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We investigate the charge transport properties of planar amorphous graphene that is fully topologically dis-
ordered, in the form ofsp2 three-fold coordinated networks consisting of hexagonal rings, but also including
many pentagons and heptagons distributed in a random fashion. Using the Kubo transport methodology and
the Lanczos method, the density of states, mean free paths and semiclassical conductivities of such amorphous
graphene membranes are computed. Despite a large increase in the density of states close to the charge neutral-
ity point, all electronic properties are dramatically degraded, evidencing an Anderson insulating state caused by
topological disorder alone. These results are supported byLandauer-Büttiker conductance calculations, which
show a localization length as short as 5 nanometers.

PACS numbers: 72.80.Vp, 73.63.-b, 73.22.Pr, 72.15.Lh, 61.48.Gh

The physics of disordered graphene is at the heart of many fascinating properties such as Klein tunneling, weak antilocal-
ization or anomalous quantum Hall effect (see reviews1,2). The precise understanding of individual defects on electronic and
transport properties of graphene is currently of great interest3. For instance, graphene samples obtained by large-scale production
methods display a huge quantity of structural imperfections and defects that jeopardize the robustness of the otherwise excep-
tionally high charge mobilities of their pristine counterparts4. Indeed, the lattice mismatch-induced strain between graphene
and the underlying substrate generates polycrystalline graphene with grain boundaries that strongly impact transport properties5.
However, despite the large amount of disorder, such graphene flakes (when deposited onto oxide substrates) usually maintain a
finite conductivity down to very low temperatures owing to electron-hole puddles-induced percolation effects that preclude local-
ization phenomena close to the Dirac point6. The predicted Anderson localization in two-dimensional disordered graphene has
been hard to measure in non intentionally damaged graphene,in contrast to chemically modified graphene7,8. Nevertheless, in a
recent experiment it was possible to screen out electron-holes puddles using sandwiched graphene in between two boron-nitride
layers, together with an additional graphene control layer9. As a result of puddles screening, a large increase of the resistivity
was obtained at the Dirac point, evidencing an onset of the Anderson localization regime.

Beyond individual defects and polycrystallinity, a higherlevel of disorder can be induced on graphene to the point of obtaining
two-dimensional fully amorphous networks composed ofsp2 hybridized carbon atoms. Such networks contain rings otherthan
hexagons in a disordered arrangement. The average ring sizeis six according to Euler’s theorem, allowing these systemsto
exist as flat 2D structures. Experimentally, such amorphoustwo-dimensional lattices have been obtained in electron-beam
irradiation experiments10,11, and directly visualized by high resolution electron transmission microscopy. Previously, indirect
evidence for the formation of an amorphous network was obtained using Raman spectroscopy in samples subject to electron-
beam irradiation12, ozone exposure13 and ion irradiation14. In all these cases, an evolution from polycrystalline to amorphous
structures was observed upon increase of the damage treatment. In14, further evidence of the formation of an amorphous
network was obtained through transport measurements. These indicate the transition from a weak localization regime inthe
polycrystalline samples to variable range hopping transport in the strongly localized regime for amorphous samples, as evidenced
by the temperature dependence of the conductivity. Localization lengths were estimated to be of the range 0.1 to 10 nm in the
amorphous samples, depending on the degree of amorphization. From the theoretical side, models of the amorphous network
have been proposed using stochastic quenching methods15, and molecular dynamics16–18. Electronic structure calculations show
that the amorphization yields a large increase of the density of states in the close vicinity of the charge neutrality point15–17.
Despite the expected reduction of the conduction properties due to strong localization effects, Holmströmet al.16 suggest that
disorder could enhance metallicity in amorphized samples,in contrast with the experimental evidence.

In this Letter, we explore the transport properties of two-dimensionalsp2 lattices with a massive amount of topological
disorder, encoded in a geometrical mixture of hexagons withpentagon and heptagon rings. The calculations are done using
two complementary approaches: a Kubo formulation in which the conductivity of bulk 2D amorphous graphene lattices is
determined, and a Landauer-Büttiker formulation where the conductance of stripes of amorphous graphene contacted tosemi-
infinite pristine graphene electrodes is calculated. Both approaches lead to similar findings. Depending on the ratio between odd
versus even-membered rings, a transition form a graphene-like electronic structure to a totally amorphous and smooth electronic
distribution of states is obtained. The stronger the departure from the pristine graphene, the more insulating is the corresponding
lattice, which transforms into a strong Anderson insulatorwith elastic mean free paths below one nanometer and localization
lengths below 10 nm close to the charge neutrality point. Those structures are therefore inefficient to carry any sizablecurrent,
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and unsuitable for practical electronic applications suchas touch screens displays or conducting electrodes, but interesting for
scrutinizing localization phenomena in low dimensional materials.

Models of amorphous graphene.- Amorphous models of graphene are prepared using the Wooten-Winer-Weaire (WWW)
method19,20, introducing Stone-Wales defects21 into the perfect honeycomb lattice. These networks can be considered as the
amorphous versions of the Haeckelite structures proposed by Terroneset al.22. To generate the structures, periodic boundary
conditions are imposed and the entire network is relaxed with the Keating-like potential15,23. A further relaxation of these
models using forces from Density Functional Theory leads toslight changes in the bonding distances and angles, but to virtually
identical radial distributions functions and, most importantly, electronic properties like the density of states, asshown in Ref. 17.
Fig. 1(a)-(b) show pieces of the two studied sample S1 and S2,which respectively contain 10032 and 101640 atoms (all of them
with three-fold coordination as the honeycomb lattice, buttopologically distinct). The amorphous character of the samples is
demonstrated by analyzing the radial distribution function, as shown in Ref. 15. Table I shows the parameters that characterize
the two samples. For sample S1, 24% of the elementary rings are pentagons, 52% hexagons and 24% heptagons, while sample
S2 has a larger share of odd-membered rings. In both samples,the number of heptagons is the same as that of pentagons, as
required by Euler’s theorem, and these systems can exist without an overall curvature as flat 2D structures with some distortions
of bond lengths and angles, although they may pucker under some circumstances. We will only be concerned with the planar
structures here. Sample S2 is an extreme case, having very few hexagons and being furthest from the pristine honeycomb lattice.
This is useful to accentuate the differences between crystalline and amorphous samples, and to gain perspective. Nevertheless,
it is likely that sample S1 is nearer to physical reality as itis less strained.

For the calculation of the Landauer-Büttiker conductance, we set up models in which an amorphous stripe is contacted bytwo
pristine graphene electrodes separated by a distanceL, as shown in Fig. 1(c). We use models with increasing values of L, to
explore the dependence of the conductance on the length of the amorphous contact in the transport direction. The models are
periodic in the direction perpendicular to the stripe, witha periodicity ofW=11.4 nm, and they have the same ring statistics as
the bulk sample S1 described above.

Electronic Properties.- The electronic and transport properties of these disordered lattices are investigated usingπ-π* or-
thogonal tight-binding (TB) model with nearest neighbor hoppingγ0 = 2.8 eV15 and zero onsite energies. No variation of the
hopping elements with disorder is included in the model as bond-length variation does not exceed a few percent (cf. Table I);
all dependence on disorder stems from the ring statistics, which is expected to be the dominant effect24. Fig. 1(d) shows the
density of states (DOS) of the two disordered samples, together with the pristine case (dashed line) for comparison. Sample 1,
which keeps 52% of hexagonal rings, displays several noticeable features,similar to those found in previous studies15,16. First,
the DOS at the charge neutrality point (Fermi level) is foundto be increased by a large amount25. Additionally, the electron-hole
symmetry of the band structure is broken by the presence of odd-membered rings which generate quasibound states at resonant
energies26. The hole part of the spectrum is still reminiscent of the graphene DOS, with a smoothened peak at the van Hove
singularity, while for the electron part a second maximum appears close to the upper conduction band edge. By reducing further
the ratio of even versus odd-membered rings (sample S2), thesecond maximum develops to a strong peak at aboutE = 2.5γ0
while spectral weight atE = 3γ0 is suppressed. The redistribution of DOS at the upper conduction band edge is a signature
of odd-membered rings and its strength with increasing number of such rings relates the statistical distribution of rings with the
DOS features.

Transport Methodology.- To explore quantum transport in these topologically disordered graphene samples, a real-space
order-N quantum wavepacket evolution approach is employed to compute the Kubo-Greenwood conductivity27. Such method,
pioneered in28, has been successfully applied to many different types of systems, and in particular it has allowed to scrutinize
Anderson localization in oxygen functionalized graphene8. The zero-frequency conductivity for carriers at energyE is computed
as

σdc = e2ρ(E) lim
t→∞

d

dt
∆X2(E, t) (1)

whereρ(E) is the density of states and∆X2(E, t) is the mean quadratic displacement of the wave packet at energyE and time
t:

∆X2(E, t) =
Tr

[

δ(E −H)|X̂(t)− X̂(0)|2
]

Tr[δ(E −H)]
(2)

A key quantity in the analysis of the transport properties isthe diffusion coefficient:Dx(E, t) = d
dt∆X2(EF , t), which in the

long time limit gives the conductivity through Eq. 1. Assuming an isotropic system in thex andy directions, the 2D diffusion
coefficient becomesD(t) = Dx(t) + Dy(t) = 2Dx(t). All information about multiple scattering effects is contained in the
time-dependence ofD(t).

Numerically, whatever the initial wavepacket features,D(t) starts increasing ballistically at short times, then reaches a max-
imum value which depends on the disorder strength, and finally decays as a result of quantum interferences, the strength of
which will dictate either a weak or a strong Anderson localization regime. The semiclassical quantities (elastic mean free



3

path ℓe(E) and semiclassical conductivityσsc) are derived from the maximum ofD(t) as ℓe(E) = Dmax(E)/2v(E) and
σsc(E) = 1

4
e2ρ(E)Dmax(E), respectively (withv(E) being the carrier velocity).

The conductance of the amorphous stripes contacted to pristine graphene electrodes is computed using the Landauer-Büttiker
approach29:

G(E) = G0T (E) =
2e2

h
Tr

[

t†t
]

(3)

whereT (E) andt(E) are the transmission probability and transmission matrix,respectively, which can be computed from the
Green’s functionG(E) in the contact region and the broadeningΓ(E) of the states due to the interaction with the left and right
electrodes. We calculate the conductance of the stripes, which are infinite and periodic in the direction parallel to theinterface
with the graphene electrodes (y axis in Fig. 1(c)). Despite the very large periodicity of our models, we perform a thorough
sampling of theky-points in that direction30, to obtain the appropriate V-shaped conductance of graphene in the thermodynamic
limit. G is given per supercell of periodicityW=11.4 nm. Note that, with this geometry, conductivity and conductance are
related thoughσ = L

W G.

Mean Free Path, Conductivity and Localization Effects.- Fig. 2 shows the time dependence of the normalized diffusion
coefficientD(t)/Dmax for two chosen energies and for both samples S1 and S2. For energyE = −2γ0, the short-time ballistic
regime is followed by the saturation of the diffusion coefficient typically after0.1 ps (for both samples S1 and S2). From the
saturation values,ℓe(E) andσsc are deduced and reported in Fig. 3. A striking feature is the very low value of the mean free
pathℓe, below0.5 nm for the energy window around the Fermi level (where the DOSis considerably larger than that of pristine
graphene). For negative energies (holes) far from the charge neutrality point, a considerable increase of more than oneorder of
magnitude in the mean free paths is observed. The increase occurs for smaller binding energies for sample S1 than for sample
S2, in good correlation with the changes observed in the DOS (which, around the van Hove singularity, deviates from the pristine
graphene one more strongly for sample S2).

We observe in the inset of Fig. 3 thatσsc shows a minimum valueσmin
sc about4e2/πh, in agreement with the theoretical limit

in the diffusive regime, already confirmed for other types ofdisorder31,32. However, in contrast to prior studies, conductivity
values near the minimum are obtained over an energy range of several eV around the charge neutrality point. This indicates that
transport is strongly degraded in the amorphous network compared to pristine graphene, for which the conductivity increases
rapidly when the Fermi level is shifted away from the Dirac point. The charge mobility,µ(E) = σsc(E)/en(E), with n(E)
being the carrier density, is found to be about10 cm2V−1s−1 for n = 1011 − 1012 cm−2, orders of magnitudes lower than those
usually measured in graphene samples33. Such low conductivity and mobility values should be measured at room temperature,
where the semiclassical approximation is expected to hold.

The obtained short mean free paths and minimum (semiclassical) conductivities indicate a further marked contributionof
quantum interferences turning the system to a weak and strong insulating system with temperature drop. Interference effects are
evidenced by the time-dependent decay of the diffusion coefficientD(t)/Dmax as clearly seen in Fig. 2, although with large
differences depending on the chosen energy. ForE = −2γ0, such decay is weak but clearly more pronounced for the S2 sample
(which is more disordered than S1). In sharp contrast, localization effects are much stronger at the charge neutrality point and
develop from much shorter timescale (few nanoseconds). These differences will be reflected in the corresponding localization
lengths.

Based on the scaling theory of localization, an estimate of the localization length of electronic states is inferred from ξ(E) =
ℓe(E) exp(πhσsc(E)/2e2)34. The results are shown in Fig. 2 (inset). The amorphous samples are confirmed to be extremely
poor conductors, with localization lengths as low asξ ∼ 5 − 10 nm over a large energy window around the charge neutrality
point. One also observes thatξ can vary by more than one order of magnitude depending on the disordered topology of the
sample and rings statistics.

To further confirm the localization lengths estimated usingscaling theory, we compute explicitly the conductance of the
amorphous graphene stripes contacted with pristine graphene electrodes, using the geometry shown in Fig. 1(c), as a function
of the length of the amorphous contactL. Fig. 4 shows the conductance curves for two stripes withL = 1.6 and 8.6 nm,
respectively, compared to that of a graphene contact with the same lateral size in the supercell (W = 11.4 nm). It is clear that
the conductance of the amorphous samples is greatly reducedwith respect to that of graphene, and that the reduction is more
pronounced as the length of the amorphous contact increases. Also, while the conductance for the stripe with the smallest length
is relatively smooth, it becomes more noisy with increasingL. This reflects the transition from a diffusive system, in which the
length of the amorphous contact is longer than the mean free path but shorter than the localization length, to a strongly localized
one in which the localization length is shorter than the length of the amorphous region.

From the variation of the Landauer-Büttiker conductance with L, we can extract reliable values of the localization lengths, as
in the Anderson regime the conductance should decay asG(L) ∼ e−L/ξ. The inset in Fig. 4 shows the value of the conductivity
(obtained from the Landauer-Bütikker conductance) for several stripes withL ranging from 1.6 to 15.3 nm, averaged over an
energy window of 1.5γ0 around the Fermi energy. A fit of the results toσ(L) ∼ L

W e−L/ξ yieldsξ = 5.8 nm. This value is
fully consistent with that obtained above using scaling theory for energies close to the Fermi level, and confirms that, in these
amorphous structures, strong localization effects shouldoccur at low temperatures at distances of less than 10 nm. Ourresults
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are consistent with the experimental ones from transport measurements by Zhouet al.14, which show values in the range between
0.1 and 10 nm for samples amorphized by ion radiation.

In conclusion, we have shown that topological disorder alone causes amorphous graphene to be a strong Anderson insula-
tor. The increase of the density of states close to the chargeneutrality point is associated with quantum interference which
inhibits current flow at low temperatures. Very short mean free paths and localization lengths are predicted, in line with recent
experimental evidence in graphene under heavy ion irradiation damage14.
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TABLE I: Characteristic parameters for the two samples of amorphous graphene, S1 and S2

S1 S2

number of atoms 10032 101640

% of n-membered rings (n = 5/6/7) 24/52/24 44/12/44

< n2 > − < n >2 0.47 0.88

RMS deviation of bond angles 11.02◦ 18.09◦

RMS deviation of bond lengths 0.044̊A 0.060Å

Fermi energy (in units ofγ0) 0.03 0.05
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FIG. 1: (color online). (a), (b) Details of amorphous graphene samples S1 and S2, respectively, used to compute the conductivity with the
Kubo approach. (b) Scheme of setup for the Landauer-Bütikker calculations. The grey area represents the amorphous graphene stripe. Periodic
boundary conditions are used in they direction. The graphene electrodes are semi-infinite in thex direction. (d) Total density of states of the
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