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We extend previous analyses of fermions on a honeycomb bilayer lattice via weak-coupling renor-
malization group (RG) methods with extremely short-range and extremely long-range interactions
to the case of finite-range interactions. In particular, we consider different types of interactions
including screened Coulomb interactions, much like those produced by a point charge placed either
above a single infinite conducting plate or exactly halfway between two parallel infinite conducting
plates. Our considerations are motivated by the fact that, in some recent experiments on bilayer
graphene®? there is a single gate while in others®*, there are two gates, which can function as the
conducting planes and which, we argue, can lead to distinct broken symmetry phases. We map out
the leading instabilities of the system as its temperature is lowered as a function of the range of the
interaction. We discover that the system is unstable towards an antiferromagnetic phase for short
ranges of the interaction and towards a nematic phase at long ranges, in agreement with Refs. 5 and
6. While the antiferromagnetic phase results in a gap in the spectrum, the nematic phase is gapless,
splitting the quadratic degeneracy points into two Dirac cones each®®. We also consider the effects
of an applied magnetic field on the system in the antiferromagnetic phase via variational mean field
theory. At low fields, we find that the antiferromagnetic order parameter, A(B) — A(0) ~ B2
At higher fields, when w. 2 2A¢, we find that A(B) &~ w./[In(we/A(0)) + C], where C = 0.67 and
we = eB/m*c. We also determine the energy gap for creating electron-hole excitations in the system,
and, at high fields, we find it to be aw. + 2A(B), where a is a non-universal, interaction-dependent,

constant.

PACS numbers:

I. INTRODUCTION

The problem of interacting fermions on an A-B stacked
honeycomb bilayer lattice has been of great interest, both
theoretically and experimentally, due in no small part to
its band structure. Typically, the band structure pos-
sesses two inequivalent points, labeled K and K’ = —K,
in the Brillouin zone at which the two low-energy bands
make contact at four Dirac-like cones?. However, in
the case where we neglect all but nearest-neighbor hop-
ping terms, these four Dirac cones merge into a single
quadratic degeneracy point?. The density of states at the
Fermi level at half-filling therefore becomes finite in this
special case. This leads to logarithmic divergences in the
uniform and static susceptibilities to various symmetry-
breaking orders at zero temperature®®, and thus we ex-
pect such phases to appear for arbitrarily weak interac-
tions over some finite range of temperatures.

One key motivation for the study of the honeycomb
bilayer in particular is the fact that bilayer graphene,
a material of great interest, possesses this lattice struc-
ture. In particular, measurements of the conductivity of
suspended bilayer graphene in various external electric
and magnetic fields as well as different carrier densities?,
followed by compressibility measurements®, provide ev-
idence suggesting that a symmetry-breaking state ap-
pears; the two possible states argued for in these works
are a quantum anomalous Hall phase, in which the sys-
tem develops a non-zero quantized Hall conductivity in
the absence of a magnetic field, and a nematic phase, in
which the quadratic degeneracy points each split into two

massless Dirac-like cones, each displaced slightly from the
original quadratic degeneracy point, with the size of the
displacement determined by the magnitude of the order
parameter and the direction determined by the order pa-
rameter’s direction. Rotating the order parameter by =
will result in an identical configuration, and thus the or-
der parameter behaves like the molecules in a nematic
liquid crystal. A more recent experiment? finds evidence
for the presence of a nematic phase®>”® by measuring the
width of a peak in the resistivity as a function of the car-
rier density at different temperatures and by measuring
cyclotron gaps as a function of the applied magnetic field
for different filling factors. Another, even more recent,
experiment4 uses measurements of two-terminal conduc-
tance to argue for a state in which the system develops
an energy gap in its spectrum, in apparent disagreement
with the previous experiment, since the nematic state is
gapless. Two other experiments'®!! also conclude that a
gap due to symmetry breaking is present, but are incon-
clusive about the exact nature of the state. Yet another
experimem‘c12 performs measurements on multiple sam-
ples, finding a bimodal distribution of both conducting
and insulating samples.

In addition to experimental investigations, there have
also been a number of theoretical studies regarding
the nature of the symmetry-breaking states of the A-
B stacked honeycomb bilayer. One such investigation'3
uses variational methods to argue for a ferromagnetic
phase for long-range interactions and a calculation of
the susceptibility towards an antiferromagnetic phase
within an RPA approximation, followed by a mean-field



calculation of the associated order parameter, to ar-
gue for said phase for short-range interactions. Two
other works employ a mean-field approach to argue for
a “(layer) pseudospin magnet” state’* and a ferromag-
netic state!®, while later investigations argue for a layer-
polarized state, in which there is more charge on one layer
of the sample than on the other!'® within the mean-field
approximation and a quantum anomalous Hall state!”
with mean field plus Gaussian fluctuations. Another
work by the same group'® considers the phase of the
system within the mean-field approximation as a func-
tion of external electric and magnetic fields and finds
a quantum anomalous Hall state, a quantum Hall fer-
romagnetic insulator, and a layer-polarized state. An-
other work!® uses Hartree-Fock methods to argue for a
layer-polarized state in the absence of a magnetic field,
and argues for the existence of an anomalous quantum
Hall state in the presence of a magnetic field. A very re-
cent investigation by the same group arrives at a “(layer)
pseudospin antiferromagnetic” state for the honeycomb
bilayer??. Another very recent investigation finds, using
Hartree-Fock methods, a coexistence of a quantum spin
Hall state and a layer-polarized state that may be turned
into a pure layer-polarized state with the application of
a sufficiently strong electric field?!. The work of Ref. 22
treats the problem of the combined effect of an in-plane
magnetic field, i.e., with a Zeeman term only, and an ap-
plied perpendicular electric field, within a self-consistent
mean field approximation.

The mean-field approach, as a means of predicting the
low-temperature phase of the system, however, has one
major disadvantage. It does not treat the leading loga-
rithmic divergences that appear in perturbation theory
correctly, and therefore may not lead to results that are
correct, even qualitatively?®>. On the other hand, the
renormalization group (RG) approach does. An example
of this point is provided by the treatment of interacting
fermions on a one-dimensional chain?®. In the spinless
case (see, for example, Ref. 24), mean field theory pre-
dicts that there will be a charge density wave state for
arbitrarily weak interactions at half filling, while RG pre-
dicts a Luttinger liquid for weak interactions. We there-
fore believe that RG is more accurate as a means of pre-
dicting the state that our system enters than a mean field
approach. There are now several papers that employ the
RG approach in studying the honeycomb bilayer in the
weak-coupling limit® 825,

A paper by one of us and Yang® uses this method
to argue for an instability towards a nematic state for
extremely long-range interactions in the case of spin-
% fermions, and a similar paper by Lemonik et. al.”®
which followed comes to the same conclusion. Another
paper by one of us® investigates the extremely short-
range limit, namely the repulsive Hubbard model, us-
ing the same approach, and finds that a system of spin-%
fermions are unstable towards an antiferromagnetic state,
in which the spins possess a ferrimagnetic arrangement
within each layer (i.e., the spins alternate in direction be-

tween neighboring sites, but are of unequal magnitude),
and are oppositely directed between the two layers; for
an illustration of this phase, see Fig. 1(a) of Ref. 26.
It is also argued in Ref. 6 that this state should per-
sist even in the strong-coupling limit. This has been
very recently confirmed?® using a combination of quan-
tum Monte Carlo and functional RG methods.

In the present work, we will extend the analyses
conducted in Refs. 5 and 6 to the case of finite-
ranged density-density interactions in the case of spin—%
fermions, and to finite temperature, following the meth-
ods described in detail in Ref. 27. We are interested in
determining how the system transitions from the anti-
ferromagnetic state to the nematic state as we increase
the range of the interaction. In particular, we consider
two types of interactions namely 1) screened Coulomb
interactions, much like those produced by a point charge
placed exactly halfway between two parallel infinite con-
ducting plates, 2) same as 1) but for a single infinite con-
ducting plate. Each form considered includes a parame-
ter ¢ that is proportional to the range of the interaction.
Our consideration of these forms in particular is moti-
vated by the fact that, for example, the experiment in
Ref. 2 has only a single gate, while that in Ref. 4 has two
gates. We argue that these gates function as conducting
plates, thus resulting in electron-electron interactions of
the forms described above.

Our procedure for the calculation is as follows. We
start with a tight-binding lattice model for the honey-
comb bilayer with a density-density interaction between
electrons. From this, we may derive a low-energy effec-
tive field theory, which takes the same form as that given
in the previous work®; said field theory contains 9 dif-
ferent contact quartic couplings that are allowed by the
symmetries of the honeycomb bilayer lattice and by Fierz
identities. We find the values of the coupling constants
in terms of the interaction in our original tight-binding
lattice microscopic model. We then use these values as
the initial conditions for the RG flow equations derived
to one-loop order in Ref. 27, which we integrate numer-
ically. We then perform the analysis outlined therein to
determine the leading instability of the system as the
temperature is lowered.

For very short-ranged interactions, we find that the
system is unstable to an antiferromagnetic phase, in
agreement with the previous work®. This is determined
by monitoring the susceptibilities toward various phases
as the temperature is lowered; in this case, the only sus-
ceptibility that diverges at the critical temperature is to-
wards the antiferromagnetic phase. If we increase the
range, we will enter a region where the susceptibilities
toward both the antiferromagnetic and nematic phases
both diverge, although not necessarily with the same
exponent?”. This transition occurs for values of & any-
where from about 0.4 to 2 lattice spacings, depending on
the form and overall strength of the interaction. Finally,
upon increasing £ further, the instability towards the an-
tiferromagnetic phase disappears, with only that towards



the nematic phase remains, again in agreement with the
previous work™%. This happens for values of ¢ anywhere
from 4 to about 10 lattice spacings, again depending on
the form and overall strength of the interaction.

For the dipole-like potential, much like the one that is
produced by a point charge a distance £ above a single
infinite conducting plate,

1 1
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where Uy is a sufficiently small constant, so that our sys-
tem is at weak coupling. For the potential produced by a
point charge placed exactly half-way between two infinite
conducting plates separated by a distance 2¢,

2v/2e~77/€
r/§

where K, () is a modified Bessel function of the second
kind and the last equation holds asymptotically at large
values of r/£. Note that these expressions, as they are,
diverge at r = O—that is, they diverge for two electrons
on the same lattice site. Because of this, and due to the
fact that the electrons in the tight-binding model cannot,
strictly speaking, be considered point particles, we ren-
der these on-site interactions finite by setting said inter-
actions equal to a constant A times the nearest-neighbor
interaction; our main results were found for A = 1.2; this
choice makes our interactions monotonically decreasing
with distance.

In each case, we find a qualitatively identical results
for the leading instabilities, except that the values of &
at which the instabilities described earlier appear or dis-
appear are smaller for the one-plate case than for the
two-plate case.

Another way to think of our results is as follows. When
we make our interactions longer-ranged in real space, we
are, at the same time, making them shorter-ranged in
momentum space. Let us start with a density-density
interaction of the general form, > ., V(r — r’)n(r)n(r’),
where n(r) = > _ ¢l (r)c,(r). It turns out that the initial
couplings in the effective low-energy field theory depend
on the Fourier components V(q) of this interaction at
q = 0 and q = 2K; we will label these components as V|
and Va i, respectively. In the case of a long-range interac-
tion Vp > Vo, and said interaction will therefore mostly
cause forward scattering of the electrons while, in the case
of a short-range interaction, Vo will become comparable
to Vo, and thus back scattering begins to become com-
parable to the forward scattering. We would therefore
say that the system is unstable to a nematic phase when
forward scattering dominates, while it is unstable to an
antiferromagnetic phase when back scattering becomes
comparable to the forward scattering.

Interestingly, if we make the on-site (repulsive) interac-
tion weaker than the nearest-neighbor (repulsive) inter-
action, we may also find an instability towards a quantum

V(r) =Uo [ ; (1)

V(r) =40 Y Ko [(% + 1)775} ~ Uy
k=0 5
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spin Hall phase for intermediate ranges of the interac-
tion; whether or not it appears depends on the sign of
one of our coupling constants, ¢gg,, which we define in
the main text, for a given value of £. This may be seen
from Fig. 5 in Ref. 27. We were, however, unable to ob-
tain a quantum anomalous Hall state in this case with
any density-density interaction.

Motivated by experimental data'* and by our above
conclusions, we then turn our attention to investigating
the effects of an applied magnetic field on the antiferro-
magnetic phase. A similar calculation has already been
performed?®, in which a self-consistent mean field ap-
proach is employed, and a second order parameter corre-
sponding to a “staggered spin current” order?” is explic-
itly introduced. Our variational mean-field analysis only
explicitly includes the antiferromagnetic order parame-
ter. We do this because, while at B = 0, the two order
parameters are distinct in that they have opposite par-
ity under mirror reflections, a finite external magnetic
field, which is an axial vector, breaks the mirror sym-
metry. Therefore, at B # 0, the two order parameters
automatically mix; they belong to the same (Ay,,) repre-
sentation of Sg, the point group for B # 0. Indeed, our
variational wave function, which includes only the AF
order parameter explicitly, leads to a finite expectation
value of the “staggered spin current” order parameter
when B # 0. In Ref. 28, the development of a finite
expectation value of the “staggered spin current” oper-
ator was attributed to “the emergence of the n = 0,1
Landau levels (LLs) and the peculiar property of their
wave-functions to reside on only one sublattice in each
valley”. Here, we extend the argument and show that
it must be present on more general grounds, and is not
tied to the properties of the Landau levels. Note that,
in this case, we are using mean-field methods to deter-
mine the phenomenology of the broken-symmetry state
in a case where we already know which symmetries are
broken, based on our RG calculations, rather than as a
means of predicting the broken-symmetry state. In fact,
since the AF state is gapped, we expect that an expansion
around the mean-field state should have a finite radius of
convergence. Another reason why we employ mean-field
methods rather than RG in this calculation is because, in
the presence of a perpendicular magnetic field, the non-
interacting energy spectrum is discrete and momentum k
is not a good quantum number, thus making an analysis
of the type used previously more difficult.

In order to obtain a fit to the experimentally-measured
gapl?, we calculate the energy required to create a
(charge neutral) particle-hole excitation, from which we
can find the energy gap in the system. We find that it is

*

m
Eex = min[E,, + E,, + EQ*Wc(Tlsl —ms2),  (3)

where w. = eB/m*c is the cyclotron frequency for the
effective mass m*, and

E, =+/n(n —1)w? + A(B)2. (4)



7 and s are valley and spin indices; the former is +1 for
the £K valley, and the latter is +1 for spin up (down).
Note that, if n; = 0 or 1, then 7;s; is locked to +1 for j =
1 (particle) and to —1 for j = 2 (hole). This is simply the
sum of the energies of the two states in the single-particle
“auxiliary spectrum”, plus a non-universal term linear in
the applied magnetic field, which depends on the coupling
constant g* ~ Vy— Vo discussed further in the text. The
gap in our system is simply the minimum energy required
to create such a particle-hole excitation. As discussed in
the next paragraph, while the field dependence of the AF
order parameter A(B) is universally determined by A(0)
through Eq. (5), the energy gap is not. The B-linear term
has a coefficient that depends on the interaction in the
combination, Vy — Vo, and thus the slope of the energy
gap at high fields is independent of the zero-field value
of the order parameter Ay = A(0). These results are in
agreement with those found earlier in Ref. 28.

In our method of determining A(B), which was subse-
quently reproduced in Ref. 28, we eliminate the coupling
constants in the problem by rewriting the self-consistent
equation in terms of Ay. This allows us to send the en-
ergy cutoff in our problem to infinity. By doing so, we
can obtain the scaling equation for the order parameter
at a finite magnetic field whose dependence on coupling
constants enters entirely through Ag:

() u(z) o
F(a) = I(a) + ﬁ ~In (1 + m) (6)

and I(«) is stated in Eq. (D25), but may be very accu-
rately approximated for any value of « as

2
flor== [(—31(0))72/3 + 4. 62/3a2]3/2" v

where

and 7(0) ~ —0.0503 is the exact value of I(a) at o = 0.

While the above equation must, in general, be solved
for A(B) numerically, it is possible to obtain approxi-
mate analytic solutions in certain limits. For low fields,
the order parameter has a quadratic dependence on the
magnetic field,

w?

A(B) = Ao+ S?ACO, (8)

while, at high magnetic fields, the dependence on the
field is

We

AlB) = In(we/Ag) + C’

(9)
where C' ~ 0.67. This may be experimentally hard to
distinguish from linear dependence.

We find that Fe.y, given by Eq. (3), has a slight non-
monotonic behavior for small fields. For example, if we

choose T—;g* = 0.44 and Ag = 0.95 meV, which we use
to fit the experiment in Ref. 4, we find a minimum of
about 1.91Aq, occuring at around B = 0.047 T. At
larger fields, we observe a “kink”, marking a transition
to an approximately linear behavior, at a field of about
0.45 T. This may be seen in Fig. 5.

We also considered the high-field data for the v = 0 gap
given in Ref. 1. In this case it is unclear from the low-field
data what is the value of the energy gap at zero applied
field, if any. Nevertheless, because of the weak logarith-
mic dependence on Ag shown in Eq. (9), it is reasonable
to fit this data using the expressions presented above and
the same Ag = 0.95 meV as for the fit to the data of Ref.
4. In this case, we still obtain a non-monotonic depen-
dence on the field, but with a very shallow minimum at
about B = 0.017 T. In this case, we would need to as-
sume Vjy < Vag, which would require a non-monotonic
density-density interaction.

The rest of the paper is organized as follows. In Section
1T, we state the starting microscopic lattice Hamiltonian.
In Section III, we derive the corresponding low-energy
effective theory and the relations between the coupling
constants in the low-energy theory and the interaction in
the microscopic lattice Hamiltonian. Section IV is dedi-
cated the determination of the leading instability of the
system as a function of the range of the interaction using
the results of Section III as the initial conditions for the
RG analysis detailed in Ref. 27. In Section V, we present
our variational mean field analysis of the antiferromag-
netic state in the presence of an applied magnetic field
and calculation of the energy gap within this approxi-
mation. We present our conclusions in Section VI, and
provide mathematical details in the appendix.

II. MICROSCOPIC LATTICE HAMILTONIAN

Our starting point will be a tight-binding A-B stacked
honeycomb bilayer lattice with only nearest-neighbor
hopping terms and a two-particle interaction. The lattice
and the corresponding reciprocal momentum (k) space
are illustrated in Figure 1. By including only nearest-
neighbor hopping, we are fine-tuning our system so that
it only possesses two parabolic degeneracy points, rather
than four Dirac cones. As stated earlier, this will make
our system unstable to symmetry-breaking phases for ar-
bitrarily weak interactions, thus justifying the use of per-
turbative RG methods. The Hamiltonian for this system
is

H=H)+Hj + H) + H, (10)

9

where the kinetic energy terms” are

HYy =3 3 [bl,(R+6)a1s (R)+bh, (R—0)azs (R)+h.c]
R,0 o=1,
(11)



FIG. 1: (a) Ilustration of the honeycomb bilayer lattice with
only nearest-neighbor hopping terms. The circles represent
the bottom layer, or layer 1, while the squares represent the
top layer, or layer 2. The intralayer hopping is ¢, while the
interlayer hopping is t,. We label the dimerized sites as a1
and ag, while the non-dimerized sites are labeled b; and bo.
(b) Nlustration of the (rec}lprocal) k space, with the parabolic

. o - r_ .
degeneracy points K = 332X and K' = —K, where a is the

(real-space) lattice constant, marked.

and

Hy=—t1 Y > [a],(R)azs(R) + he].  (12)

R o=1,{

Here, t and ¢t are the intra-layer and inter-layer nearest-
neighbor hopping integrals, respectively, d is a vector that
connects an aj site to a nearest-neighbor b; site. The
position vectors R that we sum over are the positions of
the dimerized sites. The three possible values of § are
@aﬁ: + %afr, —‘/Tgafc + %afr, and —ay. Whenever there
is a sum on ¢, we sum over all three vectors, while, if §
occurs without a sum over it, then we choose one such
vector.

The interaction terms are given by

HY =133 Ve =)o) = () = 1) (13)

k=1 rr’

and

Hi =Y Vi(r—r)na(r) = ne(r) —1].  (14)

rr’/

Here, r runs over all projections of the position vectors of
the lattice sites onto the plane of the sample, and thus is

entirely in the zy plane. ¢, (r) is the annihilation opera-

tor for a particle at site r, and ny(r) =>__ CLU (r)cko ().

The interaction V(r) is assumed to depend only on dis-
tance, i.e., V(r) = V(|r|). For convenience, we intro-
duced the notation V) (r) = V(r) and Vi (r) = V(r £ cz),
where c is the distance between the two layers. The sys-
tem represented by this Hamiltonian will be at half filling
when the chemical potential is zero. This follows from the
fact that the Hamiltonian is invariant under the particle-

hole transformation,

a1,(R) = al,(R), (15)
az(R) = —ib,(R), (16)
bhio(R) = —b,(R), (17)
by (R) = b, (R). (18)

Using this, the calculated expectation value of the parti-
cle number on a given site can be shown to be 1.

IIT. LOW-ENERGY EFFECTIVE THEORY

Before performing our RG analysis of the above Hamil-
tonian, we first derive the low-energy effective theory as-
sociated with it. We assume that the kinetic energy terms
are dominant, and that the interactions are small. This
will allow us to focus on the interaction-induced scat-
tering processes in the vicinity of +K = 44 /(3v/3a)x%.
Note that there are four sites per unit cell, and therefore
there are four bands. For every state with energy E(k),
there is another with energy —FE/(k). To proceed, we first
write the partition function for the system as a coherent-
state path integral and integrate out the dimerized sites
a1 and as. To see that the high- energy modes are as-
sociated with these sites, note that the separation of the
high-energy, split off, bands is set by the hopping integral
t1 between a; and as. We then expand around the two
parabolic degeneracy points in the Brillouin zone, asso-
ciated with the remaining two bands. The derivation of
this theory is a straightforward, if tedious, generalization
of the steps followed in Ref. 6. The low-energy effective
theory that we obtain is

7 = /DWN/J] exp <— /05 ercH> , (19)

where the Lagrangian L.g is given by
Leg = /dszT J HE)|
© or
+ 3 Y0 [ RS0 - i [ RO,

Seg
(20)

Here, (r,7) = [¢1(r,7),%,(r,7)]T is an eight-
component spinor in layer (1, 2), valley (K, —K), and
spin (1, |) space, and

b1 K,o(r,7)
boK,o(r,T)

[t . 21
bl.,fK.,a'(ra T) ( )
b2,7K,a'(ra T)

Yo (r,7) =

The matrix, H(p), is given by

P
2m

2
p Pap
Hp) =Ty, ¢ by (22)



where m* = 2tJ_/9(121€2 is the effective mass, ¥, =
190713 = 72 ® 12, and ¥, = 7°0Y1ly = 11 ® 12. In
the former definitions, the 7 matrices act in valley space,
the o matrices act in layer space, and the third matrix,
which is the identity in both cases, acts in spin space.
The sum on S is over all 16 matrices of the form, 7;0;15.
These 16 matrices may be classified according to the rep-
resentation of the space group under which our system is
symmetric, namely the D3, point group plus appropri-
ate translations, that they transform under. A complete
classification of the 16 possible 4 x 4 matrices that act in
valley and layer space is done in Ref. 27; we repeat those
results here for convenience:

Arg+ 1y
Agg— : 707
E,+ 1 (10", 770Y)
Alu_ : Tzlg
Ao+ 1 1907
E,— : (170", —120Y)
A+ : 00" 1Y0"
Aox— : 0¥ 7Y0Y
Ex+ : (712, —7Y0% —7Y19, —7"0%).

The symbols, A4, Aog, etc., give the representation
of the space group under which the listed matrices
transform??, and the + at the end of each representa-
tion denotes how the associated matrices transform under
time reversal. The coupling constant gg is that associ-
ated with the representation that the matrix S belongs
to. Since the sum includes all 16 matrices, there are nine
coupling constants in all. It can be shown® that there
are only nine independent coupling constants due to the
symmetries of the underlying lattice and Fierz identi-
ties. In the notation of Ref. 6, ga,, = 91(461)’ GA,, = ggz,

9B, = 9% 9an = 9% 9aw. = 95 9B, = 9%,

9 = 95, gage = 657, and gg,. = g,

Provided that we start with density-density interac-
tions only, as we do in this case, the only (initial) non-
zero coupling constants in this theory are

A, = %(‘/H,O + VJ_,N)Aucu (23)

9as. = 3(Vjo — Vin)Auc, (24)

9Ex = i‘/HQKAuca (25)
where A, = %c@ is the area of a unit cell of the lattice,
and

Vie = >_Vi(R), (26)

5 ViR -0, (27)
R,

Vin

Viex = D Vj(R)cos2K - R), (28)
R

We note that g4,, and ga,, depend only on q = 0 Fourier
components of the interaction, and thus we may say that
they give us a measure of the strength of the forward
scattering induced by said interaction. Likewise, we note
that gg, only depends on the q = +2K Fourier com-
ponents, and thus it gives us a measure of the strength
of the back scattering. Furthermore, we see that ga,,
depends on the difference between an intra-layer interac-
tion and an inter-layer interaction, and thus it may be
seen as a measure of the imbalance between these two
interactions.

Note that our theory includes a quadratic, chemical
potential-like, term. We may think of the undetermined
constant p’ as being chosen in such a way as to can-
cel out the quadratic terms that are generated from the
quartic terms under RG. We require that this occur be-
cause we know that our original lattice model is at half
filling (that is, it possesses particle-hole symmetry), and
therefore this must be reflected in our effective low-energy
theory as well.

We could, in principle, have also determined the value
of 1/ when we wrote down the above effective low-energy
theory. Strictly speaking, we should not simply drop
all of the modes above the cutoff, as we did here, but
rather integrate them out in a perturbative scheme sim-
ilar to what is done in an RG analysis. This, at first
order, will not change our quartic terms because it only
generates the tree-level quartic terms. However, it will
generate both tree-level and one-loop contributions to
the quadratic terms. It would, however, be somewhat
cumbersome and, given the above particle-hole symme-
try arguments, equally unnecessary, to determine these
one-loop contributions to the chemical potential.

IV. DETERMINATION OF LEADING
INSTABILITIES

We are now ready to describe the results of our RG
analysis. We consider two forms of the microscopic in-
teraction, which are given by Egs. (1) and (2). In both
cases, we determine our initial couplings by first using
Egs. (23)(25) to determine the ratios, ga,,/ga,, and
9Ex/94,,, as a function of the range of the interaction.
We then consider different values of ga,, to multiply
these ratios by; we may therefore think of this value of
ga,, as determining the overall strength of the interac-
tion. We then use these couplings as the initial conditions
for the RG equations derived in Ref. 27 and quoted in
Appendix A, which we integrate numerically. The initial
energy scale for these equations is given by the hopping
between dimerized sites, ¢, , since it is only below this
energy scale that our low-energy theory holds. We then
adjust the temperature until we see the couplings diverge
as we take the scale parameter to infinity, i.e., until we
reach the critical temperature. We monitor the suscepti-
bilities to different phases as we lower the temperature,
and determine which of these susceptibilities diverge.



We detail the method by which we find the suscep-
tibilities in Ref. 27, but we summarize it here as well.
We first introduce source terms into the action, of the
form given in Appendix A, which will renormalize in ac-
cordance with the equations stated therein. Note that
the stated equations result in solutions given by the bare
value of the source term times a function that is inde-
pendent of the source terms. We then calculate the free
energy of the system with these source terms added. To
find the susceptibilities, we take the appropriate second
derivatives of the free energy with respect to the source
terms. We find that, upon doing so, the source terms
drop out, as they should, since they are simply auxiliary
quantities.

A. Screened Coulomb-like interaction; two-plate
case

The first interaction form that we will consider is a
screened Coulomb-like interaction, with the screening be-
ing due to two infinite planar conducting plates, between
which the charge is located. We consider this case be-
cause of experiments with gated bilayer graphene, such
as the experiments in Refs. 3 and 4; in these cases, the
gates will serve as the conducting plates. We will assume
that the distance between the plates is much larger than
the distance between the two layers so that we may as-
sume that the particles are exactly halfway between the
two plates. If the distance between the plates is £, then
the interaction is given by

V(r) = Us ; \/% (29)

As shown in Appendix B, for |r| > £, we may approxi-
mate the sum as

9\/3e—Irl/¢

Y~

The above form is useful in practice when evaluating the
values of the initial coupling constants. In the opposite
limit, |r| < &, we may simply approximate the interac-
tion with the first few terms of the sum around n = 0.

Note that, as is, the on-site interaction given by our for-
mula is infinite, and thus it would give us infinite values
for the initial coupling constants. However, we recognize
that, for two electrons on the lattice that are sufficiently
close, the electrons are not localized at a single point,
but rather their wave functions have a finite extent in
space. This will render the on-site interaction finite. As
a simple model of this effect, we set the on-site interac-
tion equal to some constant A times the nearest-neighbor
interaction. In our calculations, we set A = 1.2.

Our results for the leading instabilities are shown in
Figure 2. We see that, for very short ranges of the inter-
action &, the system is unstable to an antiferromagnetic

(30)
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FIG. 2: Map of the leading instabilities for the two-plate
screened Coulomb-like interaction, Eq. (29), as a function of
the dimensionless coupling strength T—; ga,, and the interac-
tion range £ in units of the lattice spacing a. For very short
ranges, the leading instability is towards an antiferromagnetic
(AF) phase, in which the spins possess a ferrimagnetic ar-
rangement within each layer (i.e., the spins alternate in di-
rection between neighboring sites, but are of unequal magni-
tude), and are oppositely directed between the two layers; an
illustration of this phase may be found in Fig. 1(a) of Ref. 26.
As we increase the range, we enter a region where the suscep-
tibilities toward both the AF and nematic (N) phases diverge
as we lower the temperature. Determining whether or not
these two phases truly coexist requires a theory valid below
the critical temperature, the development of which is beyond
the scope of the present work. As we increase the range fur-
ther, the instability towards the AF state disappears, leaving
only that towards the nematic state, in which the parabolic
degeneracy points each split into two Dirac-like cones. Note
that the critical range for each of these transitions is weakly
dependent on the coupling strength, and corresponds to ef-
fectively turning off back scattering.

state, in which the spins possess a ferrimagnetic arrange-
ment within each layer (i.e., the spins alternate in direc-
tion between neighboring sites, but are of unequal magni-
tude), and are oppositely directed between the two layers;
an illustration of this phase may be found in Fig. 1(a) of
Ref. 26. In this phase, the operator, 1,0%s*, acquires a
non-zero expectation value. This result is in agreement
with the zero-temperature results obtained in the pre-
vious work®. As we increase the range, we will enter a
region in which both the AF and nematic susceptibili-
ties diverge?”. This happens when ¢ is larger than about
two lattice spacings. This indicates a possible coexis-
tence of the two phases. However, to determine if such
a coexistence is in fact present would require a theory
valid below the critical temperature. The construction
of such a theory is beyond the scope of the present work.
As we increase the range further, the antiferromagnetic
instability disappears, leaving only that towards a ne-
matic state, in which the operators, 150”15 and 72015,



acquire non-zero expectation values. In this phase, the
parabolic degeneracy points each split into two Dirac-like
cones that are displaced slightly from the parabolic de-
generacy points. The size of this displacement is set by
the magnitude of the order parameter, while the direction
of the splitting is set by the order parameter’s direction.
If we rotate the order parameter by 7, then we obtain an
identical configuration, much like the molecules in a ne-
matic liquid crystal. This result is, again, in agreement
with the previous work®. This happens when & exceeds
about 10 lattice spacings. Note that there is a weak de-
pendence of these critical ranges on the initial value of

GA,-

B. Screened Coulomb-like interaction; one-plate
case (dipole-like interaction)

The second form of the interaction that we consider is
a dipole-like interaction much like the one produced by
an electron in the presence of a single infinite conducting
plate. This interaction has the form,

1 1

/€ /R 1

This interaction has a longer range than in the two-plate
case, since this falls off as »—3 for long distances, rather
than as an exponential. As in the previous case, this for-
mula, as is, will give us an infinite on-site interaction. We
use the same method as before to render this interaction
finite, and we again set A = 1.2. The resulting instabil-
ities are shown in Figure 3. We note that it is qualita-
tively identical to that obtained from the previous case,
except that the critical ranges are smaller. We find that
an instability towards the nematic phase appears when
& exceeds a value between 0.4 and 0.6 lattice spacings
and that the AF instability disappears when £ exceeds a
value between 4 and 6 lattice spacings, depending on the
initial ga,,.

Note that, throughout this section, we have been
working with monotonically-decreasing repulsive density-
density interactions, and thus we only observe two of the
possible instabilities that we may find in the system. For
short-range interactions, we start in the upper-right-hand
corner of Fig. 5 of Ref. 27, corresponds to the AF insta-
bility. As we increase the range, we move toward the
center of the diagram, while staying within the upper-
right quadrant, passing through the AF + nematic “co-
existence” region and ending in the pure nematic region.
While, for A = 1.2, we only find instabilities toward the
AF and nematic phases for the one- and two-plate cases
that we considered, there are more possible instabilities,
even for density-density interactions. For example, for
A < 1, such that the on-site repulsion is weaker than the
nearest-neighbor repulsion, and thus the repulsive inter-
action is non-monotonic in real space, the initial value
of g, may become negative. Under such conditions, we

V(r) = U , (31)
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FIG. 3: Map of the leading instabilities for the one-plate
screened Coulomb-like interaction, Eq. (31), as a function of
the coupling strength ga,, and the interaction range . The
map is qualitatively identical to that obtained for the two-
plate case, except that the ranges at which the AF instability
disappears and that at which the nematic instability appears
are smaller.

will find that the susceptibility toward the quantum spin
Hall phase will diverge, though never along with the an-
tiferromagnetic susceptibility. This is illustrated in Fig.
5 of Ref. 27.

V. ANALYSIS OF THE
ANTIFERROMAGNETIC STATE IN AN
APPLIED MAGNETIC FIELD

A. Field dependence of the AF order parameter

We now turn our attention to the effects of a mag-
netic field on the antiferromagnetic state of the system
at zero temperature. This investigation is motivated by
the fact that a gap is observed in some experiments'*
and by the fact that we predict an instability towards
such a phase for short-range interactions within RG.
We will investigate these effects within the framework of
variational mean field theory. We employ this method,
rather than RG, because, in the presence of a perpen-
dicular magnetic field, the non-interacting energy spec-
trum for our problem is discrete, rather than continuous,
and thus an RG analysis of the type employed above
would be more difficult. We start by writing down a
Hamiltonian corresponding to our effective low-energy
field theory and introducing the orbital effects of the
magnetic field via minimal substitution. We will neglect
the Zeeman effect in this case, since the spin splitting
(m*/me)gupB =~ (m*/me)w. is small compared to the



orbital splitting ~ w.. This Hamiltonian is

H = /d%wr) ( > da(w)za> ¥(r)

a=x,y

+ 41X [ErosimsewE, @
S

where m = p — 2A, A is the applied magnetic vector
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potential,
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and the sum on S stands for the four-fermion interac-
tion terms that appear in Equation (20). Here, ¢ is a
field operator, not a Grassman field as it was in previous
sections.

Our variational mean field calculation will proceed as
follows. We start by adding and subtracting a source
term for the antiferromagnetic order parameter,

A / d?r T (r) 1907 s%1)(r), (34)

in the Hamiltonian. We now define two parts to the
Hamiltonian, a “non-interacting” part, Ho,

Hy = /d%W(r) < > d“(w)E“) Y(r)+

a=x,y

+ A/d2r1/)T(r)120Zsz1/)(r), (35)
and an “interaction”, Hy,
= 3Y [ Proste! 0sve)-
s,T
- A/erz/JT(r)lgazszz/J(r). (36)

We then exactly diagonalize Hj, find the expectation
value of the full Hamiltonian with respect to the ground
state of Hy, and minimize the result with respect to A.
We will provide the details of the diagonalization in Ap-
pendix C, and simply quote the main result here. In the
Landau gauge, our states can be described in terms of
a wave number k, an orbital index n, a valley index T,
and a spin index s; the corresponding energy eigenvalues
are E, = £y/n(n — 1)w2 + A2, where w, = 22 is the
cyclotron frequency of the electrons. For n > 2, each of
these energy levels is four-fold degenerate due to valley
and spin degeneracies. The levels given by n = 0 and 1
are also four-fold degenerate, but this time due to orbital
(n =0 or 1) and spin degeneracies.

We may now rewrite the field operators in terms of
these eigenstates:

’lﬂ((b, y) = Z [wl—c’:n,T7S(:’U7 y)akmxﬂs—i_wk_,n,‘r,s(‘r? y)bz,n,‘r,sL

kn,T,s

(37)

where w,jg;)s represents the positive (negative) energy
state for a given wave number and orbital, valley, and
spin indices. We have chosen our operators a and b such
that they annihilate the ground state |0). We may now
take the expectation value of our Hamiltonian with re-
spect to the ground state of Hy and minimize the result
with respect to A; we will provide some details on how
this was done in Appendix D. Upon doing so, we find
that the equation for A is, assuming A > 0,

YA
GeffWe (nzz E_n + 1) = Aa (38)
where
m*
Jeft = _(gA1g + JAz, + 4-gEK) (39)
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and N is an upper cutoff on the orbital index, which we
impose because our theory only works for low energies
and because, in reality, we do not have electronic states
in our system at arbitrarily large energies. In the limit
of zero magnetic field, we may treat the sum as a Rie-
mann sum, with € = nw, and de = w,; our equation then
reduces to

Q de
GefiW TS
effWc 0 2 —I—A(Q)

where ) is an upper cutoff on the energy and we intro-
duce Ay as the value of the AF order parameter in the
absence of an applied magnetic field; N is related to the
energy cutoff by Q = w.\/N(N —1). We have verified
this result with a separate calculation. As is, we cannot
send the upper cutoff to infinity in our equation without
encountering a divergence in the sum, since the summand
only decreases as % We can, however, rewrite the equa-
tion in such a way that we can do this if we eliminate geg
in favor of Ay. We give the details on how we do so in
Appendix D; the final result is

1, (40)

I(a)—l—é—ln (1+ a2+§) =1Inp, (41)

where a = A(B)/we, 8 = w./Ag, A(B) is the order pa-
rameter at finite field, and w, is the cyclotron frequency
of the electrons in our system. The function, I(«), the
exact form of which we state in Appendix D, is mono-
tonically decreasing, falls off as a3 for large o, and may
be very accurately approximated for any value of a by

I(a) ~ - :
~ [(_%](0))72/3 +4-62/32]3/2

(42)
where I(0) ~ —0.0503 is the exact value of I'(«) at a = 0.

While the above equation must, in general, be solved
numerically, we may obtain analytic expressions in two
limiting cases, namely the large and small 5 limits (equiv-
alently, for large and small applied magnetic fields). Let
us first consider the large § limit. This means that the



right-hand side of our equation is large and positive, and
thus, as implied by our above discussion, « should be
small. In this limit, we may set the first and third terms
on the left to their values at @ = 0, since both are fi-
nite at this point, while the second term diverges. Our
equation becomes

é—czm@ (43)

where C'is the value of the first and third terms at o = 0;
its value is approximately 0.67. Here, we are assuming
that « is positive. Solving for «, we find that

1
T harC
or
We

A= In(we/Ag) + C”

We see that the behavior is almost linear in the magnetic
field, but with a logarithmic correction.

Next, we consider the small g limit. In this case, the
right-hand side of Eq. (38) becomes large and negative,
and thus a should become large. We would be tempted
to drop all but the third term, since the first two terms
go to zero for large values of a. This would give us a
result that is only accurate at constant order in 3, how-
ever. This is because, if we expand the third term in
powers of a~ !, then the next-lowest order term after the
logarithmic term is of order a~!, and the second term in
our equation is also of this order; in fact, it cancels this
term exactly. We may still drop the first term, since, as
stated above, the lowest-order term that it contributes is
of order a~3. In this case, our equation becomes

é—m<y+wﬁ+%>—hﬁ. (45)

Again, we are assuming that « > 0. If we take the expo-
nential of both sides, we get

1
e l/e (1—1—1/@2—1—%) =3

We will now expand the left-hand side in powers of a™*
to the order a—2. Doing so, but first pulling out a factor
of a from the second factor, we get

R
(- )5

If we rearrange this, we finally arrive at the quadratic
equation,

(44)

830 —8a — B =0.
If we solve this equation and take the positive solution,

we get
1+ 4/1+ 382

o|N= =

2

| =
o™

Rewriting this result in terms of A and w,, we get

w2

A=Ag+ —=. 46

o+ 8Ag (46)

We see that, for low fields, the antiferromagnetic order
parameter increases quadratically with the field.

We now solve Equation (41) numerically; the numer-

ical result, along with the low- and high-field limits de-

rived above, is plotted in Figure 4. If we look at our
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FIG. 4: Plot of the solution to Equation (41). The solid line is
the numerical solution, while the dashed lines are the solutions
in the low- and high-field limits. The vertical axis is the value
of the order parameter A divided by its zero-field value Ag.
The bottom horizontal axis is the cyclotron frequency w. =
eB/m*c divided by Ao, while the top horizontal axis is the
applied magnetic field B divided by Ag; in determining the
latter from the former, we assumed that the effective mass?
m* = 0.028me., and* Ay = 0.95 meV.

low- and high-field expressions, we see that the slope of
our low-field approximation increases with B, while our
high-field approximation has a decreasing slope. This
implies that there should be a maximum slope to the
exact curve. We determined the maximum slope of the
A(B)/Ay versus w./Ag curve, and found that it is about
0.2681, and occurs when w./Ag ~ 2.432. These values
are independent of the values of m* and Ay. Using the
experimentally-determined value? of the effective mass,
m* = 0.028m,, and the experimentally-determined value
of the order parameter at zero field*, Ag = 0.95 meV, we
may determine the maximum slope of the A(B) versus
B curve. We find that the slope is 1.11 miiv, and that it
occurs at a field of about 0.56 T.

B. Comparison with experimental results

We would now like to compare our theoretical results
to the experimental data*. First of all, we note that A
is not the energy gap in our system. In fact, the energy
eigenvalues stated earlier are an “auxiliary spectrum”,
and do not represent the true (many-body) energy spec-
trum of our system. As an approximation to the actual
energy gap, we will consider particle-hole excitations of



the “vacuum”, or trial ground state, for our system. We
construct a state, a:flb;g |0), where o and 8 stand for the
full sets of quantum numbers describing the particle and
hole states, respectively, and find the difference between
the expectation value of our Hamiltonian for this state
and that for the trial ground state. For both states, we
assume the value of A that is obtained from the mini-
mization condition, Eq. (41). The states o and f that
result in the lowest value of the excitation energy will be
taken to give the actual energy gap. We will provide de-
tails of the derivation in Appendix E, and simply quote
the final result here. If we take the electron (hole) state
a () to have an orbital quantum number ny (n2), wave
number ¢; (¢2), valley index 71 (72), and spin s; (s2),
then the excitation energy is

*

m
Ecx = En1 + En2 + Eg*wc('rlsl - 7-252)5 (47)

where g* = ga,, + ga,, — 49Ee,. Here, 7, = &1 if the
state exists in the £K valley, and s = +1 (—1) for
a spin up (down) state. The single-particle energies are
E, = y/n(n — 1)w? + A2. Note that this energy does not
depend on the wave numbers of the states, and only de-
pends on the valley and spin indices via their products.
If one of the states is one of the lowest Landau levels,
given by ny = 0 or 1, then these products are locked to a
specific value. To be exact, if ny = 0 or 1, then 751 = 1.
Similarly, if no = 0 or 1, then 1559 = —1. We see that
this energy includes a term linear in the magnetic field,
and is in agreement with the results obtained in Ref. 28.
The key difference between our derivation and that pre-
sented in Ref. 28 is that we did not need to assume the
presence of another “order parameter” (in fact, as we will
explain shortly, this other paramter is not really an or-
der parameter in the sense that it breaks any additional
symmetries), corresponding to the matrix 7,125, in the
notation of the present paper, or a “staggered spin cur-
rent” state?” to obtain this linear term, assuming that
we properly calculate the excitation energy (i.e., we cal-
culate it from the full Hamiltonian rather than assume
that the gap in the single-particle “auxiliary spectrum”
is the observed gap). In fact, the above result would
not have changed had we had included this parameter in
our variational analysis, assuming that it was sufficiently
small — it would have only introduced a constant shift
to the energies in the “auxiliary spectrum” and left the
associated wave functions unchanged.

We present a plot of part of this excitation spectrum
in Fig. 5. We find that the gap for low fields is, in fact,
not given by taking n; and me to both be either 0 or
1, which would correspond to the lowest-energy states in
the “auxiliary spectrum”. Instead, it is given by taking
ny = ng = 2, with 7181 = —1 and 7382 = 1. At higher
fields, however, we find that excitations with ny; and ng
both equal to either 0 or 1 do, in fact, give us the actual
gap. To obtain the value for g*, we fit the slope of our pre-
dicted high-field gap at around 2.5 T to the slope found
in Ref. 4 of 5.5 mTCV Assuming that the effective mass is

given by the experimental value? of m* = 0.028m.., where
me is the mass of an electron, we obtain 2 g* = (.44.
Note that this differs slightly from the value used in Ref.
28, namely T—;g* = 0.4; this is the value that we would
obtain if we instead fit the slope of the high-field gap at
the point where the AF order parameter reaches its max-
imum slope to the experimental value. For the value of
Jeff that we use, we find that the gap has a minimum at
a non-zero value of the field; the minimum is reached at
a field of B~ 0.047 T, and is £, ~ 1.91A. We also find
a kink in the field dependence of the gap, at which the
gap goes from being given by ny = no = 2, 1181 = —1,
and 1955 = 1 to being given by ni and ns either 0 or 1.
This kink appears at a field of B =~ 0.45 T.
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FIG. 5: Plot of the excitation spectrum, Eq. (47). The verti-
cal axis is the excitation energy in units of Ag, and the hor-
izontal axes are the same as in Fig. 4. Each curve is labeled
according to which electron and hole states are occupied, with
a label of the form (electron, hole), with the orbital index n
and the sign of the product of the valley and spin indices, 7s,
indicated.

We also considered the data from Ref. 1. In this case,
we fit our expression to the ¥ = 0 gap presented therein.
Note that, from the low-field data, it is unclear what the
size of the energy gap, if any, is. Nevertheless, we can
still obtain a fit to the slope of the gap at high fields,
since the zero-field value of the order parameter only en-
ters via a small logarithmic correction to the high-field
slope. The experimentally-determined slope is 1.7 mTCV
If we perform our fit in the same way as before, we ob-
tain T—;g* = —0.018. In this case, since we obtain a
negative value for g*, we will find that energy of the n;
and ng equal to 0 or 1 excitation has a non-monotonic
dependence on the magnetic field. In fact, it gives us the
energy gap for all fields. It possesses a very shallow mini-
mum of 1.99985A at a field of about 0.017 T and, unlike
the previous case, there is no kink. In this case, we can-
not completely rule out the possibility of the gap actually
possessing such a minimum on the basis of the data given
in Ref. 1 alone, due to the lack of data at low fields. Note
that we required a negative value of g*, which would im-
ply that 49, > ga,, + ga,., to fit the data. Satisfying
this inequality would require either an attractive inter-



action or one that is non-monotonic; this may be seen
by noting that it is equivalent to V| 2x > V) o, which
cannot be satisfied for any monotonically-decreasing re-
pulsive interaction.

Note that, while we are able to fit the experimental
data®?* at high fields, we also predict finer features at low
fields that are not resolved in these experiments, namely
a slight non-monotonic behavior of the gap and, in the
case of our fit to the data from Ref. 4, a “kink”. It is pos-
sible that such features are, in fact, present, but cannot
be observed in the experiments due, for example, to the
fact that, at finite temperature, any sharp features that
would have appeared at zero temperature are “washed
out”, thus introducing uncertainty into any energy gaps
extracted from the data. It is also possible that these
features, which are predicted from a mean-field calcula-
tion, will be removed once fluctuations are taken into ac-
count. The development of a more sophisticated method
for treating this problem is therefore of interest, but it is
beyond the scope of the present paper.

C. Symmetry analysis in the presence of an
applied magnetic field

In the absence of a magnetic field, the honeycomb bi-
layer lattice considered in this paper possesses a Dsq
point group symmetry. The AF and “staggered spin cur-
rent” orders transform under different representations of
this group — the AF state transforms under the Ao,
representation, while the “staggered spin current” state
transforms under the A;, representation®’. Physically,
this means that the AF order parameter is even under
mirror reflections and odd under CY rotations, while the
“staggered spin current” order parameter is odd under
mirror reflections and even under CY rotations. Note that
both orders are odd under inversion. In fact, the two also
transform differently under time reversal; the AF order
parameter is odd, while the “staggered spin current” is
even?’. This means that the expectation value of the
“staggered spin current” operator must vanish in the AF
state.

When we apply a magnetic field, however, the point
group is reduced to Sg. This is because the magnetic field
is an axial vector that is odd under mirror reflections and
even under inversion. In this case, the AF and “staggered
spin current” orders transform under the same represen-
tation, namely the A;, representation®’. Physically, this
is because the mirror reflection and C% symmetries are
no longer present. As pointed out above, the two or-
der parameters transform differently under time reversal;
however, time reversal symmetry is broken in the pres-
ence of a magnetic field. This means that the two orders
no longer break different symmetries, and thus there is
nothing preventing the system from acquiring a non-zero
expectation value of one of these order parameters in the
presence of the other.

The development of a finite expectation value of the

“staggered spin current” operator was correctly pointed
out in Ref. 28, but was attributed to “the emergence
of the n = 0,1 Landau levels (LLs) and the peculiar
property of their wave-functions to reside on only one
sublattice in each valley”. Here, we show that it must be
present on much more general grounds, and is not tied
to the properties of the Landau levels.

At B = 0, the AF order parameter breaks time reversal
and inversion symmetry, but it preserves mirror reflection
symmetry?7. Therefore, the wave functions for this state
are eigenstates of the reflection operators as well, and
may be classified as even or odd under them. Let us
now consider the expectation value of an observable O
that transforms under the A;, representation of the Dsq
point group, such as the “staggered spin current” order
parameter. This operator will have the property that
any mirror reflection o4 will anticommute with it, i.e.
040 = —0o,4. Because of this, the expectation value of
the “staggered spin current” operator with respect to the
AF state of the Hamiltonian must be zero.

Let us now consider the case in which B # 0. As
stated before, this will break the mirror reflection sym-
metry of our system. However, it is symmetric under
such a reflection followed by a reversal of the magnetic
field (i.e., B — —B). This means that we may classify
all eigenstates as even or odd under this combination of
operations. This means that, in terms of the eigenstates
of the Hamiltonian at B = 0, we may write the new AF
state of the Hamiltonian in the presence of an applied
field as

[AF(B)) = 3 [a{(B) li,e) + i (B) |i,0)],  (48)

i

where |i,e) (|i,0)) is a general even (odd) state of the
zero-field Hamiltonian. One set of the « coefficients (i.e.,
a!? or o!”) must be even functions of B, while the other
must be odd. If we now calculate the expectation value
of O with respect to this state, only matrix elements
that mix states of opposite parity under reflections will
appear:

(0) = > (@) al” (i,e| O]j,0) +cc. (49
i
Since one of either the age) or 041(-0) must be even func-
tions of B, while the others must be odd, we see that the
expectation value of O must be an odd function of B.

If we calculate the expectation value of the “staggered
spin current” operator for the trial ground state that we
work with above, we find that it is a linear function of B.
This is consistent with our general conclusions and with

the observation made by Kharitonov?®.

D. Corrections to the “auxiliary spectrum”

There is one other point that we wish to address.
Throughout this calculation, we have been assuming that



the presence of the order parameter opens up a simple
gap in the spectrum, modifying the low-energy disper-
sion to have the form, E(k) = ++/[e(k)]? + A2, where
e(k) is the dispersion in the absence of the order param-
eter. This assumption is, in fact, not entirely true; in
reality, the dispersion acquires a “Mexican hat” shape.
This can be seen by taking the continuum limit of the
effective action given by Egs. (19)—(21) in Ref. 6, which
will give rise to an additional term (vrq/t, )?0/0T, where
vp = 2at, in Eq. (24) in the same work. In the absence
of an applied magnetic field, but in the presence of the
antiferromagnetic order parameter Ag, the dispersion is

(&2/2m")2 + A2

B) = £ 90 e

(50)

If we expand this expression to fourth order in k, we

obtain
. vrk\?  (vrk\' [ K2 O\?
(#) - () +1(5)
(51)
We see that the quadratic term is negative, while the
quartic term is positive, thus giving this dispersion the
“Mexican hat” shape. Note that it is the presence of a
non-zero A, that changes the scaling dimensions of our
operators and necessitates the inclusion of the above-
mentioned term for a complete description of the low-
energy behavior. For Ag = 0, which is the starting point
of our RG analysis, the scaling dimensions of our opera-
tors are the same as they were in Ref. 6, which justifies
neglecting this term in our RG analysis. Performing the
standard minimal coupling to an external vector poten-
tial, we have looked at what effect this would have on
the lowest Landau levels, and we find that it lifts the or-
bital degeneracy of the n = 0 and 1 Landau levels. To
be exact, these two levels take the form,

E(k) =~ £A

A

14 %2(n+ 3)

(52)

For small magnetic fields, for which w, < ¢, we find
that the splitting between these levels is approximately
f—jA = aB, where a ~ 0.0106 mTCV This is small com-
pared even to the Zeeman splitting, which is also linear
in B, but with a slope of about 0.232 mTeV Therefore, we

may safely neglect this effect in our calculations.

VI. CONCLUSION

We have employed weak-coupling perturbative RG
methods to determine the leading instabilities of a sys-
tem fermions on a honeycomb bilayer lattice with finite-
range interactions. The use of these methods is justified
since we only include nearest-neighbor hopping terms,
resulting in a band structure with two quadratic degen-
eracy points and therefore in a finite density of states at

the Fermi level at half filling. We considered two forms
of the interaction, a screened Coulomb-like interaction
much like the one produced by a point charge situated
exactly halfway between two infinite parallel conducting
plates, as well as that produced by a point charge in the
presence of a single conducting plate. For all cases, we
determined what phase the system enters as a function of
the range of the interaction by determining which phase
has its susceptibility diverge first as we lower the tem-
perature, i.e., by determining the leading instability.

We found that the system, for both forms of the inter-
action, is unstable towards an antiferromagnetic state for
short ranges and towards a nematic state for long ranges,
in agreement with the previous work®%. For interme-
diate ranges, we find that the susceptibilities towards
both the antiferromagnetic and nematic phases diverge,
though not necessarily with the same exponent?”. This
indicates a possible coexistence of the two phases. To de-
termine whether the phases truly coexist, or if only one
appears, would require a theory that is valid below the
critical temperature. The development of such a theory
is a problem of great interest, but is beyond the scope of
the present work.

It may initially appear that the ranges at which we
see these transitions are too short to explain why the ex-
periment in Ref. 2, which was done with a single gate,
observes evidence for a nematic state, while that in Ref.
4, which was done with two gates, and thus, as we ar-
gue, would have shorter-ranged interactions, observes a
gap. In both setups, the gate separation is about 300 nm,
which would result in an interaction with a range of over
2,000 lattice spacings, thus placing both experiments
well within the region where we predict a nematic state.
How does one reconcile our results with the experimental
observations? In the present paper, we only determined
the leading instability that appears as we lower the tem-
perature of the system for a given interaction form, range,
and overall strength. At exactly T" = 0 there is an in-
stability towards both the AF and quantum spin Hall
states?” even when forward scattering dominates when
the effects of trigonal warping are taken into account.
Under the same conditions, but at T' # 0, our calculations
predict that the first instability as the temperature is
lowered is towards a nematic state. This implies that, in
addition to a nematic order parameter, there are also an-
tiferromagnetic and quantum spin Hall correlations, with
correlation lengths that grow as we lower the temperature
below the nematic ordering temperature and diverge at
T = 0. This divergence must happen at exactly 7' = 0 be-
cause the antiferromagnetic and quantum spin Hall states
both break a continuous symmetry, namely SU(2) spin
symmetry, and thus no finite-temperature transition into
either state is possible in a two-dimensional system. Our
findings therefore imply that, in the experiment in Ref.
4, in addition to the AF order at T" = 0, there should be
a nematic order present, and that, as the temperature of
the sample is raised, there will be a phase transition in
which the nematic order disappears. Since the measure-



ments presented therein are only sensitive to the presence
of a gap, and not to any breaking of rotational symme-
try, we cannot rule out this possibility based on their
data alone.

One issue with our results, however, is the fact that
we predict an instability towards an antiferromagnetic
phase, which breaks a continuous SU(2) spin symme-
try. As pointed out earlier, it is impossible for any two-
dimensional system to enter such a phase at finite tem-
perature. We should therefore view the divergence of the
susceptibility towards this phase as simply identifying the
dominant ordering tendency in this case, even if there is
no actual symmetry breaking, as pointed out in Ref. 27.
We expect that, if the RG could be carried out exactly,
we would find no divergent susceptibilities in this case.
It would be very interesting to find systematic extensions
of the approximate RG analysis used here that would be
powerful enough to capture the Mermin-Wagner physics.

We also considered the effects of an applied perpen-
dicular magnetic field on the system when it is in the
antiferromagnetic phase. In this case the fluctuations
effects are weaker than at B = 0 since the broken con-
tinuous symmetry is the U(1) subgroup of the full spin
SU(2) group. At B # 0 a finite temperature transi-
tion into a power-law correlated state is in fact possible.
Our variational mean field investigation was motivated
by the fact that we find an instability towards an antifer-
romagnetic state in our RG calculations for short-ranged
interactions, as well as by experimental data’* on the
gap size as a function of an applied magnetic field. We
find that the antiferromagnetic order parameter increases
quadratically with the field for low fields, then acquires
a dependence of the form B/In(B/By) for large fields.
We also determined the gap by considering the energy
required to create particle-hole excitations of our varia-
tional ground state. We find that this energy is the sum
of the energies of the particle and the hole given by the
single-particle “auxiliary spectrum”, plus a term linear
in the magnetic field. The excitation that gave us the
smallest such energy was assumed to determine the en-
ergy gap in the system. We found that the gap has a
slight non-monotonic behavior for low fields, followed by
a quasi-linear increase at higher fields. We also compared
this prediction to the experimental data and found that
good agreement can be achieved.

One reason for our switch to mean-field methods for
treating this problem is that we have already established
via RG methods the presence of the antiferromagnetic
instability for very short-ranged interactions. As long as
we are considering a case in which we know this phase to
be present, and because said phase is gapped, we expect
that an expansion around the mean-field solution will
be convergent, thus justifying our use of such methods
in studying the phenomenology of the phase. Another
reason for our use of mean-field methods as opposed to
the RG methods used previously in the zero-field case is
the fact that the energy spectrum for the non-interacting
problem is discrete, rather than continuous, and momen-

tum k is not a good quantum number, making the use of
RG methods more difficult. While we expect our mean-
field methods to be fairly accurate, such methods are still
only approximate. The problem of developing a more so-
phisticated technique for determining the AF order pa-
rameter and the energy gap in the system is therefore of
great interest.
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Appendix A: RG Equations

We derived the RG equations that we employ in this
work in Ref.?”, but we will quote them here for conve-
nience. The equations all have the form,

4 zzgjgsz;z@

Jj=1 k=1

0),1(0) . (A1)

The functions ®,(v3,t) appearing in this expression are

@1(1/3,15) = 27Tt/ ,—1—1,'2 (x77/37t)7 (AQ)
1 1 de 1
Do (v3,t) = T Jo WETQ(L%J)’ (A3)
®3(vs3,t) = l1_V3/ /1fx2lr3(x’y3’t)’(A4)
@4(1/3,15) = 27Tt/ — (x77/37t)7 (A5)
where
1 2t Q+)

T S — Q) (a

1@, ) cosh2( ) Q+ h( 2t {46)
Yoz, v3,t) = Z AQ tanh (%) , (AT)

A=+

Ys(x,vs,t) = — Z &tamh (%) , (A8)

T4(I; V3at) =

and

Qr = /14 v3+2zv5.

(A10)



The functions v3(¢) and ¢(¢) are the dimensionless trigo-
nal warping velocity and the dimensionless temperature,
respectively, and are given by

4 20

(O)ﬁ and () = T(0)——

v3(l) = vg Wa (A11)

where A is the momentum corresponding to the starting
energy scale; in our case, it is v/2m*t . The coefficients

4@

ijk are given by

A = AL 1)+ A 2+3) + AL (4) + AL (5), (A12)

AP @2+3) = | Z{I&.«[(r§1)r§m>)2] +Tr

where

m*

4’
AP 1) = Ho@M1071)?) F (1M 70"

K22 3

AYI(1) = —18 £ T[TV 77157}

2

1)) F T[N 1691)2

ij (I 4 )} o (A15)
Ag?]/4)(2+3) = -1 Z F(l F(m 107 1P(1)1U 1I‘(m))$’I‘r(l"(1)1—‘(m) ZO'wlrl(-l)TzUmll—‘;m))
T Tr(r§1)rgm>1ay1r§”1ay1r§m))+Tr(r§.”F§’”> Zaylf(l)rzaylF(m))]4 (A16)
7T
2 _ 1% S (D) p(m) )y (D ) p(m) (Dp(m)_z1 Py D) 2 pm)
AP (a) = mm:“;[Tr(F LTI T VT ™) £ Te(1) V1™ 77 1,0 ) Te(0) VTS 72 1,1 e o (A17)
AV = =55 3 Y @ T 1o 1 M) (0T 10711 + Tr(r T r et 1n ) T T (Y e ot i™)
m=1n=1
+ (O 10T T 16917 4 Te( 0T 72 o M) T T 72 gy 2 (A18)
i
(5/6) 4y < (1) r(m) () D) (m) (O p(m) ) (D) 2z p(m)
AP (4) = 1287;1;Trr L™ 10711 (T VT 1671T)™) &+ Te(T} VT 77010 ) T (1), T 1T} )]4_7T
(A19)

and

ALP6) =~k Z Z o
A6 = s 35 S
+ [Tf(r,Qrg’”)laylrg"))]
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*
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In these expressions, the top signs correspond to the first number in the superscript on the left-hand side, while the
bottom corresponds to the second. The 8 x 8 matrices I‘Em) appearing in these expressions are defined as follows:

rfY = 1, (A23)
I‘él) = 77071, (A24)
Y = 1,0°1, TP = r%0¥1, (A25)
1—‘4(11) = 771, (A26)
1Y = 1,071, (A27)
I = 726715, TP = 1501 A28
6 2, Lg 207 12 ( )
1—‘51) = 770715, l—‘g) =7%0"19 (A29)
I—‘él) = 77019, l—‘g) =71Y%0Y1, (A30)
I—‘él) = 7714, 1—‘52) = —7Y0%19, 1—‘53) = —7Y1y, 1—‘54) =—7%0"1s. (A31)
The superscripts (m) refer to the multiplicity of a given representation.
[
The equations for the source terms that we add, The coeflicients Bl-(;) and ija ) are given by
32 1 0o
AS =S AP"Z U (wn) Oy (wn
285 & & Uil Oindin) ¢
16
£t 5 S 00w i) .
i=1 n=—oc0 k
(a) _ p(a) (a)
(A32) B =B’ (1) + By (2), (A35)
are given by
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BJ/P2) = L3 {m(09T{)2] + Te(0DT 721,00 %1, 1 >)}47T, (A38)
n=1
Ty
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Appendix B: Long-distance behavior of the screened interaction, Equation (29). We start by rewriting the
Coulomb-like interaction

We will now demonstrate that Equation (30) is the
correct long-range behavior of the screened Coulomb-like



sum using the identity,

(B1)

(B2)
We may evaluate the sum in terms of the Jacobi theta
function,

Va(z,q) = i (—1)"q"262mz, (B3)
to obtain
V(R) = %UO OOO due " BIO%9,00,e7").  (B4)
We now use the identity?3°,
2VT  (4p2in? - 2
Va(z,q) = _1que(4 + )/4loquzzoek(k+1) /log q
x cosh {%] (B5)

so that

V(R)=4Up Y /00 du Lo (RO o~ (ht1/2%%
k=00 w

(B6)
This integral can be evaluated in terms of modified Bessel
functions of the second kind; the result is

V(R) =40y Y Ko [(2k + 1)7%} . (B7)

k=0

For large values of z, the modified Bessel function K, (z)
can be approximated as

K, (z) =/ —e ™.

57 (BY)

We see that, in the above sum, the most dominant term
for R > € is the k = 0 term, since the values of suc-
cessive terms decrease exponentially with increasing k.
Therefore, we arrive at the form quoted in the main text,
Equation (30).

Appendix C: Solution of the non-interacting
Hamiltonian in a magnetic field with an AF order
parameter

We now provide the details of the diagonalization of
Hy. To diagonalize Hy, we first note that the source

term is diagonal in layer, valley, and spin space, while
the “kinetic” term is only diagonal in valley and spin
space. This allows us to split the problem into the diago-
nalization of four 2 x 2 matrices; our wave functions will
have a definite valley pseudospin and real spin orienta-
tion. Let us consider the block corresponing to the +K
valley and spin up. We must solve

A (7"171—7:1/)2
[(ﬂzmy)z %A ¥(z,y) = EY(z,y), (Cl)
2m* -

where ¥(z,y) is a two-component spinor corresponding
to the +K valley and spin up components of the full
eight-component spinor; the other six components are
all zero. We will work in the Landau gauge, in which
B = —Byx. For this gauge, the above becomes

A 21}1* (pw + %y - ipy)2 W(

. z,y)
e (0o + By +ip,)” —A

= Elﬁ(% y)

(C2)

Let us now assume the following form for ¢ (z, y):

eilmq)k(y),

P(x,y) = (C3)

1
VL
where ®j(y) is another two-component spinor.
substitution into our equation, we obtain

A , oz By ip,)”
L (k+ <y +ip,) -A

2m

Upon

We may now write this in terms of the operators,

m*w k
ap = ( Tyt ) (C5)
2 m*we m*we
where w. = =% is the cyclotron frequency of the elec-

trons in our system. These operators may be verified to
satisfy the commutation relation, [ag, aL] = 1. In terms
of these operators, the equation becomes

[A WD?] Bi(y) = Br(y).  (C6)

wcai AN

Let us now define normalized functions ¢y, (y) such
that a,iak¢k7n(y) = ndrn(y); these will just be the
usual harmonic oscillator-like wave functions that emerge
in the solution of the free electron gas in a magnetic
field. These functions may be shown to satisfy the
relations, argun(y) = vidra-1(y) and afdrn(y) =
V1 + 10k n+1(y). We now assume the following form for
P (y):

Oy (y) = [ Dk (3) }

ﬁk,n¢k,n—2(y) (07)



We find that this form satisfies our equation, provided
that ay, , and By, satisfy

A wer/n(n — 1)] [akﬁn] B {akm}

wer/n(n —1) —A Bren| | Brn
(C8)
and |ogn|? + [Bknl? = 1. We have thus reduced the
problem to solving for the eigenvalues and eigenvectors
of a 2 x 2 matrix. The eigenvalues are £ = £F,,, where

=/n(n —1w? + A2, (C9)

and the corresponding eigenvectors are given by

1 A 1 A
n=t—/1& —, Bpn=—1/1F —. C10
V2V E, B, V2 $En (C10)

In the —K valley, the positions of the creation and anni-
hilation operators a}; and ay will be interchanged; in this

case, we must instead assume that

Brly) = {Oék 1 Bhn— 2@)] (c11)

ﬂk n¢k n( )

This will give us the same eigenvalue problem as before.
For the spin down case, we simply reverse the sign on A in
our equations; we obtain the same eigenvalues as before,
but ax , and By, will switch values. This implies that,
at least for n > 2, each of our energy levels is four-fold
degenerate, due to valley and spin degeneracies. For n =
0 or 1, on the other hand, there is no valley degeneracy
for a given spin. In these cases, the eigenfunctions are

Du(y) = | (C12)
in the +K valley and
2) = |4 ) (C13)

in the —K valley. The former corresponds to the energy
eigenvalue, £ = A, while the other corresponds to F =
—A. Each of these levels is still four-fold degenerate, but
this time due to orbital and spin degeneracies. Note that
we may still use the wave functions quoted earlier even
for this case if we adopt the convention that ¢y, (y) is
identically zero if n < 0.

Appendix D: Derivation of the variational
mean-field equation for an AF order parameter

We now describe how to derive the variational mean-
field equation, Eq. (41). We first provide details on the
calculation and minimization of the ground-state expec-
tation value of the interacting Hamiltonian with an anti-
ferromagnetic order parameter. Throughout this deriva-
tion, we will assume that A > 0. We start by rewriting
the field operators in our Hamiltonian in terms of the

eigenstates of the Hy derived above; the formula for this
is given by Equation (37). If we label the positive energy

eigenvalues as E . rs = By = \/n(n — 1)w? + A2, then
Hy becomes

_ E: T T
HO - Ekﬂh‘BS(a’k,n,‘r,sa’kx”vﬂs + bk,n,‘r,sbk;%‘ﬂs)

kn,T,s

§ Ek,n,‘r,s-

kn,T,s

(D1)
The expectation value of Hy with respect to the ground

state |0) is then
=Y Binrs = —4dZE —4d|A],

k,n,T,s
(D2)
where d is the degeneracy of each Landau level due to
the wave number k.
Now we turn our attention to the interaction, starting
with the quadratic term,

(0] Ho |0) =

HY = A/d2er V1207571 (). (D3)

In terms of the eigenstates of Hy, this becomes

HY = A/d2 Zw 2075 (r)al a,.  (D4)

Here, we let the indices m and n stand for all of the
quantum numbers characterizing a given eigenstate, and
we use a,, to stand for either a positive or negative energy
state, with the understanding that the negative energy
state is given by a,, = bl,. Upon taking the expectation
value of this term with respect to the ground state, we
find that only the negative energy states contribute:
r)lao®s*y,, (r)

-A / d’r Z
(D5)

Evaluating all of the sums and integrals using the expres-
sions given above for the wave functions, we may write
this as

(O] H [0) =

(0] H}Q) |0) = —L,L,ATr(l30°s*%X_), (D6)

where
Soo= > ) (,)(r)

1
= ——w.(Nlg + %07

12 - TZ12O'Z - YlQO’ZSﬁ)?)
4%

Evaluating the trace, we obtain

”AY

(2)
o1 1) = 51

(D8)

where Ip = y/c/eB is the magnetic length, L, and L,
are the dimensions of our system, and

Y:ZEAJFL

n>2 " "

(D9)



We now consider the quartic terms. Each of these
terms, neglecting the coupling constants and integrals
over position, has the form,

[ (r)Sw(r))?,

where S is a matrix. Substituting in Equation (37), and
adopting the same conventions as before, this becomes

D [0h, (0) S (0)][1f (1) Sy (v)]ad, anafay.

mnpq

(D10)

(D11)

We now take the expectation value of this expression with
respect to the ground state. This expectation value will
involve the expression, (0] af,anala, |0). The only way
for this to be non-zero is if m and ¢ are negative-energy
states. We must also require that n and p either be both
positive-energy states or both negative-energy states. In
the former case, we obtain, using the anticommutation
relations for fermions,

(0] bmana};b}; [0) = pgOnp-
In the latter case, we obtain

(0] b bbbl [0) = S Gpg-

7Tf2
n>2

2N
+ leL 9Ay, <—) ;
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where
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n>2

oL, L N \? Y \?
E, +A TYNY + 4L, L 4 ) (=
2 Bnt & |+ St AY FAL Ly o, 0t gE”[(wg) (sz)

Putting these results together, the above quartic form
becomes

D l@) @Sy @) () Sy (r)]

Y W) @Svn @) ©Se; )], (D12)

Upon evaluating all sums and integrals, this becomes

Tr(SY4SY_) + [Tr(SS-)]%, (D13)

where

™
+
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1
= ch(ng + 770719 + 77120% + Y0P )4)
B

Evaluating the traces, we find that the total energy
Evor = (0| H|0) of our system is, noting that d =
L.L,/(2nl%),

(D16)

We will now minimize this energy with respect to A. First, we take the derivative of the above expression, which may

be written as

OB 2L.L,
AN 7rl2B

We now set this derivative to zero. We note that the
second factor can never be zero, since F,, > A for all n >
2, and therefore it is always positive. We may therefore
drop this factor. The remainder, upon simplifying and
noting that g = 1/v/m*w,, thus yields Eq. (38).

We now wish to rewrite Eq. (38) in such a way that
we may send the upper cutoff to infinity. We start be

1 1 A?
[A — %(QAIQ + 94,, + 4gEK)Y} Z . (1 — E_,%) .

(D17)

n>2

rewriting the sum as an integral over a “Dirac comb”:

" ! S )t
We A—n
3/2 \/)\ — w2+ A2 — A

1

= . D18
Geft ( )
We now use the identity,
Z d(A—n) Z e2miRA (D19)
n=-—oo k=—o0



to obtain

N 1
/3/2 VAN —1w2—|—A2

cos(2ﬂ'k/\) We
+2w, —
Z 3/2 — w2 +A2 A
1
= D20
Jeft ( )

The integral that appears in the sum converges for all
k > 1, so we may already send the upper limit to in-
finity. However, we must still take care of the first inte-
gral, which will diverge if we do the same with it. We
may use the zero-field equation, Equation (40), to rewrite
the right-hand side such that we eliminate geg from the
equation. If we do this and also introduce the change
of variables, €2 = A(A — 1)w?, into the first integral, we
may then move the first integral to the right-hand side,
obtaining an integral that converges if we send the upper
limit to infinity, namely

/Oo 1 € 1
We de —
0 \/62+A3 \/€2+%w2\/62+A2

weV/3/2 € 1
4w / de ,
c 0 52+iw§\/€2+A2

(D21)

where Ag is the value of A at zero magnetic field. Upon
evaluating this integral, our equation becomes

2%2/

cos(27rk)\) we
— w2 +A2 A

We A2+ %w%

Ao

(D22)

This equation may be rewritten in terms of the dimen-
sionless parameters, & = A/w,. and 8 = w./Ag:

5 cos(27rk)\) l I <1 4 Sz %)
—Js2 A1)+ a2
—Ing. (D23)

We can see that the left-hand side is a monotonically-
decreasing function of o for o« > 0. In fact, as a — 07,
the left-hand side increases indefinitely due to the second
term, while, as & — oo, the expression decreases indefi-
nitely due to the third term. This equation therefore has
a single positive solution for « for any given value of .
While we would need to solve the equation numerically
for general values of 3, we can derive approximate solu-
tions analytically for very large and very small values of
s.

Before we do this, however, let us first rewrite this
equation in an equivalent form. We start by changing

variables in the first term to x = A — 5, obtaining

27r1kz

2 Re/ dr —————
k:l Va2 +a? —
—In (1+1/a +Z) =1Inpg.

We now note that, as a function of x, the integral is

analytic in the entire complex plane, except for a branch
1

cut. For a < 3, this branch cut can be chosen to be
on the real axis and in the interval _1/% —a?2 <z <
%— a?. For a > %, on the other hand, the branch

cut may be chosen to lie along the imaginary axis. In
either case, we may integrate this function over a large
quarter circle centered at the point, z = 1, in the complex
plane and with one of the radii along the positive real
axis and the other parallel to the positive imaginary axis
and obtain zero since we will always avoid the branch
cut. The contribution from the circular arc will vanish
as we increase the radius to infinity since the integrand
decreases exponentially as we do so. This leaves only
contributions from the radii. The contribution from the
radius along the real axis is just the integral that appears
in the equation. This means that the contribution from
the radius parallel to the imaginary axis is equal to this
integral. We may therefore write

Re/ dr ——

=Re |i

27r1kz

0 \/(14_1'17/)2_'_042_%
Note that we dropped a factor of e=27%: since k is an
integer, this factor is always equal to 1. If we substitute
this back into the equation, we find that the sum on k is
just a geometric series with a common ratio of —e2ma’
We may therefore perform the summation, obtaining

I(a)—l—ﬁ—ln (1—!—\/042—1-%) =1Ing,

where

(D24)

o —1 1
I(a) =2Re / dx’ 5
0 \/(1+m/)2+a2_%e +1

(D25)

We can see that the integral I(a)) converges for all values
of a; the integrand is analytic everywhere on the interval
of integration and decreases exponentially for large xz’.
At large values of «, we can show that this integral falls
off as a=3. We first note that the integral is dominated
by small values of 2’ due to the Fermi occupation factor-
like expression. With this in mind, we may pull out a



factor of o from the square root, obtaining

oo 1 1+ /2_l
z/ d' — {1+( mz) 4]
0 (0% (0%

Since « is large, we now have a small parameter with
respect to which we may perform an expansion of the
square root. The constant term in this expansion gives no
contribution, since the total result will be purely imag-
inary. The lowest-order non-zero contribution will, in
fact, be given by

—1/2 1

—2R
€ 6271'1’ +1

2 (>, 2 1

-— x =— .
a3 Jo e’ +1 2403

We see that this term is of the order a3

earlier.

We may derive a good closed-form approximation to
I(«) as follows. Let us first expand the square root in the
integrand in powers of /. To the lowest non-vanishing
order, we obtain

, as asserted

1 1

o) 7!
I(a) =~ =2 dz’ . =— )
( ) /0 (% + a2)3/2 e2rx +1 3(3 + 4a2)3/2

We now rewrite this expression so that its value at a = 0
matches the exact value of 1(0). Doing so, we obtain

2
I(o) = — [(—=11(0))2/3 + 4- 62323/

(D26)
If we were to plot this expression alongside the exact
expression for I(«), then we would see that it follows
the exact expression very closely. In fact, if we use this
expression to solve Equation (41), then the solution that
we obtain is very close to the solution obtained from the
exact I(a).

Appendix E: Derivation of the excitation spectrum

We now present the details of our derivation of the ex-
citation spectrum, given by Eq. (47). As stated before,
we begin by constructing a particle-hole excitation of our
trial ground state, b;‘aa‘; |0). We then find the difference in
the expectation value of the Hamiltonian, given by Eq.
(32), between the excited state and the ground state;
this is taken to be the excitation energy. Throughout
this calculation, we assume that the AF order parame-
ter A > 0. Let us begin with the quartic terms. If we
take the difference in expectation value of these terms
between the excited state and the ground state, we find,
after straightforward but tedious application of anticom-
mutation relations and dropping terms that will vanish
in the thermodynamic limit, that the contribution to the
excitation energy is

SEi =Y g5[Tr(SSas) TH(SE_) + STr(ST,_5%05)]
S

(E1)

where

Sio o= [WE@)(r) = v, ()W) ()], (E2)

Sar = [ el 0@ 0) - v 05 @)
(€3

We may now evaluate the sums and integrals in the above
expressions, obtaining

*

0, =2

we(Y1a0%s® 4+ 771287)
2w

(E4)

and

A A
Eaﬁ = % <1+51E ) (1+7’17’Z)(1—I—o'z)(l—l-slsz)enl,prn+1l6 <1—81E > (1+7'sz)(1_O'Z)(1+51sz)en17177-1
ni ni
A A
— % (1—82E ) (1+T2Tz)(1+0’Z)(1+828Z)6‘n2_1+7—2 _%6 (1+82E ) (1+T2Tz)(1—UZ)(l—f—Sgsz)@nZ_l_Tz.
no n2
(E5)
Here, 6,, is 0 if n < 0, or 1 otherwise. We may now + *w + 4 181 — Toso).
evaluate the traces in Eq. (E1). Doing so, and using the 4 (943, T 92 = 49p:) (151 = Ta52)
fact that (E7)

*

m
Ewc(gz‘hg + 945, + 4gEK)Y = Aa (EG)

we find that

11
_ 2
o= (g )

We now consider the quadratic terms. One of these terms
simply gives us the single-particle “auxiliary spectrum”,
while the other is the quadratic term that we chose to
consider as part of the interaction term. We find, upon
application of anticommutation relations as before, that



the contribution from these terms to the excitation en-

ergy is
0Fy = E,, + Ep, — ATr(16%°5*E5). (E8)
Upon evaluating the trace, we obtain
6Ey = By, + E,, — A? (L + L) : (E9)
ny na
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Combining these two contributions, we arrive at Eq. (47).
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