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We investigate the Casimir interaction between two parallel metallic cylinders and between a
metallic cylinder and plate. The material properties of the metallic objects are implemented by the
plasma, Drude and perfect metal model dielectric functions. We calculate the Casimir interaction
numerically at all separation distances and analytically at large separations. The large-distance
asymptotic interaction between one plasma cylinder parallel to another plasma cylinder or plate does
not depend on the material properties, but for a Drude cylinder it depends on the dc conductivity
σ. At intermediate separations, for plasma cylinders the asymptotic interaction depends on the
plasma wave length λp while for Drude cylinders the Casimir interaction can become independent
of the material properties. We confirm the analytical results by the numerics and show that at short
separations, the numerical results approach the proximity force approximation.

I. INTRODUCTION

Effective interactions between cylinders are an impor-
tant parameter in synthesizing and analyzing nanomet-
ric systems. This is due to the fact that many important
nanostructures such as carbon nanotubes, nanowires and
even the tobacco mosaic viruses have cylinderical shapes.

From the perspective of the experimental Casimir force
studies, nano-cylindrical shapes are an optimal candidate
for precision Casimir force measurements, in comparison
to spheres for two reasons: (i) their effective area of inter-
action is larger1,2, and (ii) mechanical oscillation modes
of quasi-one-dimensional structures can be probed with
high precision3.

Under many circumstances, van der Waals or Casimir
forces have the dominant contribution in the effective
interactions of nanostructures, which lead to various
interesting phenomena in nanosystesm. For example
in nanomechanical devices, Casimir interaction causes
stiction4,5, and thus a good understanding of these forces
leads to improvements in the design and efficiency of
such nanosystems. In another example, Casimir interac-
tions between single walled carbon nanotubes (SWCNT)
with different chirality become important in separating
a polydisperse solution of SWCNT in fractions of equal
chirality6.

The applicability of the Casimir interaction is not lim-
ited to synthetic cylindrical objects. There are numerous
examples of long macromolecular structures with cylin-
drical shape in nature such as the tobacco mosaic viruses,
microtubules of flagella and A-band lattice of myosin fil-
aments in cross strained muscles7,8, and hence knowledge
of the interaction between cylindrical shapes is also im-
portant for the biological sciences. It should be noted
that in some biological systems composed of cylindrical
particles which are packed in an array, the separation be-
tween the particles can be several times larger than the
diameter of the cylinder7.

The Casimir interaction per unit length for two paral-
lel perfectly conducting cylinders or a plate and cylinder
at a separation distance d is E/L ∼ ~c/d2, up to a loga-
rithmic factor9,10. It decays only slowly compared to the
retarded interaction E/L ∼ ~cR4/d6 between two insu-
lating cylinders that do not support large-scale collective
fluctuations11.

It has been demonstrated that Casimir interactions
strongly depend on the combined effects of shape and ma-
terial properties, see, e.g.,12–17. The interplay is particu-
larly strong for quasi one-dimensional conducting mate-
rials due to strongly anisotropic collective charge fluctu-
ations. In addition, approximations of the Casimir force
between cylinders and plates2 have also shown that the
temperature dependence varies based on the description
of the material properties. Thus there is a need for exact
calculations of the Casimir force for cylindrical shapes
taking into account the realistic material response.

Most studies of interactions between one-dimensional
systems over a wide range of separations concentrate
on perfect conductors and insulators. However, low di-
mensionality in combination with finite conductivity and
plasmon excitations should give rise to interesting new
effects that might be probed experimentally using, e.g.,
the coupling to mechanical oscillation modes. The often
employed technique for these effects, the proximity force
approximation (PFA) cannot capture the correlations of
shape and material response since it is based on the in-
teraction between planar surfaces. A number of stud-
ies have been performed for the short separation regime
mainly focused on the corrections to the Proximity Force
Approximation18–20.

Van der Waals interaction between cylinders (and
plates) have been studied for certain frequency dependent
permittivities9,10,21–25. In one of the earliest study, the
van der Waals interaction has been calculated between
two parallel thin filaments described by one dimensional
(1D) plasmon and electromagnetic excitations21. This
work predicts asymptotic forms of the interaction ener-
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gies at large separations accurately but the range of va-
lidity of the asymptotics remain unclear.

In another work22, the Casimir interaction is obtained
for conducting cylinders described by delocalized coupled
1D plasmons at zero temperature. The response function
of the plasmons are given by the random phase approxi-
mation (RPA). The specific choice of RPA has the advan-
tage that locality, additivity and R−6 contributions are
not involved in the calculations. The energy is obtained
by using the mode summation method, which is equal to
the sum of the separation dependent zero-point plasmon
modes. The Casimir energy is attractive and decays as
∼ d−2 apart from a logarithmic part. This result was
later confirmed by a quantum Monte Carlo simulation24.
Using the same material description and calculation tech-
nique, the large-distance Casimir energy was obtained for
crossed wires with a small crossing angle. For conduct-
ing and semiconductor wires, apart from the logarithmic
and angular parts, the large-distance interaction energy
decays as ∼ d−1 and ∼ d−4, respectively25.

In a completely different approach, employed for per-
fectly conducting cylinders and plate, the Casimir energy
is calculated for all separations using a path integral rep-
resentation for the effective action which yields a trace
formula for the density of states9,10. Furthermore, the
Casimir interaction between a SWCNT and a plate is
studied for large and short separation regimes using the
Lifshitz formula26.

The full interplay between shape and material effects
is not transparent in the previous studies as they are
limited either to perfect metals or to asymptotic limits.
Here, we employ the scattering approach to investigate
the Casimir interaction between parallel metallic (circu-
lar) cylinders, and a metallic cylinder and a metallic plate
at zero temperature. The material properties of the ob-
jects are described either by the plasma or the Drude
dielectric function.

In Ref.17, we have reported the large-distance asymp-
totic energies for cylinders and cylinder–plate systems.
In addition to the asymptotic energies, for Drude cylin-
ders we have also shown that there is a very good agree-
ment between the numerics obtained by the scattering
formalism and the asymptotic energies at large separa-
tions and also with the proximity force approximation at
short separations.

In this work, we have calculated the Casimir interac-
tions for parallel cylinders and cylinder-plate described
by the perfect metal, plasma and Drude models. Further,
we have improved our numerical techniques and as such
the accuracy of the numerical results has been increased.
Therefore, we have been able to calculate the Casimir en-
ergy for shorter separations compared to Ref.17 and also
have found a better agreement with the proximity force
approximation. The details of our numerical calculations
and derivations of the asymptotic energies are presented
in this paper.

The outline of this work is as follows: in Sec. II, we
summarize the scattering method and the assumed ma-

terial properties of the cylinders. In Sec. III, we obtain
analytical results for the interaction at distances much
larger than the cylinder radii. In Sec. IV the Casimir in-
teraction is calculated numerically for different material
properties over a wide range of separations. Section V is
the summary.

II. METHOD

We consider the two following systems (i) two infinitely
long parallel cylinders, and (ii) an infinitely long cylinder
parallel to an infinite plate. Assuming placed in vacuum,
we calculate the Casimir interaction in these two systems
employing the scattering formalism11. The Casimir en-
ergy of two objects at zero temperature is given by the
general expression

E =
~c
2π

∫ ∞
0

dκ ln det(1− N) , (1)

where κ is the Wick-rotated frequency and the matrix
N factorizes into the scattering amplitudes (T-matrices)
and translation matrices that describe the coupling be-
tween the multipoles on distinct objects. While the mate-
rial properties and shapes of the objects are contained in
the T-matrices, the distance between objects is encoded
in translation matrices.

To implement the material properties, we consider
plasma, Drude and perfect metal cylinders with mag-
netic permeability µ = 1. The Drude dielectric function
on the imaginary frequency axis is

ε(icκ) = 1 +
(2π)2

(λpκ)2 + λσκ/2
, (2)

with conductivity σ and λσ = 2πc/σ. Equation (2) re-
produces the plasma model for λσ → 0.

Since the matrix N differs for parallel cylinders and
cylinder-plate systems, in the following we describe N for
both setups.

A. Two Parallel Cylinders

Consider two infinitely long, parallel cylinders with
equal radii R and with their axes separated by a dis-
tance d and aligned along the z-axis. The matrix N is
diagonal in the z-component kz of the wave vector due to
translational symmetry. The matrix elements for electric
(E) and magnetic (M) polarizations (α, β = E, M) and
partial waves m and m′ are

Nαβkzmm′ =
∑

γ=E,M

Tαγkzm

∞∑
n=−∞

U12
kzmnT

γβ
kzn
U21
kznm′ , (3)

with T the cylinder T -matrix, see Appendix A 1. The
translation matrix U12 relates regular cylindrical vector
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waves to outgoing cylindrical vector waves, see Appendix
B. The translation matrices do not couple different polar-
izations and for both E and M -polarization, their matrix
elements are given by

U12
kznn′ = (−1)n

′
Kn−n′ (p d) ,

U21
kznn′ = (−1)n−n

′
U12
kznn′ , (4)

with p =
√
κ2 + k2z and Kn(x) the modified Bessel func-

tion of the second kind.
Since N is diagonal in kz the determinant in Eq. (1)

factorizes into determinants at fixed kz, and the sum over
kZ moves in front of the logarithm. After taking the
continuum limit,

∑
kz
→ L

2π

∫∞
−∞ dkz, the energy per unit

length L becomes

E
L

=
~c

4π2

∫ ∞
0

dκ

∫ ∞
−∞

dkz ln det(1− N) . (5)

Here the determinant is only over the discrete partial
wave index n.

B. Cylinder – Plate

Next we consider a cylinder with radius R parallel to a
plate. We assume that the cylinder is aligned along the
z axis and the plate is in the y − z plane. The distance
from the center of the cylinder to the plate is d. The
matrix N for this geometry is

Nαβkzmm′ =
∑

γ=E,M

TαγkzmMγβ
kzmm′ , (6)

with

Mγβ
kzmm′ =

∫ ∞
−∞

dky
e−2d
√

k2
⊥+κ2

2
√
k2
⊥ + κ2

×
∑

γ′=E,M

Dkzmγ,k⊥γ′ T γ
′

k⊥
D†k⊥γ′,kzm′β (1− 2δγ′,β) ,

(7)

where ky is the y component of the wave vector, k⊥ ≡
(ky, kz), the matrix Dnkzα,k⊥β converts vector plane
wave functions and cylindrical vector wave functions, see

Appendix C, and T βk⊥
is the dielectric plane T -matrix

presented in Appendix A 2. The energy of this system
can also be obtained by Eq. (5) as N is diagonal in kz,
Note that the determinant is not related to kz; thus, we
suppress all the kz indices in what follows.

III. LARGE-DISTANCE ASYMPTOTIC
CASIMIR ENERGIES

To find the asymptotic form of the Casimir interaction
at large separations d � R, one needs to obtain the T-
matrix expressions for a cylinder and a plate. Using the

dielectric function given in Eq. (2), the asymptotic form
of the cylinder T-matrix elements for E polarization and
n = 0 at small frequencies (κ� 1, kz/κ fixed) reads (see
Eq. (A14)),

TEE0 ≈ − p2R2

C(κ)− p2R2 ln(pR/2)
, (8)

where C(κ) depends on the dielectric properties of the
cylinder. For a perfect metal cylinder C(κ) = 0 and for
a plasma cylinder C(κ) ≈ λp

2κ2 /(2π2) if the plasmon
oscillations cannot build up transverse to the cylinder
axis as the diameter is too small, i.e., R � λp. In the
opposite limit R � λp, we reproduce the perfect metal
form of the T-matrix, i.e. C(κ) ≈ 0. For the Drude
model, C(κ) = λσκ/(4π

2) if κ � λσ/λ
2
p, 1/λσ. The

first of the two conditions implies that Drude behavior
dominates over plasma behavior, i.e., the second term in
the denominator of Eq. (2) is larger than the first term.
The second condition ensures that the Drude dielectric
function is large compared to one, i.e., metallic behavior
is pronounced. At small frequencies κ but fixed kz/κ, for
Drude cylinders TEE0 ∼ κ, while for plasma and perfect
metal cylinders TEE0 ∼ 1. Since TMM

0 ∼ κ2, TEM0 =
TME
0 = 0 and higher order elements associated with n 6=

0 scale as κ2|n|, we consider only the TEE0 elements at
large separations.

The Casimir interaction between conducting cylinders
is intricate and no simple analytical expression that ap-
plies to all distances can be obtained. However, using
Eqs. (5), (3) and (6) along with TEE0 given in Eq. (8),
the asymptotic interaction at large separations, d � R,
can be evaluated in various limiting cases.

To derive the large-distance asymptotic Casimir po-
tential energy, we employ the identity log det = Tr log
and expand the integrand in Eq. (5) in powers of N, cor-
responding to a multiple scattering expansion. The one-
scattering approximation, sufficient for large distances,
yields

E
L

= − ~c
4π2

∫ ∞
0

dκ

∫ ∞
−∞

dkz Tr[N] + ... . (9)

The element N00 of the N-matrix yields the dominant
contribution to the Casimir energy at large distances
since higher order elements involve higher powers of κ.
To this end, we will consider only this term for the rest
of this section.

A. Parallel cylinders

For two parallel cylinders, considering the fact that at
large separations TEE0 yields the dominant contribution,
the trace of the matrix N is approximated by

Tr[NEE00 ] = TEE0 U12
00 T

EE
0 U21

00 . (10)

Using Eq. (10) in Eq. (9) and changing integration to
polar coordinates κ = ρ cos(θ)/d and kz = ρ sin(θ)/d, we
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obtain

E = − ~cL
2π2d2 ln2(2d/R)

×
∫ ∞
0

dρ

∫ π
2

0

dθ
ρK2

0 (ρ)

(1 + C1(ρ, θ))(1 + C2(ρ, θ))
, (11)

where Ci(ρ, θ) describes the material properties of the
cylinder i. For a perfect metal cylinder Ci(ρ, θ) = 0, for
a plasma cylinder Ci(ρ, θ)=ξ cos2(θ) with

ξ =
λ2p

2π2R2 ln(2d/R)
, (12)

in the limit R� λp, and for a Drude cylinder Ci(ρ, θ) =
ξ′ cos(θ)/ρ with

ξ′ =
λσd

4π2R2 ln(2d/R)
. (13)

Note that ξ and ξ′ are two dimensionless parameters.
Later, in derivation of the asymptotic energies, we will
show that based on the size of ξ and ξ′, the plasma and
Drude cylinders show different metallic behaviors.

For two perfect metal cylinders the integral in Eq. (11)
can easily be calculated and yields17,21

E
~cL

≈ − 1

8πd2 ln(2d/R)2
, (14)

which agrees with the results in Refs.9,10.
For plasma cylinders with plasma wave length λp, the

integrations in Eq. (11) yield

E
L
≈ − ~c

16πd2 ln(2d/R)2
f(ξ) , (15)

with

f(x) =
x+ 2

(x+ 1)3/2
. (16)

It is important to consider Eq. (15) in two limiting cases
for ξ, Eq. (12). In the limit ξ � 1 or ln(2d/R)� λ2p/R

2,
the energy simplifies to the perfect metal energy given
in Eq. (14), i.e., the interaction between conducting
cylinders is universal at large distances in this regime.
However, in the opposite limit ξ � 1 or equivalently
ln(2d/R)� λ2p/R

2, the Casimir energy becomes17,21

E
L
≈ − ~cR

8
√

2λp d2 ln3/2(2d/R)
. (17)

This shows that the universal form is applicable only
beyond an exponentially large crossover length d ∼
R exp(λ2p/R

2)�� R. Below this scale, and infact in any
practical situations, the interaction is material depen-
dent, see Fig. (1)a.

For a plasma cylinder with plasma wave length λp
parallel to a perfect metal cylinder the integrations in
Eq. (11) yield

E
L
≈ − ~c

8πd2 ln(2d/R)2
(1 + ξ)−

1
2 . (18)

Similar to parallel plasma cylinders, we consider two lim-
iting cases for ξ. In the limit ξ � 1 or ln(2d/R) �
λ2p/R

2, we obtain the perfect metal energy given in
Eq. (14), and the conducting cylinders’ interaction is uni-
versal at large distances. In the opposite limit ξ � 1 or
equivalently ln(2d/R) � λ2p/R

2, the Casimir energy be-

comes17

E
L
≈ − ~cR

4
√

2λp d2 ln3/2(2d/R)
. (19)

For Drude cylinders with the characteristic length λσ,
at large separations d � R, λσ, we find a rather dis-
tinct behavior that deviates from naive expectations for
universality. In this case the integrations in Eq. (11)
cannot be performed analytically. Therefore we first cal-
culate the angular integral which gives a complicated ra-
dial function, and then we expand the resulting radial
integral for small and large ξ′, Eq. (13). The radial in-
tegrals can be calculated easily in these two limits. For
ξ′ � 1 or d � R2/λσ, we reproduce the universal (per-
fect metal) asymptotic energy of Eq. (14). In the oppo-
site limit ξ′ � 1 or d � R2/λσ, the asymptotic energy
reads17,21

E
L
≈ − π2 ~cR2

16λσ d3 ln(2d/R)
. (20)

Similarly, for a Drude cylinder with the characteristic
length λσ parallel to a plasma (or perfect metal) cylinder,
in the limit of d � λσ and d � λ2p/λσ the asymptotic

Casimir energy is17

E
L
≈ − π2 ~cR2

16λσ d3 ln(2d/R)
ln(λσ d/R

2) . (21)

Note that Eq. (21) is derived for a specific “gedanken”
condition that one of the cylinders obeys the Drude
model while the other one obeys the plasma model.

These two limiting cases for ξ′ are related to two differ-
ent scaling regimes that are separated, up to logarithmic
corrections, by the curve d/R ∼

√
d/λσ, see Fig. 1(b).

The unconventional feature corresponds to the fact that
the interaction is universal at shorter distances where
d � R2/λσ. If the distance is increased beyond this
crossover scale (with all other length scales kept fixed, see
arrow (1) in Fig. 1(b), the interaction becomes material
dependent and, up to logarithmic corrections, scales as
R2/(λσd

3) for a Drude cylinder interacting with another
Drude or a plasma or a perfect metal cylinder. How-
ever, if the radii of the cylinders are increased in the
same way as their distance (d/R fixed, see arrow (2) in
Fig. 1(b)), finite conductivity becomes unimportant at
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FIG. 1: Summary of the different forms of interaction be-
tween two cylinders and a cylinder and a plate. Shown are
the rescaled interaction energies per cylinder length, E/(~cL).
(a) Interaction involving a plasma (P) cylinder with another
plasma cylinder, a perfect metal (PM) cylinder or a plate.
The asymptotic results apply sufficiently far away from the
separating curve ln(d/R) ∼ (λp/R)2 and for d/R, λp/R� 1.
(b) Interaction involving a Drude (D) cylinder with another
Drude cylinder, a plasma cylinder, a perfect metal cylinder or
a plate. The separating curve is given, up to logarithmic cor-
rections, by d/R ∼

√
d/λσ. The shown expressions hold for

d/R, d/λσ � 1 and d � λ2
p/λσ. Depending on the relative

size of length scales, different regimes can be reached: Arrow
(1) corresponds to an increasing distance d which ultimately
leads to a non-universal interaction. Arrow (2) indicates an
overall increase of the geometry (i.e., d/R fixed) with constant
conductivity leading to a universal interaction.

large distances and the interaction assumes the univer-
sal form. An intuitive explanation of this non-universal
large distance behavior is given below. It is important to
note that all forms of these metallic interactions decay
much slower than the Casimir energy of two insulating
cylinders which for d � R scales as ~cLR4/d6 with a
material dependent coefficient.

The summary of the asymptotic energies obtained in
this subsection can be found in Fig. 1a and 1b, for the
plasma and Drude cylinders, respectively.

B. Cylinder parallel to a plate

In this section we consider a cylinder with radius R
parallel to a plate. We show, similar to parallel cylinders,
the existence of two different scaling regimes that are
separated by curves given by the same expressions that
we found for two cylinders, see Fig. 1. In order to find the
asymptotic large distance interations, we employ again
Eq. (9). The trace of the matrix N in Eq. (6) in the limit
of large separation d� R is approximated by

Tr[NEE00 ] = TEE0 MEE
00 . (22)

Note that for perfect metal plates TEk⊥
= TMk⊥

= 1 and
for small κ at fixed k⊥/κ one has for the plasma model
TEk⊥

= TMk⊥
= 1+O(λpκ) and for the Drude model TEk⊥

=

TMk⊥
= 1 + O(λσκ). Therefore, at large distances the

material description of the plate is unimportant and to
leading order in R/d one gets

MEE
00 ≈

∫ ∞
−∞

dky
e−2d
√
κ2+k2

⊥

2
√
κ2 + k2

⊥
=K0(2pd) . (23)

Using Eq. (22) in Eq. (9), and changing again considering
κ = ρ cos(θ)/d and kz = ρ sin(θ)/d, we obtain

E
L

= − ~c
2π2d2 ln(2d/R)

∫ ∞
0

dρ

∫ π
2

0

dθ
ρK0(2ρ)

1 + C(ρ, θ)
, (24)

where the functions C(ρ, θ) ≡ Ci(ρ, θ) are given by the
expressions below Eq. (11)

For a perfect metal cylinder, the integrals can be cal-
culated in a straight forward manner, resulting in the
universal energy17,21

E
L

= − ~c
16π d2 ln(2d/R)

. (25)

For a plasma cylinder with the plasma wavelength
λp, after performing the radial and angular integrals in
Eq. (24), we obtain

E
L

= − ~c
16π d2 ln(2d/R)

g(ξ) , (26)

with g(x) = (1 + x)−1/2. As in our analysis for paral-
lel cylinders we consider two different cases for ξ given
in Eq. (12). If ξ � 1 or similarly ln(2d/R) � λ2p/R

2,
we reproduce the universal energy, Eq. (25). In the op-
posite limit of exponentially large distances ξ � 1 or
d � R exp(λ2p/R

2) the Casimir energy is non-universal

and we obtain17,21

E
L

= − ~cR
8
√

2λp d2 ln1/2(2d/R)
. (27)
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For a Drude cylinder with the characteristic length λσ
parallel to a metallic plate, in the limit ξ′ � 1 or
d� R2/λσ, the integrand in Eq. (24) becomes indepen-
dent of θ and we reproduce the universal Casimir energy
in Eq. (25). Hence, similar to the case of two cylinders,
the interaction approaches a universal form below a ge-
ometry and material dependent crossover distance. This
counterintuitive result shall be discussed below. In the
opposite limit ξ′ � 1 or d � R2/λσ, the asymptotic
energy becomes non-universal and reads17,21

E
L

= −π ~cR
2 ln(λσ d/R

2)

8λσ d3
. (28)

Based on the studies described above, we conclude that
the Casimir interaction between a metallic cylinder and
a plate decays slower than that between an insulating
cylinder and a plane for which the energy scales as E ∼
~cLR2/d4 for d� R11.

Similar to parallel cylinders, the summary of the
asymptotic energies can be found in the Fig. 1a and 1b,
for the plasma and Drude cylinder-plate system, respec-
tively.

IV. NUMERICAL RESULTS

In this section, we compute the Casimir energy based
on Eq. (5) at zero temperature. Our results are obtained
by numerical computation of the determinant and the
integrals over κ and kz. Note that for a cylinder parallel
to a plate in addition to the κ and kz integrations, one
has to compute the integral over ky for each element of
the matrix N, see Eqs. (6) and (7). The matrix N (and
hence the sum over n in Eq. (3)) are truncated at a finite
partial wave number nmax.

We chose nmax such that the result for the energy
changes by less than 0.01% upon increasing nmax by 10.
The required value of nmax diverges when the surface-to-
surface separation h between the objects (for cylinders
h = d − 2R and for a cylinder and a plate h = d − R)
tends to zero. For example, for 0.6 < h/R < 1.0, we
used nmax = 21, whereas for h/R = 0.6 and 0.5, one
needs nmax = 31. For h/R = 0.05 we set the value
nmax = 191.33.

To reach sufficient numerical accuracy in the computa-
tion of det(1−N) we have computed the Bessel functions
with quadruple precision and employed similarity trans-
formations for N by using the DEGBAL routine of the
LAPACK library with quadruple precision27.

In Fig. 2, we show our numerical results for two par-
allel cylinders and also for a cylinder parallel to a plate.
The graphs show the Casimir energies for the Drude and
plasma cylinders, normalized to the energies of perfect
metal cylinders. For the numerics we used λp/R = 0.05
and 0.5 with λp/λσ = 27.4, corresponding to gold for
which λp = 137 nm and λσ ≈ 5 nm28. Figure 2 clearly
shows the material dependence of the Casimir energies.
At large separations, for the plasma model, the ratios
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FIG. 2: Ratio of numerically computed energies E for re-
alistic metals and Eperf for perfect metal against h/R. (a)
two identical cylinders, (b) a cylinder and a plate. The pa-
rameters for the plasma model are λp/R = 0.05, 0.5 (open
circles and open squares respetively). For the Drude model
the same values of λp/R are used; λp/R = 0.05, 0.5(filled tri-
angles and filled diamonds, respectively) and λp/λσ = 27.4.
Insets: Short distance range.

of E/Eperf approach one. This is due to the fact that
λp/R < 1 and we are in the universal regime, see Fig. 1.
For Drude cylinders, the quantity ξ′ determines the be-
havior of the curves. At λp/R = 0.5, one has 5×10−4 <
ξ′ < 0.06 and for λp/R = 0.05, 5× 10−5 < ξ′ < 0.006 for
the range of h shown in Fig. (2). Since ξ′ � 1, we ex-
pect from our asymptotic computations that the Casimir
energy is close to the energy for perfect metal cylinders.
Fig. 2 indeed shows a plateau at intermediate distances
that is approaching the perfect metal energy Eperf . This
approach is better for λp/R = 0.05 which corresponds to
a smaller ξ′. At small distances, none of our asymptotic
results applies and the actual energy is more strongly re-
druced compared to Eperf . With increasing distance, we
expect at ξ′ ∼ 1 a crossover to the non-universal asymp-
totic energy of Eq. (20). While this crossover is not fully
shown in Fig. 2, the descrease of the energy ratio E/Eperf

with increasing separation is a precursor of this crossover.
The same arguments apply to the interaction of a Drude
cylinder with a plate.
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FIG. 3: Ratio of the numerical results for the Casimir energy
shown in Fig. 2 and the PFA energy based on the Lifshitz
theory for the plasma model with λp/R = 0.05 (squares) and
λp/R = 0.5 (circles). The ratio is shown as a function of
the surface-to-surface distance h. Filled and empty shapes
representing the data for parallel cylinders and cylinder–plate,
respectively.

We now compare our numerics with the PFA results at
short separations and with the asymptotic results at large
separations for both the plasma and the Drude models.

A. PFA versus numerics

The PFA energy is obtained by integrating the PFA
force F = 2πREplates(h) with respect to h, where
Eplates(h) is the energy of two parallel plates at distance h
given by the Lifshitz formula29 using the dielectric func-
tion of Eq. (2). Fig. 3 shows the numerically computed
Casimir energy for λp/R = 0.5 and 0.05, normalized to
the PFA energy for parallel cylinders and a cylinder par-
allel to a plate. We find similar results for the Drude
model. The energies associated with the Drude model
are not shown here since they collapse on the data for
the plasma model at short separations. Our data sup-
port the consistency of the PFA in the limit of vanishing
separations.

B. Asymptotics versus numerics

Figures 4 and 5 show the ratio of the computed ener-
gies and the corresponding asymptotic results (universal
and non-universal regimes) versus ln(2d/R) for two cylin-
ders and a cylinder parallel to a plate, respectively. The
parameter that couples shape (radius) and material prop-
erties is chosen as λp/R = 5. Figures 4(a) and 5(a) show
that for plasma cylinders, at intermediate separations,
the energy normalized to the non-universal asymptotic
energy is approaching unity whereas at asymptotically
large separations the energy normalized to the univer-
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FIG. 4: Two identical cylinders: Ratio of the numerically
computed energy for the plasma model (a) and the Drude
model (b) and the corresponding universal (blue solid line)
and non-universal (red dashed line) asymptotic results with
λp/R = 5 and λσ = λp/27.4. The universal asymptotic en-
ergy is given by Eq. (14) and non-universal ones are given
by Eqs. (17) and (20). The yellow strip shows the crossover
region between the Drude and plasma asymptotic energies.

sal asymptotic energy is tending to unity. On the other
hand, Figs. 4(b) and 5(b) show that for Drude cylin-
ders, at intermediate separations, the energy normalized
to the universal energy is approaching unity whereas at
asymptotically large separations the energy normalized
to the non-universal energy is tending to unity. These
figures confirm the validity of the crossover regime shown
in Fig. 1.

V. SUMMARY

In summary, we have calculated the Casimir force be-
tween two metallic cylinders and a metallic cylinder par-
allel to a plate. The energy is calculated numerically for
a large range of separations. We also find asymptotic en-
ergies for large separations and confirmed their validity
with the numerical results. Furthermore, we showed that
the numerics tend to the PFA energies at short separa-
tions.

The interesting phenomenon in our results is that the
Casimir interaction involving Drude cylinders approaches
a universal form of interaction at intermediate separa-
tions and becomes non-universal (material dependent)
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FIG. 5: Same as Fig. 4 but for a cylinder and a plate with
the universal asymptotic energy given by Eq. (25) and non-
universal ones by Eqs. (27) and (28).

at larger distances d & R2/λσ. This behavior can be
explained in terms of the size of the collective charge
fluctuations in a Drude metal. However if λp � R then
plasma oscillations are supported by the cylinders and at
asymptotically large separations the interaction energy
does show universality.

Based on recent experiments, the interactions between
metals might not be consistent with the Drude model30.
The asymptotic energies that we found in this work can
be used to provide a clearer distinction between the
Drude and plasma model predictions as compared to two
plates or a plate and sphere16. An estimate of the in-
teraction between two gold cylinders with R = 10nm,
length L = 100µm, λp = 137nm and λσ = 5nm at a
distance d = 200nm yields a force of ≈ 1pN within the
plasma description and ≈ 27pN within the Drude model.
These forces are in the experimentally detectable regime.
For the possible finite size effects, see Ref.31,and for a
more general review on finite conductivity corrections,
see Ref.32.

The significant feature of the interaction between a
Drude cylinder with another Drude cylinder or a plate
is that upon increasing the separation, the interaction
can move from a universal regime to a non-universal one.
This behavior can be understood from the wave equa-
tion for the electric field inside a Drude cylinder. For
imaginary frequencies ω = icκ, the Helmholtz operator
∇2 + ε(ω)(ω/c)2 for a good Drude conductor becomes
∇2 − 8π2κ/λσ. We are interested in the maximal wave

length of the field and hence charge fluctuations for a
given κ. With the smallest transverse wave vector kx,
ky ∼ 2π/R we find the dispersion relation

|kz| ∼ R−1
√
κ/κc − 1 , κc = λσ/R

2 . (29)

Hence, collective charge fluctuations on arbitrarily large
scales exist only for κ > κc which is a consequence
of dimensionality that does not appear in the absence
of transverse constraints (R → ∞). For κ < κc
charge fluctuations break up into clusters of typical size
∼ R/

√
1− κ/κc due to finite conductivity. The spec-

tral contribution to the interaction between cylinders at
distance d is peaked around κ ∼ 1/d. If d . 1/κc
(d/R .

√
d/λσ, see Fig. 1(b)), collective charge fluctu-

ations contribute strongly to the interaction and render
it universal similar to perfect metal cylinders for which
κc ∼ 1/σ → 0. In the asymptotic regime with d & 1/κc
(d/R &

√
d/λσ, see Fig. 1(b)), finite conductivity pre-

vents fluctuations on arbitrarily large scales and hence
the interaction is proportional to σ, i.e., non-universal.
It is important to note that as R goes to zero, κc be-
comes larger, and in consequence the finite conductivity
of the cylinder becomes more important.
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Appendix A: T-matrices

1. T-matrix of a cylinder

In this subsection, we derive the T-matrix of a dielec-
tric cylinder that is placed in the vacuum. For this pur-
pose, in part (A 1 a) we find a solution to the vector wave
equation in terms of vector cylindrical harmonics. In
part (A 1 b) we expand the electromagnetic field inside
and outside of a cylinder in the basis of the solutions
presented in the previous part. Then we find the expan-
sion coefficients, which are the T-matrix elements, for
the fields inside and outside the cylinder by matching
the boundary conditions at the cylinder surface. Finally
in part (A 1 c) we show that the derived T-matrix in the
limit of perfect conductivity (ε → ∞) agrees with the
T-matrix of a perfectly conducting cylinder.

a. Vector cylindrical harmonics

Vector cylindrical harmonics provide a basis in which
divergence-less solutions of the vector Helmholtz equa-



9

tion can be expanded. As in the spherical case, the vector
harmonics can be obtained by applying the curl operator
to a vector field Φkzn(κ,x) that is given in terms of the
scalar harmonics. In the cylindrical case, however, this
construction is simpler than in the spherical case since
the vector field Φkzn(κ,x) can be chosen to be parallel
to the z-axis and hence does not change direction as it
does in the spherical case where Φlm(κ,x) ∼ x. Depend-
ing on the polarization we defined the two sets of regular
cylindrical harmonics

Mreg
kzn

(κ,x) =
1√

k2z + κ2
∇× Φreg

kzn
(κ,x) , (A1)

Nreg
kzn

(κ,x) =
1

κ
√
k2z + κ2

∇×∇× Φreg
kzn

(κ,x) ,(A2)

for magnetic multipoles (TE waves) and electric multi-

poles (TM waves), respectively, with p =
√
k2z + κ2 and

the vector field

Φreg
kzn

(κ,x) = ẑ In(ρp)einθeikzz , (A3)

where ρ, θ and z are the cylindrical coordinates of x. The
analog basis Mout

kzn
(κ,x), Nout

kzn
(κ,x) for outgoing waves

is obtained by replacing In by Kn. These are transverse
waves, i.e., ∇Mx

kzn
= ∇Nx

kzn
= 0. They obey the re-

lations Mx
kzn

= 1
iκ∇ ×Nx

kzn
, Nx

kzn
= 1

iκ∇ ×Mx
kzn

. In
explicit form, they read

Mreg
kzn

(κ,x) =

[
in

pρ
In(pρ) ρ̂− I ′n(pρ)θ̂

]
einθeikzz , (A4)

Nreg
kzn

(κ,x) =
1

κ

[
ikzI

′
n(pρ) ρ̂− nkz

pρ
In(pρ) θ̂

−pIn(pρ)ẑ

]
einθeikzz . (A5)

It is analogous for the outgoing waves.

b. Scattering amplitudes

We consider an infinitely long dielectric cylinder with
ε(icκ), µ(icκ) and radius R in vacuum. We expand the
electromagnetic field inside and outside the cylinder in
the bases of Eqs. (A1), (A2) and the corresponding bases

for outgoing waves. The expansion coefficients for the
field inside and outside (T-matrix elements) follow from
the matching conditions at the cylinder surface for the
field components that are parallel to the surface.

For an incident magnetic multipole (TE) field, we make
the scattering ansatz for the electric field modes

EMkzn(κ,x) = Mreg
kzn

(κ,x) + TMM
kzn Mout

kzn(κ,x)

+ TME
kzn Nout

kzn(κ,x) , (A6)

outside the cylinder and

EMkzn(κ,x) = AMM
kzn M̃reg

kzn
(κ,x)+AME

kzn Ñ
reg
kzn

(κ,x) , (A7)
inside the cylinder where M̃reg

kzn
(κ,x), Ñreg

kzn
(κ,x) are

given by Eqs.. (A1), (A2) with κ replaced by

κ
√
ε(icκ)µ(icκ). For an incident electric multipole (TM)

field, the ansatz becomes

EEkzn(κ,x) = Nreg
kzn

(κ,x) + TEMkzn Mout
kzn(κ,x)

+ TEEkznN
out
kzn(κ,x) , (A8)

outside the cylinder and

EEkzm(x) = AEMkzmM̃reg
kzm

(κ,x) +AEEkzmÑreg
kzm

(κ,x) , (A9)

inside the cylinder.
The continuity conditions require that the tangen-

tial fields Ez, Eφ, Hz = Bz/µ and Hφ = Bφ/µ are
continuous across the cylinder surface. Using the
explicit expressions of Eqs. (A4), (A 1 a) these conditions
lead for each type of multipole fields to a set of four
linear equations for the expansion coefficients. Using
B = −(1/κ)∇ × E and setting p′ =

√
εµκ2 + k2z these

equations can be written for incident magnetic (TE)
waves as

Mkzn


AMM
kzn

TMM
kzn

AME
kzn

TME
kzn

 =


p
κIn(pR)
I ′n(pR)

0
nkz
pRκIn(pR)

 , (A10)

with the matrix

Mkzn =


p′

µκIn(p′R) − p
κKn(pR) 0 0

I ′n(p′R) −K ′n(pR) nkz
p′
√
εµRκIn(p′R) − nkz

pRκKn(pR)

0 0 p′√
εµκIn(p′R) − p

κKn(pR)
nkz
µp′RκIn(p′R) − nkz

pRκKn(pR)
√
ε/µI ′n(p′R) −K ′n(pR)

 , (A11)

For incident electric (TM) waves the linear equations are

Mkzn


AEMkzn
TEMkzn
AEEkzn
TEEkzn

 =


0

nkz
pRκIn(pR)
p
κIn(pR)
I ′n(pR)

 , (A12)
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with the same matrix Mkzn as before. The solution to
these equations for the T-matrix elements can be ex-
pressed as

TMM
kzn = − In(pR)

Kn(pR)

∆1∆4 +K2

∆1∆2 +K2
, (A13)

TEEkzn = − In(pR)

Kn(pR)

∆2∆3 +K2

∆1∆2 +K2
, (A14)

TME
kzn = −TEMkzn =

K
√
εµ(pR)2Kn(pR)2

1

∆1∆2 +K2
,

(A15)

with

K =
nkz√
εµR2κ

(
1

p′2
− 1

p2

)
, (A16)

and

∆1 =
I ′n(p′R)

p′RIn(p′R)
− 1

ε

K ′m(pR)

pRKm(pR)
, (A17)

∆2 =
I ′n(p′R)

p′RIn(p′R)
− 1

µ

K ′n(pR)

pRKn(pR)
, (A18)

∆3 =
I ′n(p′R)

p′RIn(p′R)
− 1

ε

I ′n(pR)

pRIn(pR)
, (A19)

∆4 =
I ′n(p′R)

p′RIn(p′R)
− 1

µ

I ′n(pR)

pRIn(pR)
. (A20)

Notice that in general the polarization is not conserved
under scattering, i.e., TEMkzn 6= 0 6= TME

kzn
.

c. Limit of perfect conductivity

We consider the limit ε→∞ with µ fixed. Then p′ →√
εµ κ and K ∼ 1/

√
εµ. In addition, we have for large p′

I ′n(p′R)

p′RIn(p′R)
→ 1

p′R
→ 1
√
εµRκ

, (A21)

so that

∆1, ∆3 →
1

√
εµRκ

+O(ε−1) , (A22)

∆2 → − 1

µ

K ′n(pR)

pRKn(pR)
+O(ε−1/2) , (A23)

∆4 → − 1

µ

I ′n(pR)

pRIn(pR)
+O(ε−1/2) . (A24)

This asymptotic forms show that the T-matrix elements
that couple TM and TE waves vanish as

TME
kzn ∼

1√
ε
→ 0 , (A25)

in the limit ε → ∞. The T-matrix elements that couple
like polarizations simplify substantially. Since for ε→∞

∆1∆4 −K2

∆1∆2 −K2
→ I ′n(pR)Kn(pR)

In(pR)K ′n(pR)
, (A26)

∆2∆3 −K2

∆1∆2 −K2
→ 1 , (A27)

we get the simplified expressions

TMM
kzn = − I ′n(pR)

K ′n(pR)
, (A28)

TEEkzn = − In(pR)

Kn(pR)
, (A29)

TEMkzn = TME
kzn = 0 . (A30)

It is easily checked that these are the T-matrix elements
for a scalar field with Neumann boundary conditions
(magnetic or TE modes) and with Dirichlet boundary
conditions (electric or TM modes). Hence, in the limit
of perfect conductivity the EM scattering problem for a
cylinder separates into two independent scalar problems,
one with Dirichlet and one with Neumann boundary con-
ditions.

2. T-matrix of a plate

The T-matrix elements of a plane is given by its Frensel
coefficients11

TPk⊥
= rP (icκ, (1 + k2

⊥/κ
2)−1/2) , (A31)

with P the polarization index, k⊥ the momentum per-
pendicular to the x̂ direction, and rQ the Frensel coeffi-
cients

rM (icκ, x) =
µ(icκ)−

√
1+(n2(icκ)−1)x2

µ(icκ)+
√

1+(n2(icκ)−1)x2
, (A32)

rE(icκ, x) =
ε(icκ)−

√
1+(n2(icκ)−1)x2

ε(icκ)+
√

1+(n2(icκ)−1)x2
, (A33)

here ε, µ and n(icκ) are the dielectric response function,
magnetic permeability, and the refractive index of the
plate, respectively. The refractive index in terms of the
dielectric function and the magnetic permeability of the
plate is given by

n(icκ) =
√
ε(icκ)µ(icκ) . (A34)

The T-matrix of a dielectric plate Eq. (A31) is diagonal
with respect to the polarization indices.

Appendix B: Translation matrix

According to Graf’s addition theorem, the following
relation holds,

Km(p rj) e
imφj =

∞∑
n=−∞

(−1)nKm−n(pRji) e
−i(m−n)φjiIm(p ri) e

inφi ,

(B1)

where rj = ri + Rji with ri = ri(cosφi, sinφi), Rji =
Rji(cosφji, sinφji) are two-dimensional vectors in the
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xy-plane. We consider translations in 3D that are per-
pendicular to the z-axis with the translation vector Xji =
(Rji, 0), i.e., we set xi = (ri, zi) with zi = zj . Since the
curl operator commutes with translations, from the def-
initions in Eqs. (A1), (A2) and the addition theorem of
Eq. (B1) follow the translation formulas from outgoing
to regular waves

Mout
kzm(xj) =

∞∑
n=−∞

U ijkznmMreg
kzn

(xi) (B2)

Nout
kzm(xj) =

∞∑
n=−∞

U ijkznmNreg
kzn

(xi) (B3)

with the translation matrix

U ijkznm = Km−n(p|Xji|)e−i(m−n)φji . (B4)

From this we make two important observations: Trans-
lations conserve the polarization, i.e., they do not couple
magnetic and electric modes, and the translation matri-
ces are diagonal in kz. The conservation of polarization
leads to a diagonal translation matrix that acts on the
full set of electric and magnetic modes.

Appendix C: Conversion matrix from vector plane
wave basis to cylindrical vector wave basis

In this section we show the conversion matrix elements
from Ref.11. The cylindrical vector wave functions are
given in Eq. (A1) and (A2), which decay along the −ẑ.
We consider regular vector plane wave functions that de-
cay along the −x̂ axis

Mreg
k⊥(κ,x) =

1√
k2y + k2z

∇× e
√
κ2+k2y+k

2
zx+ikyy+ikzzx̂, (C1)

Nreg
k⊥(κ,x) =

1

κ
√
k2y + k2z

∇×∇× e
√
κ2+k2y+k

2
zx+ikyy+ikzzx̂. (C2)

The vector plane wave functions can be written in terms
of vector cylindrical wave functions,

Mreg
k⊥(κ,x) =

∑
n

DkznM,k⊥MMreg
kzn(κ,x)

+DkznE,k⊥MNreg
kzn(κ,x) , (C3)

Nreg
k⊥(κ,x) =

∑
n

DkznM,k⊥EM
reg

kzn(κ,x)

+DkznE,k⊥EN
reg

kzn(κ,x) , (C4)

using the conversion matrix elements

DkznM,k⊥M = −i kz√
k2y + k2z

√
1 + ξ2

(√
1 + ξ2 + ξ

)n
,

(C5)

DkznE,k⊥M = i
κ√

k2y + k2z

ξ
(√

1 + ξ2 + ξ
)n

, (C6)

DkznE,k⊥E = DkznM,k⊥M , (C7)

DkznM,k⊥E = −DkznE,k⊥M , (C8)

where ξ =
ky√
κ2+k2z

and k⊥ = (ky, kz).
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