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Using a three-dimensional microscopic lattice model of a strong topological insulator (TI) we study potential
impurities and vacancies in surface, subsurface, and bulk positions. For all impurity locations we find impurity-
induced resonance states with energy proportional to the inverse of the impurity strength, although the impurity
strength needed for a low-energy resonance state increaseswith the depth of the impurity. For strong impurities
and vacancies as deep as 15 layers into the material, resonance peaks will appear at and around the Dirac point
in the surface energy spectrum, splitting the original Dirac point into two nodes located off-center. Furthermore,
we study vacancy clusters buried deep inside the bulk and findzero-energy resonance states for both single and
multiple-site vacancies. Only fully symmetric multiple-site vacancy clusters show resonance states expelled
from the bulk gap.

PACS numbers: 73.20.At, 73.20.Hb, 73.90.+f

I. INTRODUCTION

Topological insulators (TIs) are a new class of quantum
matter, where strong spin-orbit coupling results in a bulk en-
ergy gap but gapless metallic surface states.1,2 In strong TIs,
a topological invariant associated with the bulk band struc-
ture guarantees the existence of a single (or odd number)
surface state with characteristic linear Dirac energy disper-
sion, where the electron spin is locked to the momentum.3

The surface state is topologically protected against any time-
reversal invariant perturbations. This is intimately connected
with the absence of backscattering for nonmagnetic impu-
rities, since a spin-flip is required for 180◦ backscattering.
The lack of backscattering was established theoretically early
on within a two-dimensional (2D) continuum model for the
surface state4–6 and later also confirmed in experiments.7–9

The same 2D surface continuum model finds that, while a
local impurity-induced resonance state exists for a potential
impurity, its weight diminish as the energy approaches the
Dirac point for unitary scatterers and the Dirac point is left
unperturbed.10

Surface-only models, however, ignore the finite bulk gap,
thus neglecting bulk-assisted processes. Using a microscopic
3D lattice model for a strong TI we recently established thata
strong impurity on the surface gives rise to a large resonance
peak in the local density of states (LDOS) at and around the
Dirac point.11 Consequently, the topological protection of the
Dirac point is destroyed close to the impurity and it splits into
two nodes that move off-center. Recent scanning tunneling
spectroscopy (STS) results12 on Bi2Si3 have confirmed the
existence of such strong resonance peaks at and around the
Dirac point. Other experimental data has also shown how lo-
calized bound states at defects13 and steps14 do not agree with
results from a purely 2D surface continuum model.

These recent experiments warrant a close investigation of
impurities which might give rise to surface resonance states.
In particular, since the surface state extends many layers into

the material,11 even subsurface impurities might significantly
affect the LDOS measured on the surface. In the opposite
limit, the properties of deep subsurface impurities ought to be
closely connected to those of bulk impurities. Both potential
impurities15 and finite sized holes16 in the bulk of a 3D TI
have previously been treated within a continuum theory fo-
cusing on in-gap bound states. In the case of a finite sized
hole, it constitutes an interior surface and will thus necessar-
ily host a surface state in a TI. As the hole radius shrinks, the
surface state is transformed into bound states, which are ex-
pelled towards the bulk bands due to the finite hole size. This
is in striking contrast to surface single-site vacancies which
produce impurity-bound states at the Dirac point.

In this article we present a comprehensive microscopic
study of impurities positioned all the way from the surface
to the bulk. In particular, we address the influence of sub-
surface impurities on the surface LDOS, how bulk impurities
behave on a microscopic scale, and we show how the behavior
of impurities in these two opposite limits are intimately con-
nected. More specifically we find that: i) Subsurface impuri-
ties and vacancies as far as 15 layers into the material create
a non-dispersive resonance peak in the surface LDOS. Thus,
even deep subsurface impurities will affect the low-energyre-
gion of the surface state spectrum and be visible in STS mea-
surements. ii) The resonance energyEres is always inversely
proportional to the impurity strengthU . However, for the
resonance state to enter the low-energy region, the impurity
strength needs to be stronger the deeper down the impurity is
buried. iii) Both impurities and vacancies in the bulk produce
in-gap resonance states, connecting smoothly with the behav-
ior of surface impurities and vacancies. These low-energy
states will give rise to non-insulating bulk transport. iv)Fully
symmetric multiple-site vacancy clusters have no in-gap res-
onance peaks, in agreement with continuum results.16 How-
ever, any small deviation from full symmetry produces low-
lying resonance peaks. Any realistic microscopically created
hole in a 3D TI will therefore have a resonance peak around
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E = 0, mimicking the results of a single vacancy instead of
that of a finite size continuum hole.

The rest of the article is organized as follows. In Sec. II we
introduce a general microscopic lattice model for studyingde-
fects and vacancies in a strong 3D TI. In Sec. III A we discuss
the surface LDOS and impurity-induced resonance peaks for
surface and subsurface impurities and vacancies. In particu-
lar, we focus on the dependence of the resonance energy on
layer position and impurity strength. In Sec. III B we discuss
multiple-site bulk vacancy clusters. We conclude in Sec. IV
by summarizing our results and discussing experimental con-
sequences.

II. MODEL

We create a strong TI by using a four bands-orbital
tight-binding scheme on the diamond lattice with spin-orbit
coupling:3

H0 = t
∑

〈i,j〉

c†i cj + µ
∑

i

c†icj (1)

+
4iλ

a2

∑

〈〈i,j〉〉

c†i s · (d
1

ij × d
2
ij)cj .

Here ci is the annihilation operator on sitei where we, for
simplicity, have suppressed the spin-index. Furthermore,t is
the nearest neighbor hopping,µ = 0 the chemical potential,
λ = 0.3t the next-nearest neighbor spin-orbit coupling,

√
2a

the cubic cell size,s the Pauli spin matrices, andd1,2
ij the two

bond vectors connecting next-nearest neighbor sitesi andj.
By further distorting the hopping amplitude to1.25t along one
of the nearest neighbor directions not parallel to the (111)di-
rection, this system becomes a strong TI, with a single surface
Dirac cone.3 In order to access a surface we create a slab of
Eq. (1) along the (111) direction, see Fig. 1(a). We are mainly
studying slabs with ABBCC...AABBC stacking terminations,
hereafter labeled AB termination, but will also compare these
results with AABBCC...AABBCC terminated slabs, labeled
AA termination, in order to generalize our results. We choose
an energy scale such that the slope of the surface Dirac cone
~vF ≅ 1 for an AB slab, which is achieved by settingt = 2
throughout this work. We find that for slabs withr & 5 lateral
unit cells, where each lateral cell contains six atomic layers,
there is only a minimal amount of cross-talk between the two
slab surfaces, resulting in a negligible surface energy gap. We
label the different layers in the slab starting with layer 1 for
the surface layer. Around layer 15, the remnant DOS of the
surface state is becoming negligible and also located closeto
the bulk gap11 and we are thus approaching bulk conditions at
this depth.

In order to study the effect of potential impurities we create
a rectangular-shaped surface supercell withn sites along each
direction. This gives a supercell surface area of

√
3n2a2/2

where we usea = 1 (the nearest neighbor distance on the
surface) as the unit of length. We add impurities to our model

a

(a) (b) (c)

(d)

FIG. 1: (Color online) (a) Stacking structure for the (111) direction in
the diamond lattice. 1st and 2nd A layers (filled circles), 3rd and 4th
B layers (crosses), 5th and 6th C layers (squares). In-planenearest
neighbor distance isa = 1. Layer separations are

√
3a/

√
8 for AA

layers anda/
√
24 for AB layers. (b) 5-site nearest neighbor cluster

with center site (black) and nearest neighbor sites (blue).(c) 11-
site nearest neighbor and in-plane next-nearest neighbor cluster with
next-nearest neighbor sites (cyan). (d) 17-site next-nearest neighbor
cluster.

by adding the term

Himp = U
∑

i

c†ici. (2)

to the Hamiltonian in Eq. (1). HereU ≥ 0 is the impurity
strength and the summation is over all impurity sites in the
supercell. We note that by addingHimp we break particle-hole
symmetry and thus our model, even withµ = 0, corresponds
to a rather general situation.

We solveH = H0 + Himp = X†HX , whereXT =
(ci↑, ci↓), in the supercell using exact diagonalization. From
the eigenvaluesEν

k and eigenvectorsUν
k of H, the LDOS re-

solved at every sitei is calculated as

Di(E) =
∑

k,ν

(|Uν
k (i)|2 + |Uν

k (N + i)|2)δ(E − Eν
k ), (3)

whereN is the total number of sites and the summation is over
all k-points in the supercell Brillouin zone and all eigenvalues
indexed byν. The two different terms in Eq. (3) are for spin-
up and spin-down electrons, respectively. We will mainly be
concerned with the layer-resolved LDOS on nearest neighbor
sites to the impurity, which is the average of the site-resolved
LDOS in Eq. (3) on nearest neighbor sites in each layer. We
find that a50× 50 supercellk-point grid gives sufficient reso-
lution, while at the same time using a Gaussian broadening of
σ = 0.005 when calculating the LDOS.

III. RESULTS

A. Subsurface impurities

We start by studying single-site, isolated, potential impuri-
ties with varying impurity strengthU including the case of a
single vacancy (U → ∞), which represents the unitary scat-
tering limit. Here we study impurities located from the surface
all the way down to the bulk. Figure 2 shows nearest neigh-
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FIG. 2: (Color online) Layer-resolved LDOS averaged over in-plane
nearest neighbor sites to a vacancy (a-f) and anU = 40 impurity (g-
l) positioned in layer 1, 2, 3, 4, 7, 20 (counted from the top) plotted
for each layer across ar = 7 lateral unit cell wide slab with AB
termination with a supercell size ofn = 10. Zero (white), 0.1 (black)
states per energy and area unit. Red/Grey dashed vertical lines mark
impurity layer, whereas horizontal dotted lines markE = 0.

bor layer-resolved LDOS for both a vacancy (left column) and
a U = 40 impurity (right column), positioned in different
layers. Starting with a surface layer vacancy (topmost left),
there is a wide, double-peak resonance roughly centered at
the Dirac point atE = 0. As carefully analyzed in Ref. 11,
a surface vacancy creates a resonance peak firmly situated on
top of the original Dirac point, which splits into two Dirac
points situated on either side of the resonance peak. These

two Dirac points are the termination points of the valence and
conduction Dirac surface states, respectively. The local de-
struction of the topologically protected low-energy Diracsur-
face state spectrum, and its Dirac point, is due to surface-bulk
interaction always present in TIs with a finite bulk band gap.
The width of the resonance peak decreases as the impurity-
impurity distance increases with supercell sizen. However,
the total weight of the peak approaches a constant value asn
increases,11 corroborating the existence of a finite resonance
peak even in the limit of a fully isolated impurity. The double-
peak structure is also less visible as the impurity-impurity
overlap decreases and the center of the peak remains fixed.
In fact, the resonance peak is non-dispersive throughout the
whole slab for all impurity concentrations and positions.

Since the surface state penetrates relatively deep into the
material, by reciprocity argument, impurities positionedin
subsurface layers might also have a profound effect on the sur-
face LDOS. Figures 2(b-f) show single vacancies positioned
in layer 2, 3, 4, 7, and 20 respectively. There is some oscil-
lation in the energy of the peak as function of layer position,
but for all subsurface layer positions. 15, there is still a fi-
nite sized resonance peak located at or aroundE = 0 in the
surface LDOS. Thus, the original single Dirac point on the
surface is destroyed even for vacancies positioned deep into
the TI. We also find a single-double peak oscillation where
double peaks only appear for vacancies in every other layer,
but this layer position difference diminishes with increasing
impurity-impurity distance. When approaching the bulk lay-
ers, the resonance peak centers firmly atE = 0, and its impact
on the surface state diminishes as the distance to the surface
increases. In Fig. 2(f), the vacancy is positioned deep within
the bulk, and there is a narrow, but tall, impurity resonance
peak atE = 0, but it does not penetrate to the surface. This
result can be understood rather straightforwardly by applying
the T -matrix formalism to an idealized, but normal, insula-
tor. In the presence of a scattering potentialV̂ , the Green’s
functionĜ is determined by

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0, (4)

whereĜ0 is the bare Green’s function and theT -matrix is
given by

T̂ = (1− V̂ Ĝ0)−1Û . (5)

Since the poles of the Green’s function give the energy spec-
trum for single-particle excitations, we can find the energy
Eres of any impurity-induced resonance state by searching for
poles in theT -matrix. For an atomically sharp impurity, de-
scribed by theδ-function potential〈x|Û |x〉 = Uδ(x), the res-
onance energy is given by

1

U
= Re[G0(Eres)], (6)

as long asIm[G0(Eres)] is sufficiently small.17 Using an ide-
alized insulator withk-independent valence and conductions
bands separated by a band gapEg, the bare Green’s function
isG0(ω,k) = (ω−Eg/2+iη)−1+(ω+Eg/2−iη)−1, with η
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infinitesimal small. Thus Eq. (6) givesEres → 0 asV → ∞.
If, on the other hand, the TI has a finite doping such that the
Fermi energyEF = ED + x ≡ 0, whereED is the energy of
the Dirac point and|x| < Eg/2 for EF to still be inside the
bulk gap, the same argument givesEres = −x = ED. That
is, the resonance will always be situated at the Dirac point
for a unitary impurity, independent of the doping of the sys-
tem. We have confirmed this result numerically by including
a finite chemical potential in Eq. (1). The above derivation is
dependent on the valence and conduction bands being mirror-
symmetric with respect toED for all k-values. While this is
true in our model TI, it is in general not true in a real material.
However, as long as valence and conduction bands are approx-
imately mirror-symmetric inED in the part of the Brillouin
zone where the band gap is as smallest, we expect our results
to still be qualitatively correct. If on the other hand, the en-
ergy differenceEc between conduction band and Dirac point,
andEv between valence band and Dirac point are different,
the resonance energy is insteadEres = −x + (Ec − Ev)/2
which is located away from the Dirac point. ThisT -matrix
calculation is also important as it shows that our results are
independent of the particular lattice model.

The LDOS for a finiteU -impurity are very similar to those
of a single vacancy. The main difference is that the resonance
peak in general do not appear at or aroundE = 0, unlessU
is large, and thus do not destroy the low-energy features of
the Dirac surface state. There is also a clear trend that the
deeper the impurity, the larger theU needed for a low-energy
resonance peak. This is clearly seen in in Figs. 2(g-l) where
a U = 40 surface impurity is seen to destroy the original
Dirac point, but where the same impurity in subsurface layers
produces an impurity-induced resonance away fromE = 0.
Figure 2(l) shows how a bulkU = 40 impurity clearly pro-
duces an in-gap resonance peak, associated with a state tightly
bound to the impurity site. It was recently argued, based on re-
sults from a continuum model, that a non-magneticδ-function
impurity cannot produce in-gap bound states in a 3D TI.15 Our
results, however, show that the closest lattice equivalentof a
δ-function, i.e. the single-site impurity, clearly produces in-
gap bound states. This result is true as long as the impurity
strength is large enough to put the resonance peak within the
bulk gap. In our model system that meansU & 20. For
smallerU there is still a resonance state but it is located at
energies above the bulk gap.

In Fig. 3 we analyze in more detail the resonance energy
peak positionEres, extracted from the layer-resolved LDOS
surface spectra, as function of both impurity layer position (a)
and impurity strength (b). Since the resonance peak is non-
dispersive, the peak energy position is the same in all lay-
ers. As clearly seen in Fig. 3(a), the resonance peak appear at
larger (negative) energies, i.e. farther from the low-energy re-
gion, for subsurface impurity positions. Thus for an impurity
to influence the low-energy region of the surface Dirac spec-
trum it needs to be stronger the farther it is from the surface.
It is also clear that the resonance peak move toward the low-
energy region from larger (negative) energies asU increases.
This is equally true for both surface and subsurface positions.
Apart from these trends, there is also a layer oscillation inthe
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FIG. 3: (Color online) (a) Impurity resonance peak positionas func-
tion of layer position for AB surface termination (thick lines,×) and
AA surface termination (thin lines,◦) for a vacancy (U = ∞) (solid
black),U = 80 (solid red),U = 30 (dashed black), andU = 14
(dashed red) impurities, where the last set of results are only dis-
played within the bulk gapEg ≅ 0.6. (b) Impurity resonance peak
position as function of the inverse impurity strength1/U for AB sur-
face termination (thick lines,×) and AA surface termination (thin
lines,◦) for impurity layer position 1 (solid black), 2 (solid red),3
(dashed black), 4 (dashed red), and bulk (thickest black).

peak position but it quickly dies out as the impurity position
approaches the bulk. We have here also included results for
an AA terminated surface (thin lines,◦) alongside the AB sur-
face results (thick lines,×). We note that the specifics of the
layer oscillations are somewhat surface dependent as the AA
surface termination produces slightly different results,but, in
general, both surface terminations display remarkably simi-
lar results. In Fig. 3(b) we plot the peak position as function
of the inverse impurity strength1/U . For all impurity layer
positions, including both the surface and the bulk, the peak
position is proportional to1/U , with Eres = k/U + m. For
AB surface termination, the slopek is approximately constant
between different impurity layer positions but the off-setm
varies for impurities close to the surface. For AA surface ter-
mination there is also some variation of the slopek between
layer positions. However, already for impurities in layer 4,
the peak position is largely set by the bulk behavior (thickest
line). The1/U -dependence for the resonance peak position
in the bulk follow directly from the sameT -matrix argument
given above and the1/U -dependence for surface impurities
has been established using a 2D continuum model for the sur-
face state.10 However, the resonance peak was in the latter
case found to disappear at unitary scattering, something we
most notably do not see in our microscopic lattice model. To
summarize this section, we conclude that subsurface and bulk
impurities, behave very similar to surface impurities, with a
1/U resonance peak energy dependence, although a stronger
impurity is needed in subsurface positions in order to observe
in-gap resonances. The non-dispersiveness of the resonance
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peak means that for any finite impurity-surface coupling, a
resonance peak will also be present in the surface energy spec-
trum. We find that resonance peak traces are clearly present
in the surface LDOS for impurities as far down as∼ 15 lay-
ers below the surface. Moreover, both finite strength impuri-
ties and vacancies in the bulk produce low-energy resonance
states, a result which connects smoothly with the behavior of
impurities close to the surface.

B. Bulk vacancy clusters

TheE = 0 resonance peak present for a single-site bulk
vacancy is associated with a very tightly bound state around
the vacancy site. As Eq. (6) showed, theEres = 0 peak is the
same as that of a vacancy in an idealized normal insulator, and
is thus a very robust result. On the other hand, Shanet al.16 re-
cently used a continuum model to demonstrate the existence
of bound states for a finite sized hole in a TI. In that case the
bound states are simply a manifestation of the fact that a finite
sized hole creates an interior surface in the TI. Holes with a
very large radiusR possess a surface state very similar to that
of a planar surface, although, technically, the surface state will
have to obey periodic boundary conditions around the hole.
As the radiusR becomes finite, the surface state turns into
bound states with an energy separation which gets larger with
decreasingR. Finally, for small enough holes the bound states
are expelled to the bulk bands. Most notably, this continuum
model donot produceE = 0 bound states for any size holes,
unlessR → ∞. Clearly this result is at odds with our micro-
scopic result for a single-site vacancy. To further shed light
on this discrepancy we have studied highly-symmetric bulk
vacancy clusters, involving as many as 17 sites, in order to
increase the effective radius of our microscopically created
hole. Figure 4(a) shows the LDOS on nearest neighbor sites
to both a single-site vacancy (dashed line) and three different
5-site vacancy clusters. The diamond lattice has four near-
est neighbors situated at the corners of a tetrahedron, a dis-
tance

√
3a/

√
8 ≈ 0.6a from the center site, see Fig. 1(b). For

such a 5-site nearest neighbor vacancy cluster, the resonance
peak move up close to the bulk band gap atE ≅ 0.6 (thick
line). However, if we replace one of the nearest neighbors
with a next-nearest neighbor, the impurity-bound state reap-
pears close toE = 0 (black line). Further distortion by replac-
ing two nearest neighbors with next-nearest neighbors creates
a resonance state atE = 0 (red/grey line), the same result
as for the single-site vacancy. We see in Fig. 4(c) how these
peaks also show up as extremely small impurity resonances in
the surface LDOS at the same energies when these vacancies
are centered around layer 17. In Fig. 4(b, d) we show the same
result for even larger vacancy clusters. The diamond (111)
slab has six in-plane next-nearest neighbors and an additional
six next-nearest neighbors out-of-plane, situated a distancea
from the center site, see Figs. 1(c,d). An 11-site cluster in-
cluding the four nearest neighbors and the six in-plane next-
nearest neighbors creates a resonance aroundE = 0 (dashed
line). When including all next-nearest neighbors into a fully-
symmetric 17-site cluster, the resonance peaks move up to
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FIG. 4: (Color online) LDOS averaged over in-plane nearest neigh-
bor sites in layer 17 (a, b) and layer 1 (c, d) for different highly
symmetric vacancy clusters centered at layer 17. (a, c): 5-site near-
est neighbor vacancy cluster with radius

√
3a/(2

√
2) (thick black),

5-site nearest neighbor cluster with 1 next-nearest neighbor substi-
tution (thin black), and 2 next-nearest neighbor substitutions (red),
1-site single impurity (dashed). (b, d): 17-site next-nearest neigh-
bor vacancy cluster with radiusa (thick black), 17-site next-nearest
neighbor cluster with two different 1 next-next-nearest neighbor sub-
stitutions (thin black and red), 11-site cluster consisting of the 4
nearest neighbors and the 6 in-plane next-nearest neighbors (dashed).
Small finite gap atE = 0 in the surface state is due to the finite width
of the slab (r = 6). Surface termination is AB and the supercell size
isn = 10.

aroundE = 0.4 (thick line). However, distorting this 17-
site cluster by exchanging only one next-nearest neighbor for
a next-next-nearest neighbor again produces peaks in the very
low-energy part of the spectrum (black and red/grey lines).
We thus find that fully-symmetric vacancy clusters involving
all nearest and next-nearest neighbor sites expels the impurity-
bound states to high energies, in accordance with earlier con-
tinuum model results. Also, when increasing the radius from
0.6a for the nearest neighbor cluster toa for the next-nearest
neighbor cluster, the resonance peak moves to slightly lower
energies, in agreement with the continuum results. However,
even the smallest possible distortion of either of these two
clusters produces results more resembling those of a single-
site vacancy, where the resonance peak sits firmly atE = 0.
Thus, despite the topological origin of the surface state ina
TI, there is a surprisingly large sensitivity to small deviations
in the cluster shape. Since any microscopically sized hole in
a TI will likely have some asymmetry, we conclude that even
for fairly large such holes, the continuum limit will not be
reached, but a resonance peak will be present at or around
E = 0.
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IV. CONCLUDING REMARKS

Using a 3D microscopic lattice model of a strong TI we
have shown that strong potential impurities and vacancies cre-
ate low-lying impurity-bound resonance peaks, with an1/U -
dependence for the resonance peak energy for impurities in
any layer, including the bulk. Impurities as far as 15 layers
below the surface have resonance peaks visible in the surface
LDOS. This is also approximately the penetration depth of the
surface state into the interior of the TI. Thus any vacancy or
unitary impurity, within the penetration depth of the TI sur-
face state, produces a peak in the LDOS at or very near the
Dirac point, which is subsequently destroyed and split into
two nodes that move off-center. Recent STS data12 on non-
magnetic unitary impurities in Bi2Se3 has shown sharp energy
resonance peaks at the Dirac point, with diverging strengthas
the Fermi level approaches the Dirac point. Our results show
that the impurities do not necessarily have to be located on
the surface, but also subsurface impurities can generate such
surface resonance peaks. The experimental presence of strong
resonance states at the Dirac point confirms the need for a 3D
model, which explicitly includes bulk states, since 2D con-
tinuum results do not find any strong resonance peaks near
the Dirac point.10 For surface impurities the resonance peak
decays quickly, approximately as1/R3 with distance on the
surface,11 and we find a similar dependence for subsurface
impurities in the surface LDOS. This fast decay should be
contrasted with a rather extended spread perpendicular to the
surface. Experimentally, the resonance peaks were found to
decay within as little as 2̊A, which is in qualitative agreement
with our results. Such fast decay signals a quick healing of the
single Dirac point spectrum, as would be expected for a topo-
logically protected surface. The impurity-induced resonance
peaks in the surface state in a TI are, in fact, similar to im-
purity resonances in graphene18 andd-wave high-temperature
superconductors,17 two other materials with Dirac-like low-
energy spectra. Thus, once any topological protection is lost
due to strong scattering, there is a strong argument for a uni-
fied local response to impurities for all “Dirac” materials.19

This unified response corroborates the model-independence
of our numerical results, as it is only the Dirac-like surface
state, in combination with a finite bulk gap, that is important.

Closely connected to the behavior of near-surface impuri-
ties are that of bulk impurities, where we findEres = 0 peaks
for single-site vacancies in the bulk. This result does not agree
with continuum model results for finite holes in a TI.16 To ex-
pand on this discrepancy we have studied extended bulk va-
cancy clusters. We find that, while fully-symmetric 5- and
17-site clusters do not have any low-energy resonance states in
agreement with continuum results, any asymmetry in the clus-
ters producesEres ≈ 0 resonance peaks. Since any vacancy
cluster of microscopic origin is likely to not be fully symmet-
ric, we conclude that a microscopic approach is required for
such holes. For a finite strength bulk impurity, we similarly
find contradictions with continuum model results. The1/U -
dependence for the resonance energy produces in-gap reso-
nances for strong impurities, in contrast to the absence of in-
gap states forδ-potential impurities in continuum models.15 In

fact, both the bulk vacancyEres = 0 resonance state and the
1/U bulk impurity energy dependence are independent of the
topological index and also present in a trivial band insulator,
as we show by a simple T-matrix calculation. As a conse-
quence, these conclusions for bulk impurities are independent
on the specifics of the lattice model. The low-energy reso-
nance peaks for deep subsurface and bulk impurities can have
a profound effect on the conductivity, as they can give rise to
gapless bulk conductivity, thus masking the surface transport
properties. Moreover, in the presence of a finite overlap be-
tween surface and bulk vacancy states, the surface electrons
can be scattered by these zero-energy resonance states. In the
limit of dense vacancy concentration, vacancy-band forma-
tion will allow edge-edge transitions, thus opening a gap in
the topologically protected surface state.
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Rodrı́guez, Phys. Rev. Lett.104, 096804 (2010).

19 T. O. Wehling and A. V. Balatsky, (unpublished).


