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We investigate the charge transport properties of planargimous graphene that is fully topologically dis-
ordered, in the form ofp? three-fold coordinated networks consisting of hexagomajs; but also including
many pentagons and heptagons distributed in a random fashlsing the Kubo transport methodology and
the Lanczos method, the density of states, mean free pathseaniclassical conductivities of such amorphous
graphene membranes are computed. Despite a large incnethgedensity of states close to the charge neutral-
ity point, all electronic properties are dramatically dsdgd, evidencing an Anderson insulating state caused by
topological disorder alone. These results are supportdchbgauer-Bittiker conductance calculations, which
show a localization length as short as 5 nanometers.

PACS numbers: 72.80.Vp, 73.63.-b, 73.22.Pr, 72.15.LR&Gh

The physics of disordered graphene is at the heart of maeinttig properties such as Klein tunneling, weak antiloca
ization or anomalous quantum Hall effect (see revigius The precise understanding of individual defects on ed@it and
transport properties of graphene is currently of great@s& For instance, graphene samples obtained by large-scalagtion
methods display a huge quantity of structural imperfectiand defects that jeopardize the robustness of the othesxiep-
tionally high charge mobilities of their pristine countarts’. Indeed, the lattice mismatch-induced strain betweeniggia@
and the underlying substrate generates polycrystalliaglggne with grain boundaries that strongly impact trarigpoperties.
However, despite the large amount of disorder, such grapfiekes (when deposited onto oxide substrates) usuallytaiaia
finite conductivity down to very low temperatures owing teaton-hole puddles-induced percolation effects thatlpde local-
ization phenomena close to the Dirac pbirthe predicted Anderson localization in two-dimensioriabtdered graphene has
been hard to measure in non intentionally damaged graphecentrast to chemically modified graphéfieNevertheless, in a
recent experiment it was possible to screen out electréesipuddles using sandwiched graphene in between two bunode
layers, together with an additional graphene control fayAs a result of puddles screening, a large increase of thstivty
was obtained at the Dirac point, evidencing an onset of thaefgon localization regime.

Beyond individual defects and polycrystallinity, a higharel of disorder can be induced on graphene to the pointtaiioing
two-dimensional fully amorphous networks composed;&fhybridized carbon atoms. Such networks contain rings dtteer
hexagons in a disordered arrangement. The average ringssspe according to Euler’'s theorem, allowing these systéms
exist as flat 2D structures. Experimentally, such amorphaasdimensional lattices have been obtained in electr@arib
irradiation experiment8', and directly visualized by high resolution electron traission microscopy. Previously, indirect
evidence for the formation of an amorphous network was nbthusing Raman spectroscopy in samples subject to electron
beam irradiatiot?, 0zone exposuté and ion irradiatiof. In all these cases, an evolution from polycrystalline tamgshous
structures was observed upon increase of the damage treatrimé®, further evidence of the formation of an amorphous
network was obtained through transport measurements.eTihdiate the transition from a weak localization regiméha
polycrystalline samples to variable range hopping trartspehe strongly localized regime for amorphous samplegvédenced
by the temperature dependence of the conductivity. Loatdin lengths were estimated to be of the range 0.1 to 10 nimein t
amorphous samples, depending on the degree of amorphiz&iom the theoretical side, models of the amorphous n&twor
have been proposed using stochastic quenching methadsl molecular dynamit¢& ™8 Electronic structure calculations show
that the amorphization yields a large increase of the deos$istates in the close vicinity of the charge neutralitynttr’.
Despite the expected reduction of the conduction progedies to strong localization effects, Holmstrétnal ¢ suggest that
disorder could enhance metallicity in amorphized samjaespntrast with the experimental evidence.

In this Letter, we explore the transport properties of tvilmehsionalsp? lattices with a massive amount of topological
disorder, encoded in a geometrical mixture of hexagons péthtagon and heptagon rings. The calculations are dong usin
two complementary approaches: a Kubo formulation in whiad ¢onductivity of bulk 2D amorphous graphene lattices is
determined, and a Landauer-Biittiker formulation wheeedbnductance of stripes of amorphous graphene contacteuirti
infinite pristine graphene electrodes is calculated. Bpfir@aches lead to similar findings. Depending on the ratiwéen odd
versus even-membered rings, a transition form a graphkeelectronic structure to a totally amorphous and smolettienic
distribution of states is obtained. The stronger the depaftom the pristine graphene, the more insulating is thieesponding
lattice, which transforms into a strong Anderson insulatidh elastic mean free paths below one nanometer and latializ
lengths below 10 nm close to the charge neutrality point.s€rsiructures are therefore inefficient to carry any sizeibteent,



and unsuitable for practical electronic applications sagtouch screens displays or conducting electrodes, laresting for
scrutinizing localization phenomena in low dimensionatenials.

Models of amorphous grapherédmorphous models of graphene are prepared using the Waieer-Weaire (WWW)
method®2C introducing Stone-Wales defe¢tsnto the perfect honeycomb lattice. These networks can beidered as the
amorphous versions of the Haeckelite structures propogd@troneset al?2. To generate the structures, periodic boundary
conditions are imposed and the entire network is relaxet thie Keating-like potenti&t?® A further relaxation of these
models using forces from Density Functional Theory leaddigiht changes in the bonding distances and angles, butttaairy
identical radial distributions functions and, most impaitty, electronic properties like the density of statestasvn in Ref. 17.
Fig. 1(a)-(b) show pieces of the two studied sample S1 an@/Bi2h respectively contain 10032 and 101640 atoms (all@fth
with three-fold coordination as the honeycomb lattice, topblogically distinct). The amorphous character of thegles is
demonstrated by analyzing the radial distribution funtt@s shown in Ref. 15. Table | shows the parameters thatcleazze
the two samples. For sample S1%24f the elementary rings are pentagonsy&2xagons and 24 heptagons, while sample
S2 has a larger share of odd-membered rings. In both santpéeaumber of heptagons is the same as that of pentagons, as
required by Euler’s theorem, and these systems can exisbwiiin overall curvature as flat 2D structures with somedisns
of bond lengths and angles, although they may pucker unadee sircumstances. We will only be concerned with the planar
structures here. Sample S2 is an extreme case, having vehefeagons and being furthest from the pristine honeycottibda
This is useful to accentuate the differences between dlipgtand amorphous samples, and to gain perspective. Neless,
it is likely that sample S1 is nearer to physical reality ds less strained.

For the calculation of the Landauer-Buttiker conductameeset up models in which an amorphous stripe is contactéddoy
pristine graphene electrodes separated by a distanas shown in Fig. 1(c). We use models with increasing valtids, ¢o
explore the dependence of the conductance on the lengtle @fntforphous contact in the transport direction. The models a
periodic in the direction perpendicular to the stripe, vdtperiodicity ofii’=11.4 nm, and they have the same ring statistics as
the bulk sample S1 described above.

Electronic Properties The electronic and transport properties of these disetattices are investigated usingr* or-
thogonal tight-binding (TB) model with nearest neighboppimg~y, = 2.8 eV'® and zero onsite energies. No variation of the
hopping elements with disorder is included in the model asdbength variation does not exceed a few percehtTable 1);
all dependence on disorder stems from the ring statistib&his expected to be the dominant efféctFig. 1(d) shows the
density of states (DOS) of the two disordered samples, begetith the pristine case (dashed line) for comparison. Bar,
which keeps 5% of hexagonal rings, displays several noticeable featsiaslar to those found in previous studies®. First,
the DOS at the charge neutrality point (Fermi level) is fotmbe increased by a large amotiadditionally, the electron-hole
symmetry of the band structure is broken by the presencedhoeimbered rings which generate quasibound states atargson
energie®. The hole part of the spectrum is still reminiscent of thephene DOS, with a smoothened peak at the van Hove
singularity, while for the electron part a second maximumesys close to the upper conduction band edge. By reduditiggfu
the ratio of even versus odd-membered rings (sample S23eitend maximum develops to a strong peak at abbost 2.5+
while spectral weight al/ = 3~ is suppressed. The redistribution of DOS at the upper cdimuband edge is a signature
of odd-membered rings and its strength with increasing rarmabsuch rings relates the statistical distribution ofamnvith the
DOS features.

Transport Methodology To explore quantum transport in these topologically disced graphene samples, a real-space
orderN quantum wavepacket evolution approach is employed to cterthe Kubo-Greenwood conductivity Such method,
pioneered if?, has been successfully applied to many different types stesys, and in particular it has allowed to scrutinize
Anderson localization in oxygen functionalized graptefde zero-frequency conductivity for carriers at enefiig computed
as

d
_ 2 . 2
Ode = € p(E)th_glothX (E,t) Q)

wherep(E) is the density of states amiX ?(E, t) is the mean quadratic displacement of the wave packet aggeand time
t:

Te[5(E — H)|X () — X(0)]?]
Tr[6(E — H)]

AX?(E,t) = (2

A key quantity in the analysis of the transport propertiethesdiffusion coefficientD, (E,t) = %AXQ(ER t), which in the
long time limit gives the conductivity through Eq. 1. Assungian isotropic system in theandy directions, the 2D diffusion
coefficient become®(t) = D, (t) + D,(t) = 2D,(t). All information about multiple scattering effects is caimed in the
time-dependence db(¢).

Numerically, whatever the initial wavepacket featurB$t) starts increasing ballistically at short times, then resch max-
imum value which depends on the disorder strength, and fid@tays as a result of quantum interferences, the strerigth o
which will dictate either a weak or a strong Anderson locdliian regime. The semiclassical quantities (elastic meea f
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path/.(E) and semiclassical conductivitys.) are derived from the maximum dP(¢) as/.(F) = D™(E)/2v(FE) and
osc(E) = 1e*p(E)D™(E), respectively (withv(E) being the carrier velocity).

The conductance of the amorphous stripes contacted tingriptaphene electrodes is computed using the Landau@k&u
approach’:

G(E) = GoT(E) = 2—22137[7%} (3)

whereT'(E) and¢(E) are the transmission probability and transmission mateigpectively, which can be computed from the
Green'’s functiorG(E) in the contact region and the broadenIig) of the states due to the interaction with the left and right
electrodes. We calculate the conductance of the stripashvaine infinite and periodic in the direction parallel to theerface
with the graphene electrodes (y axis in Fig. 1(c)). Despitevtery large periodicity of our models, we perform a thotoug
sampling of thek,-points in that directio?f, to obtain the appropriate V-shaped conductance of grapinghe thermodynamic
limit. G is given per supercell of periodicitif’=11.4 nm. Note that, with this geometry, conductivity aneaactance are
related thouglr = £G.

Mean Free Path, Conductivity and Localization Effectsig. 2 shows the time dependence of the normalized difusi
coefficientD(t) / Dmax for two chosen energies and for both samples S1 and S2. FagyeRe= —2+, the short-time ballistic
regime is followed by the saturation of the diffusion coeéfitt typically after0.1 ps (for both samples S1 and S2). From the
saturation valued,.(E) ando. are deduced and reported in Fig. 3. A striking feature is #rg low value of the mean free
path/., below0.5 nm for the energy window around the Fermi level (where the EX®nsiderably larger than that of pristine
graphene). For negative energies (holes) far from the ehaggtrality point, a considerable increase of more tharooder of
magnitude in the mean free paths is observed. The increasesoor smaller binding energies for sample S1 than for $amp
S2, in good correlation with the changes observed in the @®:h, around the van Hove singularity, deviates from thstioe
graphene one more strongly for sample S2).

We observe in the inset of Fig. 3 that. shows a minimum value™® aboutde?/7h, in agreement with the theoretical limit
in the diffusive regime, already confirmed for other typeslisbrde?'32 However, in contrast to prior studies, conductivity
values near the minimum are obtained over an energy rangera eV around the charge neutrality point. This indisaibat
transport is strongly degraded in the amorphous networkpaoed to pristine graphene, for which the conductivity éases
rapidly when the Fermi level is shifted away from the Diradnpo The charge mobilityy(E) = os.(E)/en(E), with n(E)
being the carrier density, is found to be abvotm?V ~ts—! for n = 10 — 10'2 cm~2, orders of magnitudes lower than those
usually measured in graphene sampleSuch low conductivity and mobility values should be meadwat room temperature,
where the semiclassical approximation is expected to hold.

The obtained short mean free paths and minimum (semictdssionductivities indicate a further marked contributimi
guantum interferences turning the system to a weak andgsinsnlating system with temperature drop. Interferenfeces are
evidenced by the time-dependent decay of the diffusionficteit D (t)/ D...x @s clearly seen in Fig. 2, although with large
differences depending on the chosen energy.H~er —2+,, such decay is weak but clearly more pronounced for the Splsam
(which is more disordered than S1). In sharp contrast, ipa@dn effects are much stronger at the charge neutratityt@nd
develop from much shorter timescale (few nanoseconds)sel tifferences will be reflected in the corresponding laedion
lengths.

Based on the scaling theory of localization, an estimatéefdcalization length of electronic states is inferredrfig{ £) =
l.(E) exp(rhos.(E)/2e2)3. The results are shown in Fig. 2 (inset). The amorphous ssvgrke confirmed to be extremely
poor conductors, with localization lengths as lowas 5 — 10 nm over a large energy window around the charge neutrality
point. One also observes thaican vary by more than one order of magnitude depending onisioedered topology of the
sample and rings statistics.

To further confirm the localization lengths estimated usiogling theory, we compute explicitly the conductance ef th
amorphous graphene stripes contacted with pristine gregpélectrodes, using the geometry shown in Fig. 1(c), as @ium
of the length of the amorphous contdct Fig. 4 shows the conductance curves for two stripes Wwith- 1.6 and 8.6 nm,
respectively, compared to that of a graphene contact witséime lateral size in the supercéll (= 11.4 nm). Itis clear that
the conductance of the amorphous samples is greatly reduittedespect to that of graphene, and that the reduction isemo
pronounced as the length of the amorphous contact increalses while the conductance for the stripe with the smallesgth
is relatively smooth, it becomes more noisy with increading his reflects the transition from a diffusive system, in ethihe
length of the amorphous contact is longer than the mean a#elqut shorter than the localization length, to a strongbglized
one in which the localization length is shorter than the teraf the amorphous region.

From the variation of the Landauer-Buttiker conductanith i, we can extract reliable values of the localization lengalss
in the Anderson regime the conductance should decéi(&$ ~ e~~/¢. The inset in Fig. 4 shows the value of the conductivity
(obtained from the Landauer-Bitikker conductance) foesa stripes withl, ranging from 1.6 to 15.3 nm, averaged over an
energy window of 1.5, around the Fermi energy. A fit of the resultsa@lL) ~ %e*L/f yields¢ = 5.8 nm. This value is
fully consistent with that obtained above using scalingtlidor energies close to the Fermi level, and confirms tmathése
amorphous structures, strong localization effects shootdir at low temperatures at distances of less than 10 nmreSults
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are consistent with the experimental ones from transpoaserements by Zheet al 14, which show values in the range between
0.1 and 10 nm for samples amorphized by ion radiation.

In conclusion, we have shown that topological disorder @aloauses amorphous graphene to be a strong Anderson insula-
tor. The increase of the density of states close to the chaggeality point is associated with quantum interferendéctv
inhibits current flow at low temperatures. Very short mea&®fpaths and localization lengths are predicted, in link véitent
experimental evidence in graphene under heavy ion iriadiatamagé®.
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TABLE I: Characteristic parameters for the two samples obgrhous graphene, S1 and S2

S1 S2
number of atoms 10032 101640
% of n-membered ringsi{= 5/6/7) 24/52/24  44/12/44
<n?>— <n>? 0.47 0.88
RMS deviation of bond angles 1102 18.09
RMS deviation of bond lengths 0.044¢  0.060A

Fermi energy (in units of) 0.03 0.05
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FIG. 1: (color online). (a), (b) Details of amorphous graphisamples S1 and S2, respectively, used to compute the atmitguwith the
Kubo approach. (b) Scheme of setup for the Landauer-Béttikalculations. The grey area represents the amorphopisegra stripe. Periodic
boundary conditions are used in thelirection. The graphene electrodes are semi-infinite inctection. (d) Total density of states of the
two amorphous samples. The pristine crystalline graphase (dashed lines) is also shown for comparison.
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FIG. 2: (color online) Normalized time-dependent diffusimefficients for two selected energies for both samplesn81S2. Inset: localiza-
tion lengths as a function of the carrier energy
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FIG. 3: (color online) Elastic mean free path versus eneogytfe two samples. DOS of sample S1 is also shown for conguaris rescaled
unts. Inset: semiclassical conductivity of correspondattices.



10

20—

\ | ! | ! | ! |
-t T ! ot

L 1.2 - ]
| 209 n - _

% i 1 — L=1.6 nm
L5 0.6f ] — L=8.6nm;

0.3 - — graphene
\ ob—— 1 1 111 . |
10E 0 5 10 A 20 25 30 i

G [2€/h]

| : | . I M’ , : |
-0.6 -0.3 0 0.3 0.6

Ely,]

FIG. 4: (color online) Landauer-Bittiker conductancer (f6=11.4 nm) of two amorphous stripes contacted to grapherstreties with
L = 1.6 and 8.6 nm, respectively. The conductance of a pristinengnag contact with the same lateral size (11.4 nm) is showecofoparison.
The inset shows the dependence of the conductivity on theedstizeL; symbols: calculated points; line: fit ta(L) ~ %e*L/E.




