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Topological insulators are a novel quantum state of matter that reveals their properties and shows exotic
phenomena when combined with other phases. Hence, priority has been given to making a good quality topo-
logical insulator interface with other compounds. From the applications point of view, the topological insulator
phase in perovskite structures could be important to provide the various heterostructure interfaces with multi-
functional properties. Here, by performing a tight-binding analysis and first-principles calculations, we predict
that cubic-based CsPbI3 and CsSnI3 perovskite compounds under reasonable hydrostatic pressure are feasible
candidates for three-dimensional topological insulators. Combined with cubic symmetry, the spin and total
angular momentum doublets forming the valence and conduction bands, result in a prototype of a continuum
model, representing three-dimensional isotropic Dirac Fermions, and govern the topological phase transition in
halide perovskite materials.

Ever since it was first suggested and the topologically non-
trivial insulating phase [1–4] found, much effort has been
made to find new topological insulator (TI) materials because
of their novelty as a new quantum state of matter important
in both fundamental physics and for electronic and spintronic
device applications. Not only TI itself, but also the combina-
tion with other phases, including trivial band insulators, su-
perconductors, and magnetic materials, show interesting phe-
nomena such as Majorana Fermions [5], giant magnetoelectric
effects [6], topological excitons [7], quantum anomalous Hall
effect [1], and image magnetic monopole [8]; these have not
been shown in any other condensed matter system. The major-
ity of TI materials predicted and/or confirmed so far is based
on the hexagonal structure [9–14]; there are few examples
with cubic symmetry: half-Heusler [15–18], oxide perovskite
heterostructures [19], and anti-perovskite compounds [20].
However, half-Heusler and anti-perovskites need extra dis-
tortions to attain an inverted insulating gap, which makes for
symmetry lowering, and the perovskite heterostructure is ba-
sically a two-dimensional (2D) TI phase based on the buckled
honeycomb structure. To date, therefore, no 3D TI were found
in the literally cubic phase where the highly degenerate con-
duction or valence band edges are easily formed due to the
high symmetry.

Finding a cubic-based TI is important for offering diversity
in the TI catalogue. Above all, combined with state-of-the-
art engineering techniques in the perovskite heterostructure
field [21, 22], a cubic perovskite TI, if possible, can provide a
rich variety of new interfacial phenomena by adding topologi-
cal order to the existing systems. Taking into account the topo-
logically protected surface states that merge at the boundary
between trivial and non-trivial insulators, the heterostructure
interface with TI perovskite could provide a rich source where
different kinds of quasi-particles interact with each other in-
side the confined 2D region and cooperate to show the exotic
properties.

Here, we present several cubic halide perovskites as possi-
ble candidates for 3D TI materials obtained by a tight-binding
(TB) analysis and density-functional theory (DFT) calcula-
tions. To capture the low energy quasi-particle spectrum
in the halide perovskite series, the TB Hamiltonian is con-

structed using an s- and p-orbital basis at each cubic site. Af-
ter truncating the original TB Hamiltonian down to a 4×4
minimal continuum model, the topological phase transition
can be properly described through 3D isotropic massive Dirac
Fermions; the condition for the transition is derived in terms
of microscopic energy scales such as on-site potentials, hop-
ping parameters, and spin-orbit coupling (SOC) strength. Fi-
nally, DFT calculations reveal the feasibility of this topologi-
cal phase transition in CsBI3 (B=Sn, Pb) compounds.

To investigate the electronic structures and topological
phases, the first-principles calculations were first performed
using the full-potential linearized augmented plane wave
method [23] with local density approximation (LDA) for the
exchange-correlation functional. The relativistic SOC was in-
cluded by a second variational procedure. For the momen-
tum space integrations, a 9×9×9 mesh of special k-points was
used in the 3D irreducible Brillouin zone wedge. We used a
wave-vector cutoff of the basis set equal toKmax=3.5 a.u. and
an angular momentum expansion up to lmax = 8 for both the
potential and charge density. The muffin-tin radii of Cs, Pb,
Sn, and I were 2.7, 2.8, 2.7, and 2.6 a.u., respectively. We then
employed the self-consistent screened-exchange LDA (sX-
LDA) which provides a better energy functional for the ex-
cited states by modeling the exchange-correlation hole within
a nonlocal density scheme.

In ABX3 type perovskite structures, the A-site cation is
chemically inert so that the states from cation B and anion X
prevail near the Fermi level. The basic electronic structures of
the CsPbI3 cubic phase without SOC are shown in Fig.1. Ob-
viously, the conduction bands mainly consist of Pb 6p-orbital
states whose triple degeneracy is seen at the Γ and R points
in the Brillouin zone. Most interestingly, at the valence band
maximum, the wave function is expressed as a linear combi-
nation of Pb 6s- and I 5p-orbital states, following the singlet
s-orbital symmetry; in other words, orbital degrees of free-
dom are quenched. Anti-bonding between Pb 6s and I 5pwith
strong σ character raises this state close to the Fermi level. As
shown in Fig.1(c), the parities of the basis sets constructing
the valence and conduction bands are even and odd, respec-
tively, which makes the non-trivial band topology possible by
inverting and exchanging their parities.
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FIG. 1. (Color online) (a) Electronic band structure, (b) projected
density-of-states of CsPbI3, and the Bloch wavefunctions of (c) triply
degenerate p-bands at the conduction band minimum and (d) non-
degenerate s-like band at the valence band maximum.

Based on these observations, an attempt to make a clear
description of the band dispersion of the halide perovskite is
made through constructing the TB Hamiltonian using an s-
and p-orbital basis at each cubic site as building blocks. The

real space TB Hamiltonian is given by

HTB =
∑
~R,µ

εµψ
†
µ(~R)ψµ(~R) +

∑
~R~η,µν

tσ/πµν ψ†µ(~R+ ~η)ψν(~R)

+
∑
~R

λ~L(~R) · ~s(~R), (1)

where ψ†µ(~R) (µ=1,2,3,4) is a αth component of the Fermion
creation operator vector Ψ†(~R)=(S†(~R), P †x(~R), P †y (~R),
P †z (~R)) at cubic sites ~R, and ~η is one of the six vectors con-
necting the nearest neighbor in the cubic lattice. The first term
on the right hand side of Eq.(1) denotes the on-site potential
of each basis, and ε1 ≡ εs, ε2 = ε3 = ε4 ≡ εp, where εs < εp.
In the second term, we consider four different intra- and inter-
orbital hopping integrals: tσss, t

σ
pp, tπpp, and tσsp. The third

term is the on-site SOC which plays a central role to realize
the TI phase [24]. The essential feature of this Hamiltonian
is the fully SOC active conduction p-bands and the inactive
valence s-band. The valence s-band is barely influenced by
SOC, whereas the |l = 1〉 ⊗ |s = 1/2〉 p-states are split into
a |j = 3/2〉 quartet raised by λ/2 and a |j = 1/2〉 doublet
lowered by −λ. Consequently, combined with the band dis-
persion, the |s = 1/2〉 and |j = 1/2〉 manifolds become the
main ingredients to describe the low energy spectrum of the
quasi-particle excitation around the R point, and thus govern
the topological phase of the system. As a result, distinguished
from other highly symmetric lattices possessing highly degen-
erate conduction and/or valence bands, the halide perovskites
have non-degenerate conduction and valence bands except for
Kramers degeneracy. They are thus suitable to realize the
non-trivial band topology without extra distortions to lower
the symmetry and the degeneracy.

By integrating out the |j = 3/2〉 states and expanding
the sinusoidal functions up to the order of k2 where ~k ≡
~K − ~GR = ~K − (π, π, π), we can acquire the effective
4×4 continuum Hamiltonian composed of the |s = 1/2〉 and
|j = 1/2〉 subspace in the vicinity of the R point. The reduced
Hamiltonian is written as

Heff(~k) =
ξs(~k) + ξp(~k)− λ

2
τ0 ⊗ σ0 +

ξs(~k)− ξp(~k) + λ

2
τz ⊗ σ0 +

2√
3
tσspτy ⊗ (~k · ~σ∗), (2)

where ξs(~k) = εs + 6tσss −

[
tσss +

8

3

(tσsp)
2

εp − εs − 2tσpp − 4tπpp − 6tσss + λ/2

]
k2,

ξp(~k) = εp − 2tσpp − 4tπpp +
1

3
(tσpp + 2tπpp)k

2,

, τi and σi are Pauli matrices denoting orbital and spin de-
grees of freedom, respectively, and τ0 and σ0 are the 2×2
unit matrix. This Hamiltonian represents a 3D massive Dirac
Fermion, which is an isotropic version of the continuum

model introduced in the Bi2Se3 family [10]. The topologi-
cal phase transition is directly related to the sign change in the
mass of the Dirac Fermion [25], the second term in the right
hand side of Eq.(2), at ~k = 0. Considering that ∆ε ≡ εp − εs
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FIG. 2. (Color online) Schematic diagram of the basic electronic
structure of the cubic halide perovskite series. Combined with the
band dispersion and SOC, total angular momentum doublets (j=1/2)
and spin doublets (s=1/2) are formed at the conduction band bottom
and valence band top, respectively. With a successive operation of
the hydrostatic pressure, the conduction and valence bands are in-
verted, and the system becomes TI.

and every hopping parameter is positive, the condition for the
TI phase is simply written as εs+6tσss > εp−2tσpp−4tπpp−λ.
By noticing that 2tσpp+4tπpp and 6tσss correspond to half of the
conduction and valence bandwidth, Wp and Ws, respectively,
the above non-trivial condition is rewritten as

Ws +Wp

2
+ λ > ∆ε (3)

: the summation of the half-bandwidth of the conduction
and valence bands and SOC splitting exceeds the on-site po-
tential difference. (See Fig.2) The non-trivial condition in
Eq.(3) contains every microscopic energy scale used in the TB
Hamiltonian except for tσsp because it does not participate in
determining the energy levels at the R point. However, unless
tσsp has a non-zero value, the conduction and valence bands
are independent, and show semi-metallic behavior even under
the non-trivial condition.

According to the bulk-boundary correspondence, the
Fermi level crosses an odd number of surface states. The
existence of the topologically protected surface states at
the non-trivial condition can also elucidate the TI phase
of the system described by the TB Hamiltonian. Figure3
presents the TB electronic band structures of the bulk and
(001) surface geometries under the three different conditions:
trivial, critical, and non-trivial cases. For the trivial case
((Ws +Wp)/2 + λ < ∆ε), both the bulk and surface have
band gaps. For the critical case ((Ws +Wp)/2 + λ = ∆ε),
the conduction and valence bands touch each other at the R
point, and form a 3D isotropic massless Weyl Fermion in the
bulk band structure, as predicted in the effective continuum
model in Eq.(2). The surface electronic structure also

FIG. 3. (Color online) TB band structures of (a)-(c) bulk and (d)-(f)
51-layer slab geometry with (0,0,1) surface under the trivial ((a), (d)),
critical ((b), (e)), and non-trivial conditions ((c), (f)), respectively.
The topologically protected surface states are shown in (f); (g) and
(h) show their 3D plot and an iso-energy contour map with a 0.04eV
interval.

shows gapless continuum bands originating from the bulk
semi-metallic band structure. Finally, under the non-trivial
condition, as a result of the band inversion between the
|s = 1/2〉 and |j = 1/2〉 states, a single gapless surface
state emerges at around the M point in the surface Brillouin
zone, while there remains a bulk band gap, which is a typical
characteristic of the strong 3D TI. Figure 3(g), and (h) depict
the 3D plot of the gapless surface state shown in Fig.3(f),
and its iso-energy contour map. Near the Dirac point of the
surface state, circular cross-sections are shown, whereas the
warping effect arises away from the Dirac point. The warping
effect is a direct consequence of the 4-fold symmetry of the
cubic crystal, and thus appears as a rectangular shape in the
iso-energy cross-section [26, 27]. (cf. Fig.3(h))

Recalling the effective continuum model and the non-trivial
condition in Eqs.(2) and (3), the TI phase is accessible when
the large hopping parameters and the large SOC strength are
available. For the purpose of realizing the non-trivial phase in
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FIG. 4. (Color online) (a) The band gap dependence on the lattice
constants, and (b) the total energy as a function of the unit-cell vol-
ume in CsPbI3 and CsSnI3. Open rectangles and circles denote LDA
and filled ones correspond to the gap corrected sX-LDA results. The
positive gap values indicate trivial phase, whereas the negative means
non-trivial.

the ABX3 halide perovskite structures, heavy elements should
be chosen for the B- and X-sites; heavy elements at the B-
site are essential to acquire the large SOC strength which
fully splits the conduction p-bands at the R point, and heavy
halogens at the X-site can support the large hopping pa-
rameters. The extended nature of the halogen outer-most p-
orbitals plays an important role by mediating the intra- and
inter-orbital hopping process, even though they do not ap-
pear explicitly in the minimal TB Hamiltonian. Following
the above strategy, CsPbI3 and CsSnI3 are the most prob-
able candidates for the cubic TI materials. By using the
DFT method within the local density approximation (LDA)
scheme, CsPbI3/CsSnI3 are found to have a trivial/nontrivial
band gap of 0.020eV/0.134eV at the R point. Although
CsPbI3 is a trivial band insulator, the band gap is quite small,
which means that (Ws+Wp)/2+λ is slightly smaller than ∆ε
and the system is close to the transition point. Therefore, if we
increase the left hand side of Eq.(3), the system can change its
topology from a trivial to a non-trivial one. Here, we use the
hydrostatic pressure to decrease the lattice constants, expect-
ing an increase in the bandwidth. As a result, a 0.5% reduc-
tion from its experimental lattice constant makes CsPbI3 have
a non-trivial band topology with a 0.023eV band gap.

At this point, it is appropriate to emphasize the incor-
rectness in the band gap estimation by employing the LDA
scheme - a well-known problem - which could also prevent
predicting the correct topological phase of the materials under
investigation. The underestimate of the band gap effectively
denotes the lessening of ∆ε in terms of the parameters used
in the TB Hamiltonian, which is directly linked to the overes-
timation of the non-trivial topological phase. Now, sX-LDA
is known to provide a better description of the excited states
and band gaps [28]. Hence, we adopted the advanced sX-LDA
method to find the band gap as well as the band topology more
accurately. With the gap corrections, CsPbI3 and CsSnI3 turn
out to show trivial band gaps of 0.566eV and 0.218eV, respec-
tively. Even though both materials belong to the trivial band
insulators, the small band gaps again imply that these com-

pounds are located in the vicinity of the topological phase
boundary, and are able to be tuned to the TI phase under
a reasonable amount of hydrostatic pressure. With decreas-
ing lattice constants, CsPbI3 and CsSnI3 enter into the TI
phase at a 4.04% and 1.36% reduction, respectively, result-
ing from the increment of the bandwidth. By fitting the total
energy as a function of the unit cell volume, the bulk moduli,
B0, of CsPbI3 and CsSnI3 are estimated to be 19.88GPa and
20.84GPa in LDA, and the critical pressures to make the sys-
tems non-trivial are 3.33GPa and 0.96GPa [14], respectively,
which are easily achievable in experiment.

It is worthwhile to remark on the low symmetric phases in
the halide perovskite series. The cubic phase in CsPbI3 and
CsSnI3 is stable only at high temperature, and the lower sym-
metric phases appear as the temperature decreases. CsSnI3,
for example, undergoes two structural phase transitions upon
lowering the temperature: cubic to tetragonal, and finally to
the orthorhombic phase. The symmetry lowering induced by
distortions of SnI6 octahedra makes an extra splitting in the
three-fold degenerate p-states. However, the small splitting is
overwhelmed by the larger SOC strength, and the |j = 1/2〉
states are still robust at the conduction band edge. There-
fore, the low energy electronic band structure, composed of
the |s = 1/2〉 and |j = 1/2〉 states in the cubic phase, are
nearly unaffected by the symmetry lowering distortions, and
so is the band topology [24]. Considering the lattice distortion
as a small perturbation, the continuum model in Eq.(2) might
be modified to represent anisotropic Dirac Fermions.

In conclusion, we have investigated the possibility of the
non-trivial insulating phase in several halide perovskites by
both the microscopic TB Hamiltonian and the more realis-
tic DFT calculations within the sX-LDA scheme. Their most
prominent feature is that the crystal structure has the highest
symmetry, but the electronic structure has the simplest valence
and conduction bands made up of the non-degenerate s- and
split-off p-bands. As a consequence, the low energy spectrum
is designated as 3D isotropic massive Dirac Fermions, and the
mass term easily changes its sign under reasonable hydrostatic
pressure.

Once combined with advanced experimental techniquess in
the atomic-scale synthesis of the artificial heterostructures, the
perovskite 3D TI can provide a novel platform for diverse po-
tential applications by introducing a new degree of freedom,
the so-called topological order. The surface state protected by
time-reversal symmetry is a new player in this heterostructure
interface field, whose encounter with old players such as su-
perconductivity, magnetism, ferroelectricity, orbital ordering,
and so on might be a source of new physics.
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