going
+ ... , as r→∞ (11)

Usually the ingoing component A is referred as the “non-
normalizable” mode, while the outgoing component B is
the “normalizable” mode. Note how the exponents of r
match the dimensions of the source and the response O.
In the absence of the source term j, the solution must
vanish at infinity and the outgoing component vanishes.
Once we turn on the source j, the Maldacena condition
(8) that φ(r, x) → j(x) enables us to identify A as the
source

j ≡ A.

Accordingly, the outgoing mode corresponds to the re-
sponse4 〈O〉

〈O〉 = const · B

up to a numerical constant dependent on the particular
theory at hand. For a free scalar const = (2∆− d), for a
fermion const = iγt. In a systematic treatment one needs
to regulate the procedure by adding boundary terms, (see
appendix A).
Since the Green’s function is the linear response to the

source, it follows that up to a constant of proportionality

G = const · B/A. (12)

The procedure to extract the Green’s function of a
holographic metal is then:

1. Select a gravity Largangian, generally one allowing
an asymptotic AdS solution with a black hole.

2. Select the bulk field content and Lagrangian.

3. Select one of the fields with the quantum numbers
(spin, charge, etc) of the desired operator O.

4 indeed, after substituting (11) into (10) and varying it w.r.t.
source A (consequently setting source to zero) we are left with
the term proportional to B.

4. Solve the classical field equations in that back-
ground, including the backreaction on the gravity.

5. Find the asymptotics of the fields at the boundary.
Find the ∆, outgoing (leading) and ingoing terms
by comparing with (11).

6. The ingoing amplitude at the boundary represents
the source, the outgoing amplitude gives the re-
sponse, the Green’s function is the ratio of the two.

1. Examples

We now sketch these steps for the scalar and fermion
cases. The first step is to choose a background. One of
the well known solutions of Einstein-Maxwell equations
is the Reissner-Nordström (RN) black hole. This back-
ground involves a nontrivial electric field (Er = −∂rA0)
and asymptotically AdS metric gµν . In the units where
horizon r = 1, the metric, fields and temperature T are

ds2 = r2(−fdt2 + dx2i ) +
1

r2f dr
2, (13)

f = 1− Q2+1
r3 + Q2

r4 , (14)

T = 3−Q2

4π , A0 = µ
(

1− 1
r

)

. (15)

Alternate solutions to the metric differ only in the pro-
file function (”blackening factor”) f(r), and the horizons
are defined by the zeros of f(r) (as one approaches the
horizon time coordinate becomes irrelevant). The solu-
tion (13) describes a black hole with electric charge Q in
a space with negative cosmological constant. The neg-
ative cosmological constant causes the space-time to be
asymptotically AdS and thus to have a boundary. The
scalar potential A0 at the boundary goes to a constant µ,
the chemical potential of the boundary theory. Indeed,
the RN black hole is a result of steps 1-4 for just one
extra field in the bulk, gauge field Aµ, which is conjugate
to the charge currant operator J µ. A non-vanishing A0

then corresponds to a finite source for J 0, which is in
fact, the chemical potential µJ 0.
• Bosons. We choose a bulk action

S = SGR + SEM +

∫

d4x
√
g(−|Dµϕ|2 −m2|ϕ|2) (16)

and the boundary term for a stable solution

Sbnd = (∆− d)
∫

∂

d3x |ϕ|2, (17)

where SGR+SEM is Einstein-Maxwell action. (The term
m2 can sometimes be slightly negative5). The factor

√
g,

where g is the determinant of the metric, makes the mea-
sure relativistically covariant. This action implies the

5 So called BF bound27 m2 ≥ −9/4 for AdS4 with radius L = 1.
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Einstein-Maxwell equations, solved by the RN black hole
background (13-15) and the Klein Gordon equation for
the scalar φ in curved spacetime. For the boundary terms
see the appendix. The Klein Gordon equation in curved
space is then

(D2
µ +m2)ϕ = 0, (18)

where

D2
µ ≡ DµD

µ = (∇µ − iqAµ)(∇µ − iqAµ) =

= ∇µ∇µ − iq∇µA
µ − 2iqAµ∇µ − q2AµAµ. (19)

Here, the covariant derivative ∇µ is defined in terms of
the metric, for instance∇µ∇µφ = 1√

g∂µ(
√
g ∂µφ), metric

g is given in Equation (13). Using a little general rela-
tivity and the Fourier transformed ϕ = φ e−iwt+ikx one
can write (18) as (m=0)

φ′′ +
(r4f)′

r4f
φ′ +

(ω + qA0)
2 − fk2

r4f2
φ = 0. (20)

Now we are to solve the equation to find the asymptotics
and identify the ingoing and outgoing modes. Since it is
a second order differential equation, the full solution can
be found numerically, but the asymptotics at r→∞ are
easily extracted analytically, using f(r)→ 1.

φ′′ +
4

r
φ′ = 0 (21)

hence

φ = A+Br−3.

The leading ingoing term is a constant A, hence ∆ = 3,
while the outgoing term should be r−∆, cf. (11). To get
the proportionality constant we use (10).

〈O〉 = −3B, (22)

so the retarded Green’s function is

G = −3B/A (23)

which is actually a m = 0 case for G = (2∆− d)B/A.
• Fermions. We can introduce the action

S = SGR+SEM +Sϕ+

∫

d4x
√
g ψi(ΓµDµ−m)ψ (24)

with ψ = ψ†Γt, and Dirac gamma matrices Γµ. The
boundary action

Sbnd =

∫

∂

d3x ψψ. (25)

A fermion in 4 dimensions has four components (e.g. spin
up, spin down, electron, positron). By the nature of the
duality, to incorporate the source and response at the
boundary the number of boundary fermionic degrees of

freedom is a half that in the bulk47, and thus the bound-
ary electrons have two components. In addition to the
Einstein-Maxwell equation this action also implies the
Dirac equation

(ΓµDµ −m)ψ = 0 (26)

The covariant derivative Dµ has spin connections, which
can be conveniently accounted for by rescaling

ψ =

(

ψ+

ψ−

)

(grrg)
1/4

e−iωt+ikix
i

(27)

here gαβ are the components of the metric and ψ± are
two upper and two lower components of ψ. Writing out
(26) explicitly

(
√
grrΓr∂r − i

√

g00Γ0w + i
√

giiΓiki −m)

(

ψ+

ψ−

)

with: w = ω + qA0 (28)

As in the scalar case, to determine Green’s function, we
examine the asymptotics boundary behavior, r →∞. In
our basis6

(

m+ r∂r i
γµkµ

r

i
γµkµ

r m− r∂r

)

(

ψ+

ψ−

)

= 0, (29)

here kµ = (w,k). This is a 4 × 4 matrix equation with
the following solution.

ψ → r−
3
2

(

ψ+

ψ−

)

;

{

ψ+ = Arm +Dr−m−1

ψ− = Br−m + Crm−1 (30)

From the four terms we choose in- and out-going modes
in an analogous fashion to the scalar case, the leading
term Arm−3/2 is in-going, while the term Ar−m−3/2 is
outgoing and the dimension is

∆ = m+ 3/2. (31)

The other terms (C,D) are related to the first two. To
determine this dependence we need to substitute the
asymptotics back into the Dirac equation (26), which
leads to

B =
2m+ 1

iγµkµ
D. (32)

As in (23) the Green’s function can be expressed in terms
of A’s and B’s (note A and B are spinors):

GA = iγtB. (33)

As before, we obtain the coefficient iγt by taking a deriva-
tive of the action and γt is a part of the definition of ψ.
Armed with (32)

GA = γt
2m+ 1

γµkµ
D ≡MkD. (34)

6 In a special choice of basis, Γr =

(

1 0
0 −1

)

, Γµ =

(

0 γµ

γµ 0

)

,

where γ0 = iσ3, γx = σ2, γ2 = −σ1.
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III. REFLECTION APPROACH

In the previous section we made use of the ingo-
ing/outgoing terminology. In this section we identify
these modes explicitly. Here we show how to redefine
the problem in a form resembling the quantum mechan-
ics of a reflected wave. This can be done by transforming
coordinates according to ds = F (r)dr and rescaling the
wave function as ψ(r) = Z(r)Ψ(s)28. The original equa-
tion then becomes a zero energy scattering problem

(∂2s − V )Ψ(s) = 0, (35)

with a complicated and non-unique function V (s). (The
retarded Green’s function must be derived using an in-
falling boundary condition at the black hole horizon29.
An advantage of this approach is that the infalling wave
condition is derived as immediate consequence of the
scattering problem.)
Bosons. Consider again the scalar probe Equation

of motion (21) in the RN black hole geometry, defined
in (13-15). The generalization to the full backreacting
solution is straightforward. The rescaling of coordinates
and fields ϕ(r)→ φ(s)

ds = Fdr, ϕ = Zφ (36)

leads to the following

(∂2r +D1∂r +D0)ϕ→

(∂2s +
D1 +

F ′

F + 2Z′

Z

F
∂s +

D0 +
Z′′

Z +D1
Z′

Z

F 2
)φ = 0.

There are an infinite number of ways to tune equation
(21) to the form of the Schrodinger equation by canceling
∂sφ term. We will choose the non-unique combination

F = i/fr, Z = 1/r3/2. (37)

This leads to the zero energy scattering problem ∂2sφ −
V (s)φ = 0 with potential given by

V (r) =
w2 − k2f −m2fr2

r2
− f2

(

9

4
+

3f ′

2rf

)

(38)

It is useful to write the limiting values of this potential.
It turns out that it goes to a constant on both the horizon
and the boundary.

V (r →∞) = −m2 − 9/4, V (r → horizon) = ω2 (39)

Finally, we reformulate the Green’s Function as a reflec-
tion coefficient. Namely

φ(r →∞) = A
(

eis(∆−3/2) +Re−is(∆−3/2)
)

(40)

leading to

G(ω, k) = R (41)

-4 -2 2 4
s

-0.4
-0.3
-0.2
-0.1

0.1
VHsL

FIG. 3: Typical Schrodinger potential m2 = −2, Q2 =
3, k = 1, 1.6, 2, ω = 0 (from the top). The incoming wave
propagates from the right with zero energy.

Fermions in this case the reflection coefficient be-
comes a matrix. We have already written the Dirac equa-
tion in the black hole background (29). One can ”square’
the first order 4 × 4 matrix equation to obtain a second
order 2 × 2 equation. After rescaling the fields in the
same fashion as in the scalar case, the potential acquires
the same form as in the scalar case in fig. 3, but with the
different limits

V (r →∞) = −(m+ 1/2)2, V (r → horiz.) = ω2. (42)

As in (40) the solution is a superposition of incident and
reflected waves:

ψ+ →
(

eis(m+ 1
2
) +Re−is(m+ 1

2
)
)

A, (43)

where the reflection coefficient R is now a matrix. The
Green’s function is proportional to R up to a kinematic
factor Mk

G =MkR =
2m+ 1

(ω + qµ)− σ · kR. (44)

Here we use equation (34). However suggestive the
form of Mk is, its poles do not affect the physical non-
analyticities of the Green’s function G: it is R which
contains all the relevant poles and branch cuts.

IV. SPIN STRUCTURE

We now return to the question of the spin character of
the holographic fermion. In quantum critical metals, the
spin degree of freedom plays an essential role. For exam-
ple, the application of a magnetic field, via the Zeeman
coupling, allows one to tune the system through a quan-
tum critical point. The presence of critical spin fluctua-
tions is thought to play an important role in break-down
of Landau Fermi liquid behavior. This then raises the
question as to whether the holographic fermions obtained
by mapping from four-dimensional anti-de-Sitter space,
carry a spin quantum number. Furthermore, what is the
nature of the soft modes that drive the quantum critical-
ity, and is it possible to gap these modes, driving a tran-
sition back into a Fermi liquid? The boundary fermions
that form about a D = 4 anti-de-Sitter space are Dirac
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fermions described by a two component spinor. Faulkner
at al18 have shown that when a condensed Bose field20

is introduced into the bulk gravity dual, pairing with
s-wave symmetry is induced in the boundary fermions.
This establishes that the boundary fermions do indeed
carry spin. However, as we shall now show, this spin is
“chiral”1 and is aligned rigidly with the momentum of
the excitation at the Fermi surface. There is no inver-
sion symmetry, and at each point on the Fermi surface
there is a single spin polarization. However, time reversal
is not broken, and reversing the spin also implies revers-
ing the momentum, so it is still possible to form pairs by
combining fermions with opposite spin on opposite sides
of the two dimensional Fermi surface.
It is often tacitly assumed that the excitations of holo-

graphic metals are non-relativistic fermions, with an in-
dependent spin degree of freedom. In this case the
Green’s function Gαβ = δαβG would be proportional to
the unit operator as in307

Gαβ = δαβ
1

ω − vF (k − kF )− g2Σ
(45)

Here we shall argue that this is not the case and
the spin-orbit coupling remains very large in holographic
metals despite the formation of a Fermi surface, forcing
the spin to align with the momentum.
First consider the relativistic case without the black

hole when the surface excitations are undoped and form
a strongly interacting Dirac cone of excitations with
Lorentz invariance. The corresponding Lorentz invari-
ant correlation function is 〈OŌ〉−1 = C̃kµγ

µ, where

Ō = O†γ0 and C̃ is an arbitrary function of 3-momentum
k =
√
ω2 − k2 . For non-relativistic applications we are

interested in 〈OO†〉 and we turn to a Hamiltonian for-
malism, treating time and space separately. The Green’s
functions takes the form GLor = 〈OO†〉 = −〈OŌ〉γ0

GLor(ω,k) = [C̃(k)(k · σ − ω)]−1. (46)

For the case of zero bulk fermion mass C̃(k) = 1/k. Here
we have introduced the Pauli matrixes σi = γiγ0, for
i = 1, 2. Eq. (46) describes two Dirac cones as depicted
on fig.4-a, where upper and lower cones have the opposite
chirality. There is only one spin orientation parallel to
the momentum at any given energy.
Once we add a charged black-hole, the boundary ex-

citations are “doped”, acquiring a finite Fermi surface
(and Fermi velocity vF ) that breaks the Lorentz invari-
ance down to a simple rotational invariance. The only
rotationally invariant way in which spin can enter, is in

7 The effective model of ”Semi-Holographic Fermi liquid” was pro-

posed, with lagrangian L = i[c†
k,α

(ω− ǫk +µ)ck,α +χ†Σ−1χα +

gc†
k,a

χα + h.c.] leading to the Green’s function (45) degenerate
in α.

6Energy(a) (b)

FIG. 4: Typical dispersion and Fermi surface of Dirac fermion
in 2+1 (a); and the holographic metal from fig.6-a (b).

the form of a scalar product with the momentum k · σ.
The most general Green’s function now takes the form

G(ω,k) = [C1(ω, k)k · σ + C2(ω, k)]
−1 (47)

where C1 and C2 are two arbitrary functions which de-
pend on the frequency ω and the magnitude of the non-
relativistic momentum k = |k|.
The physical properties of the theory depend on the

form of the coefficients C1,2. For example, if C1 = 0,
then the Fermi surface would be spin degenerate (σ in-
dependent). If C1 is finite and purely real, the momen-
tum becomes strongly coupled to the spin via k ·σ (spin
flip does change the ground state) and we are dealing
with chiral excitations. One can interpret C1 as a wave-
function renormalization: C1 = vFZ

−1 and C2 as a self
energy: C2 = Z−1(ω + Σ − µ). However, if C1 has an
imaginary part, while the chiral property remains, spin
flips become highly incoherent in nature, so a standard
decomposition of the quasiparticle along the lines of the
electron phonon problem is not possible.
To bring out the chiral (C1 6= 0) properties we intro-

duce the chirality projection operators

Π± =
1

2

(

1± k · σ
k

)

, (48)

which leads to

G = Π+G11 +Π−G22, (49)

where G11 and G22 are the eigenvalues of the matrix G
and 2kC1 = G−1

11 −G−1
22 , 2C2 = G−1

11 +G−1
22 .

Fig. 5 illustrates a typical numerical solution for the
eigenvalues. ImGii is plotted for fixed k close to the
Fermi surface. One eigenvalue has a peak, which we
interpret as the chiral quasiparticle component to the
spectral function while the other, corresponding to the
incoherent background created by flipping the spin anti-
parallel to the momentum, lacks any sharp features and
goes to zero at the Fermi surface. The spectral function
A(ω,k) = 1

π ImTrG is2

A(ω,k) =
1

π
Im [Gchiral(ω,k) +Gincoh(ω,k)], (50)
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FIG. 5: Typical behavior of a spectral function πA(ω, k) =
ImG11 + ImG22 at fixed momentum k = kF + 10−2. ImG11

has a spike that sharpens for k → kF and ImG22 is sup-
pressed. Snapshot for RN black hole with q = 2, m = −1/5.

where Gchiral refers to the coherent part of the resonance
and Gincoh is the incoherent background.

To further emphasize the chiral structure we use an
analytic form of the Green’s function. Near k = kF and
ω → 0 this can be obtained31 by matching the infra-red
’inner’ region of the RN black hole to the asymptotic AdS
’outer’ region.

G11 =
z

ω − vF (k − kF ) + c1ω2ν
, (51)

where z, vF are real and c1 is a complex constant. The ex-
ponent ν ≡

√

m2 + k2F − q2/2/
√
6 depends on the mass

and the charge of the fermion. Armed with (49) we arrive
to

G =
z

ω − vF (k · σ − kF ) + c1ω2ν
+Gincoh (52)

Finally it is interesting to find a dispersion for the
quasi-particle: the line where the real part of the inverse
G-function is zero, Re G−1 = 0. Since the imaginary
part is zero only at ω = 0, the fermi surface is the in-
tersection of the two lines. The results are illustrated
in fig. 6. The case of a massless fermion is particularly
interesting, we see that the dispersion relation actually
follows a parabolic form

√

p2 + (m∗)2 showing that the
holographic fermion running around the doped black hole
has developed a finite effective mass m∗. The dispersion
at the Fermi surface is very similar to the linear disper-
sion of chiral fermion.

Summarizing the main points:

(a) The Fermi Surface is rotationally invariant and has
a single non-degenerate fermionic excitation at ev-
ery momenta,

(b) The spin of the coherent excitations lies parallel to
the momentum as shown in figure 4, giving rise to
chiral quasi-particle interpretation,

(c) The incoherent background is generated by a spin-
flip of a coherent chiral quasiparticle.

(a) m = 0

-1

1

(b) m = −1/10

FIG. 6: Density plot of ReG−1. The zeros of the inverse
Green’s function represent the quasi-particle dispersion and
are depicted by the red line (the wavy line indicates discon-
tinuities). Left panel: m = 0. Right panel: m = −0.1. The
dispersion crosses through the Fermi wavevector at zero en-
ergy. (The inset: lower energy range is shown. As in fig.4-b,
there is a dispersion branch with a different effective mass
m∗)

V. DISCUSSION

The possible application of holographic methods to
condensed matter physics AdSCMT is based in part on
a dream of a deep universality: the idea that the scale-
invariance of quantum criticality in metals might enjoy
the same level of universality seen in statistical physics.

Nevertheless, there is still a huge gulf to be crossed.
From a String theory perspective, there is still a need
to show that semi-classical gravity metric used in the
theories emerges as a consistent truncation32–34 of string
theory on a certain “brane” configuration. From a con-
densed matter perspective, we lack a systematic method
to constructing an AdS dual: one encouraging direction
may be to map the renormalization group flows of the
quantum theory onto a higher dimension35.

Against this backdrop, the field has taken a more prag-
matic approach of simply exploring the holographic con-
sequences of anti-de-Sitter space, assuming that all is
well. One can not fail to be impressed by the discovery
that a charged black hole nucleates a strange metal on its
surface, with properties that bear remarkable similarities
to condensed matter systems: the emergence of a critical
Fermi surface with quantum oscillations, the presence of
E/T scaling, Pomeranchuk instabilities36 and even the
phase diagram of type II superconductors37.

Our interest in the field was sparked by a naive impres-
sion that progress in holography resembles the history of
condensed matter physics “running in reverse”! Rather
than starting with the simple Pauli paramagnetic metal
and building up to an understanding of Fermi liquids
and ultimately quantum criticality, holography appears
to start with the critical Fermi surface, working back-
wards to the most basic elements of condensed matter
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physics. This led us to ask, whether one calculate the
most elementary property of all, the Pauli susceptibility
in response to a Zeeman splitting.

Our work has provided a interpretation of the holo-
graphic Green’s function as a momentum and frequency
dependent reflection coefficient of waves emitted by sur-
face particles, reflected off the horizon of the interior
black hole. We have also shown that the excitations
of the strange metal are intrinsically chiral, with spins
locked parallel to the momentum by a strong spin-orbit
coupling with no inversion symmetry. The situation is
reminiscent to the surface of 3D topological insulator.

This observation means in fact, that there is no Pauli
susceptibility of the two dimensional holographic metal:
the Fermi sea is already severely polarized by the rela-
tivistic coupling between momentum and spin. Indeed,
from a physical perspective, the strange metallic behav-
ior seen in these systems would appear to be a conse-
quence of soft charge or current fluctuations rather than
spin fluctuations. In recent work18, Faulkner et al have
discovered that when a charge gap is introduced by con-
densing a boson in the AdS bulk, the holographic metal
develops sharp Fermi-liquid-like quasiparticles. This is
consistent with this interpretation.

Spin plays a major role in the quantum criticality of
condensed matter. In many systems, the application of
a field, via the Zeeman splitting is the method of choice
for tuning through criticality38,39. Clearly, this part of
the physics is inaccessible to the current approach. The
absence of a Zeeman-splitting in holographic metals was
first observed by adding a monopole charge to the black
hole40,41.

Various authors have explored the possibility of intro-
ducing spin as an additional quantum number. The sim-
plest example is the ”magnetically charged” black hole,
with an “up” and a “down” charge to simulate the Zee-
man splitting, coupling to the fermions via a “minimal
coupling” (a spin-dependent vector potential)42. By con-
struction, this procedure does produce an explicit “Zee-
man” splitting of the Fermi surface, however the infra-red
character of the problem, described by the interior ge-
ometry of the gravity dual, is unchanged and the strange
metal physics of the “up” and “down” Fermi surfaces are
essentially unaffected by the magnetic field.

An alternative approach might be to introduce the
Zeeman term to the holographic metals by invoking a
non-minimal coupling to electromagnetic field, akin to
the anomalous magnetic coupling of a neutron or proton.
A number of recent papers have considered the effect of
such terms in the absence of a magnetic field, where they
play the role of anomalous dipole coupling terms43,44.
At strong coupling these terms have been found to inject
a gap into the fermionic spectrum interpreted as a Mott
gap44. However, when a monopole charge is added to
the black hole to generate a magnetic coupling to these
same terms, we find they do not generate a splitting of
the chiral Fermi surface, nor do they change the interior
geometry of the gravity dual. The construction of a

holographic metal with non-trivial spin physics may
require considering 3-dimensional holographic metals
projected out of 4+1 dimensional gravity dual45, where
the additional dimensionality permits four-component
fermionic fields with both left and right-handed chirali-
ties.

Note: Shortly before posting our paper, a related
work by Hertzog and Ren48 appeared with results
that complement those derived here. These authors
concentrate on the behavior of gravity duals with a
large black-hole charge and a non-zero fermion mass,
a limit where the holographic metal contains multiple
Fermi surfaces. They find that in this limit, in addition
to a Rashba component σ · (ẑ × k) the dispersion
of the holographic metal also develops a quadratic
spin-independent dispersion reminiscent of more weakly
spin-orbit coupled fermions. The Rashba term σ · (ẑ×k)
obtained by Herzog and Ren is equivalent to the helicity
term σ ·k described in our paper after a rotation of spin
axes. In the limit of small black-hole charge considered
here, with a single Fermi surface, the helicity term in
the Hamiltonian entirely dominates the spectrum.
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Appendix A: Boundary terms

The general idea of holographic renormalization46 is
to add boundary terms to the classical gravity action.
This terms simply make sure that all sensible physical
quantities are finite. Good examples of such quantities
are the total energy of the bulk (mass of a black hole
inside) and the entropy. Those have nothing to do with
duality and in some cases were introduces long before it,
for instance by Hawking in 70’s to actually make sense
of his famous black hole temperature calculation. In Ad-
SCFT it is useful to think about stability of a given AdS
solution.
The Dirac action for fermions in the bulk is of the form

S = i

∫

dd+1x
√
g ψ(γµDµ −m)ψ (A1)

in the bulk ψ+ and ψ− are related through each other
momenta, but the conjugate momenta for ψ+ is zero:

Π+ = −
√

g

grr
ψ− but Π+ = 0 (A2)

Which is unphysical since we expect both momenta to
represent a physical degree of freedom. The naive way to
fix it which turns out to be the correct one is to change
the bulk action by symmetrizing the kinetic term: split
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the derivative in half. One is acting to the left (repre-
sented by the arrow) and another is to the right.

S → i

2

∫

dd+1x
√
g ψ(γµ

−→
Dµ − γµ

←−
Dµ − 2m)ψ (A3)

which is different from the original action by a boundary
term

δSbound =

∫

∂

ddx

√

g

grr
ψ+ψ− + h.c. (A4)

And we are back to equation (25). We refer to47 for more
details.
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