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We study α, β, and γ graphyne, a class of graphene allotropes with carbon triple 

bonds, using a first-principles density-functional method and tight-binding calculation. We 

find that graphyne has versatile Dirac cones and it is due to remarkable roles of the carbon 

triple bonds in electronic and atomic structures. The carbon triple bonds modulate effective 

hopping matrix elements and reverse their signs, resulting in Dirac cones with reversed 

chirality in α graphyne, momentum shift of the Dirac point in β graphyne, and switch of the 

energy gap in γ graphyne. Furthermore, the triple bonds provide chemisorption sites of 

adatoms which can break sublattice symmetry while preserving planar sp2-bonding networks. 

These features of graphyne open new possibilities for electronic applications of carbon-based 

two-dimensional materials and derived nanostructures. 
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 Recently, there has been enormous interest in two-dimensional (2D) structures of 

carbon allotropes [1-4]. Among them, graphene has been a principal focus of research activity. 

Graphene is a 2D hexagonal network of carbon atoms, having strong triangular sigma-bonds 

of the sp2 hybridized orbitals [1-3]. The electronic structure of graphene is characterized by 

the existence of the Dirac cones, where electron and hole spectra meet linearly at single 

points in the momentum space, called the Dirac points, and the charge carrier has the 

pseudospin parallel or antiparallel to its momentum [3]. 

 One of the biggest challenges in graphene is to manipulate its electronic conduction 

by opening an energy gap at the Dirac point [3, 5-7] or by exploiting the pseudospin. Several 

approaches have been studied including sublattice symmetry breaking through an interaction 

with a substrate [5, 7], patterning into nanoribbons and nanomeshes [6], and chiral symmetry 

breaking mechanism by 2D extension of Peierls distortion [8]. External stress was also 

considered, but recent calculations showed that the Dirac cones are very stable against 

external stress [9-12]. 

 Since the Dirac cone and the pseudospin originate from structural symmetry of 

graphene, other 2D carbon allotropes of similar structure may share the same property. An 

intriguing candidate is graphyne whose atomic structure was suggested by Baughman et al. in 

1987 [13]. They suggested various types of graphyne by inserting carbon triple bonds (-C≡C-

) into C-C bonds in graphene, including three highly symmetric forms: α, β, and γ graphyne 

[13]. Graphyne is named after yne carbon which denotes the carbon triple bond. While early 

ab initio calculations were focused on 2D and three-dimensional forms of graphyne without 

any report or discussion of Dirac cones [14, 15], very recent experimental success of 

graphdiyne synthesis [16] also motivated electronic structure calculations of the 2D 

graphdiyne and graphdiyne nanoribbons with strong interest [17, 18]. 

 In this manuscript, we study the electronic structures of α, β, and γ graphyne using a  

first-principles density-functional calculations, reporting two and six Dirac cones in Brillouin 

zone (BZ) of α and β graphyne, respectively. In α graphyne, the carbon triple bonds produce 

opposite chirality to that in graphene and they can also host adatoms that open an energy gap 

at the Dirac point by breaking the sublattice symmetry. While γ graphyne is semiconducting 

at the optimized atomic structure, it also has Dirac cones when the carbon triple bonds are 

slightly elongated. We provide a simple tight-binding Hamiltonian which captures essential 

features of Dirac cones in graphyne in a unified way. 
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 We performed first-principles calculations with the generalized gradient 

approximation [19] to the density functional theory and the projector-augmented-wave 

method as implemented in VASP [20, 21]. We regarded 2s22p2 electrons in carbon atom as 

valence electrons. Electronic wave functions are expanded with plane waves up to a kinetic-

energy cutoff of 400 eV. Momentum-space integration is performed using a 7 × 7 × 1 

Monkhorst-Pack k-point mesh centered at Γ for hexagonal structure. With the hexagonal 

symmetry imposed, lattice constants and internal coordinates were fully optimized until the 

residual Hellmann-Feynman forces became smaller than 10-3 eV/Å. 

 As shown in Fig. 1, graphene can be modified by inserting triple bond of carbon (-

C≡C-) while keeping its 2D hexagonal symmetry. Figure 1 shows the structures of (a) 

graphene and its yne modifications, (b) α, (c) β, and (d) γ graphynes [13]. The optimized 

structural parameters for the graphynes are summarized in table 1. The most symmetric 

modification of graphene is α graphyne [Fig. 1(b)], where the carbon triple bond (-C≡C-) is 

inserted into every carbon bond in graphene. In the original proposal [13], hexagons in α 

graphyne are not equilateral and it has resonance structures. In our calculation, the optimized 

structure of α graphyne has equilateral hexagons only, and it is stable without any phonon 

mode of imaginary frequency. Figure 1(c) shows the structure of β graphyne, where carbon 

triple bonds are inserted into two thirds of C-C bonds in graphene, forming enlarged 

hexagons bridged by slightly elongated C-C bonds. In γ graphyne [Fig. 1(d)], the carbon 

triple bonds are inserted into only one third of C-C bonds in graphene, resulting in benzene 

rings connected by carbon triple bonds. The structural symmetry of β and γ graphyne is 

equivalent to that of graphene under the Kekule distortion. 

 All of graphyne are topologically equivalent to graphene if we count carbons at 

hexagonal vertices only. In graphyne, electrons hop from one vertex carbons to another either 

directly or through a carbon triple bond. The hopping through a carbon triple bond can be 

regarded as a renormalized direct hopping, as follows. Let us consider a simplified 

Hamiltonian at four carbon sites as shown in Fig. 1(e), where iϕ  is the ith-site wavefunction 

and t1 and t2 are the hopping matrix elements for the single and the triple bond, respectively. 

Hamiltonian equations at the carbon triple bond (that is, at sites 2 and 3) are 

321122 ϕϕϕϕ ttVE ++= ,      

412233 ϕϕϕϕ ttVE ++= ,     (1) 

where E is the electron energy and V is the on-site energy. These equations yield 
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as shown in Fig. 1(f). Remarkably, the renormalized hopping matrix element 1
~t  has opposite 

sign to t1, and its magnitude depends on detailed characteristics of the carbon triple bond. 

Using the renormalized hopping matrix element, graphyne reduces to graphene with a 

variation in the hopping matrix element. 

 Figure 2 shows electronic structures of α, β, and γ graphyne obtained by first-

principles calculations. Except for a few non-propagating flat bands from carbon triple bonds, 

α graphyne has almost the same electronic structure as graphene near EF [Fig. 2(a)], having 

Dirac cones at the K and K' points. In α graphyne, the Fermi velocity is 6.86×105 m/s [Fig. 

2(a)], which is about 80 % of the Fermi velocity in graphene. Since the renormalized hopping 

matrix element 1
~t  has opposite sign to t1, the pseudospin in α graphyne has opposite 

direction to that in graphene, as depicted in Fig. 2(b). 

 Dirac cones are also present in β graphyne [Fig. 2(c)], but its electronic structure is 

quite different from that of graphene or α graphyne. Dirac cones in β graphyne are not at the 

K or K' point, but they are located along Γ-M lines, resulting in six Dirac cones in BZ. At 

each Dirac cone, the Fermi velocity is 4.45×105 m/s along the Γ-M direction and 5.24×105 

m/s perpendicular to the Γ-M direction. 

 In the case of γ graphyne, the energy gap is fully opened in the entire BZ [Fig. 2(d)] 

with a direct energy gap (Eg = 0.471 eV) at the M point. We find that this gap opening is 

highly dependent on the triple bond length (dt) [Fig. 3(a)]. In equilibrium geometry, dt is 

1.2214 Å and the lattice constant is 6.8826 Å. We checked the size of the energy gap of γ 

graphyne while changing dt without changing the lattice constant [Fig. 3(b)]. As dt increases, 

the energy gap decreases linearly until dt = 1.2780 Å. For dt > 1.2780 Å, the energy gap 
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eventually closes and Dirac cones appear in γ graphyne [Fig. 3(c)]. The location of the Dirac 

cone is along the M-Γ line and can be tuned by dt. Figures 3(d) and 3(e) show the electronic 

wavefunctions at the valence band maximum which are plotted in a plane containing a carbon 

triple bond for two different dt, respectively. With the equilibrium dt of 1.2214 Å, the 

wavefunction is localized at the carbon triple bond [Fig. 3(d)], whereas with the elongated dt 

of 1.2780 Å, the wavefunction is delocalized along the four carbon atoms [Fig. 3(e)]. These 

features show that the energy-gap opening in γ graphyne is due to the Peierls instability 

occuring in a 2D fashion, which corresponds to the Kekule distortion [8, 22]. 

 Having all the band structure information, we now discuss a unified picture of 

graphyne. As we mentioned above, all of graphyne are topologically equivalent to graphene if 

we count vertex carbon atoms only, and the electron hopping from a vertex site to another 

through a carbon triple bond can be regarded effectively as a direct hopping with a 

renormalized hopping matrix element. With this picture, the delocalized electronic states near 

the Fermi energy or the energy gap in graphyne can be described with a tight-binding 

Hamiltonian in a honeycomb lattice with renormalized nearest-neighbor hopping matrix 

elements (tij) [23-26], 

( )∑
><

+ +=
ij

ijij chbatH .. ,        (4)  

where < ij > denotes summing over the nearest neighbors, and +
ja  and +

jb  are the operators 

creating an electron on the A and B sublattices, respectively [Fig. 4(a)]. Note that, in  

graphene, tij is same for all three nearest neighbors (t0) [3, 24]. With two vertex sites in a unit 

cell, tij can have three different values 1
~t , 2

~t , and 3
~t , in general, depending on the 

directions of the nearest neighbors, 1d , 2d , and 3d , respectively, as shown in Fig. 4(a). 

Using plane-wave-like linear combinations of +
ja  and +

jb  with a wavevector k , the 

Hamiltonian can be expressed with a 2×2 matrix, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0)(
)(0)(

*kf
kfkH ,       (5) 

with )exp(~)exp(~)exp(~)( 332211 dkitdkitdkitkf ⋅−+⋅−+⋅−= . This yields two energy bands 

|)(|)( kfkE ±= . It is straightforward to show that if the three values 1
~t , 2

~t , and 3
~t  can 

form a triangle, )(kf  is zero at a certain k [25, 26], where the upper and the lower energy 
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band touch each other with linear dispersion relationship, forming a Dirac cone. In the other 

case that )(kf  is not zero at any given k, the energy gap should be open in the entire BZ. 

 In the case of α graphyne, the three hopping matrix elements are equal to one another 

( 321
~~~ ttt == ), so )(kf  is zero at the K and K' points [Fig. 4(b)] regardless of the value of 1

~t , 

producing Dirac cones at the K and K' points [Fig. 2(a)]. In the case of β and γ graphyne, only 

two hopping matrix elements are equal to each other (say 321
~~~ ttt ≠= ). So, if |~| 3t is less than 

|~|2 1t , the Dirac cone exists away from the K or K' point, as in β graphyne [Fig 2(c)]. On the 

other hand, if |~| 3t is greater than |~|2 1t , the Dirac point disappears [Figs. 4(c) and 4(d)], as in 

γ graphyne [Fig. 2(d)]. Although this tight-binding model has only two vertex carbon sites in 

a unitcell, it captures essential features of β and γ graphyne that has six vertex carbon sites in 

each unitcell. We note that, in γ graphyne, the triple bond length is a tuning parameter for the 

hopping matrix element |~| 3t , switching on-and-off the energy gap at the Dirac point, as 

shown in Figs. 2(d) and 3(c). 

 Another important feature of graphyne is its potential for energy-gap control at the 

Dirac point by sublattice symmetry breaking. While maintaining planar sp2-bonding structure 

of carbon atoms, one can easily modify electronic structure of graphyne by adding atoms to 

the carbon triple bond. Figures 5(a) and 5(b) show optimized geometry of hydrogenated α 

graphyne and hydrogen-fluorine-added α graphyne, respectively. Introduction of two 

hydrogen atoms added to each triple bond deforms the linear carbon chain [Fig. 5(a)], but it 

does not change the electronic structure significantly because sublattice symmetry is 

preserved and renormalization of the hopping matrix element does not affect the Dirac cone 

[Fig. 5(c)]. On the contrary, when one replaces half of hydrogen atoms with fluorine atoms, 

the adatoms break the sublattice symmetry [Fig. 5(b)], which is equivalent to introducing two 

different diagonal terms (EA and EB instead of zero) into the Hamiltonian of Eq. (5). This 

broken symmetry results in an energy gap larger than | EA - EB | in any k-point, opening an 

energy gap at the Dirac point [Fig. 5(d)]. 

 In conclusion, we have studied the optimized structures and electronic structures of α, 

β, and γ graphyne with a first-principles density-functional calculations and a tight-binding 

method. Dirac cones are found present in α and β graphyne. In α graphyne, pseudospin is in 

the opposite direction to that in graphene. While γ graphyne is semiconducting due to 

Kekule-distortion effect, Dirac cones appear if the carbon triple bond is elongated. A tight-
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binding Hamiltonian for a honeycomb lattice with three different hopping matrix elements 

can explain all the important physics of graphyne. Furthermore, the carbon triple bond in 

graphyne can be easily modified by attaching hydrogen or halogen atoms while maintaining 

2D planar hexagonal symmetry and this modification can tune parameter for the energy gap 

at the Dirac point. Our present work demonstrates that 2D graphyne has rich physics in its 

electronic structures, which would be extended further in related nanostructures such as 

graphyne nanotubes, nanoribbons, quantum dots, and junctions. 
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this work. This work was supported by NSF of Korea (KRF-2011-0006256, KRF-2011-
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Figure 1. (color online) Schematic representation of (a) graphene, and (b) α, (c) β, and (d) γ 

graphynes. Red quadrangles indicate unit cells. (e) The hopping matrix elements along a 

carbon triple bond in graphyne. The carbon atoms 1 and 4 are at vertices of a hexagon in 

graphyne. (f) Effective direct hopping matrix element between the two carbon atoms 1 and 4 

in (e). 
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Figure 2. (color online) (a) Electronic band structure of α graphyne along M-Γ-K lines. (b) 

Comparison of Dirac cones and pseudospins in graphene and α graphyne. Red arrows 

indicate pseudospins. (c) Electronic band structure of β graphyne. (d) Electronic band 

structure in γ graphynes. In (a) and (c), Fermi energy is set zero. In (d), the middle of the 

energy gap is set zero. 
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Figure 3. (color online) (a) Definition of the triple bond length (dt) of γ graphyne. (b) Energy 

gap in γ graphyne as a function of dt. (c) Electronic band structure of γ graphyne for dt = 

1.2780 Å. (d) Electronic wavefunction at the valence band maximum of γ graphyne for the 

equilibrium dt of 1.2214 Å. (e) Electronic wavefunction at the valence band maximum of γ 

graphyne for the elongated length dt = 1.2780 Å.  
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Figure 4. (color online) (a) Honeycomb lattice geometry with three nearest-neighbor hopping 

matrix elements ( 1
~t , 2

~t , 3
~t ) and three nearest-neighbor relative positions ( 1d , 2d , 3d ). A 

and B denote two sublattices. (b) 2D plots of the energy dispersion, E(kx, ky)/| 1
~t | with three 

equivalent hoppings ( 1
~t = 2

~t = 3
~t ).(c) 2D plots of the energy dispersion E(kx, ky)/| 1

~t | with 

1
~t = 2

~t  and 3
~t = 2.1 × 1

~t . (d) The dispersion E(0, ky)/| 1
~t | for various values of 3

~t / 1
~t .  In (d), 

the energy-gap opening can be clearly seen when 3
~t / 1

~t > 2. In (b)-(d), the lattice constant a is 

3  times the C-C bond length. 
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Figure 5. (color online) Optimized atomic structures of (a) H2 added α graphyne and (b) HF 

added α graphyne. Blue, green, and purple dots represent C, H, and F, respectively. (c) 

Electronic band structure of (a). (d) Electronic band structures of (b). Note that the energy 

gap opens in (d). 
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Structure  a (Å) 1sd (Å) 2sd (Å) td (Å) 

α -graphyne 6.9812 1.3995 - 1.2317 
β -graphyne 9.5004 1.3922 1.4633 1.2343 
γ -graphyne 6.8826 1.4070 1.4237 1.2214 

 

Table 1. Optimized lattice constant (a) and length of carbon bond for α, β, and γ graphynes. 

td denotes length of triple bond and 1sd , 2sd denotes length of two different single bonds. 

Note that there is only one kind of single bond for α graphyne. 


