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In this work we demonstrate that significant changes in electron temperature and nuclear spin
polarization can be created by applying an electric current in a 2-dimensional electron system at
Landau level filling factor ν = 1/2. The current induced effects on nuclear spins can be attributed to
electron heating and the efficient coupling between the nuclear and electron spin systems at ν=1/2.
The electron temperature, elevated by the current, can be measured with a thermometer based
on the measurement of the nuclear spin relaxation rate. The electron temperature is found to be
proportional to the square root of the current density at ν = 1/2. Electron spin transitions at ν = 2/3
and 1/2 are utilized for the measurement of the current induced changes in nuclear spin polarization.
Consistent results are obtained from these two different methods of nuclear magnetometry. The finite
thickness of the electron wavefunction is found to be important for evaluation of the nuclear spin
polarization even in a narrow quantum well. The nuclear spin polarization follows a Curie law
dependence on the electron temperature. This work also allows us to evaluate the electron g-factor
in high magnetic fields as well as the polarization mass of composite fermions.
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I. INTRODUCTION

In GaAs and many other semiconductors, electron spins and nuclear spins interact with each other via the hyperfine
interaction [1]. This interaction forms the basis for many ingenious methods to detect and manipulate nuclear spins
via the electronic states [2–5]. Conversely, nuclear spins can also be used to probe and study electronic states in
molecules and various condensed matter systems. For instance, the electron spin polarization can be measured with
the Knight shift in nuclear magnetic resonance (NMR) experiments [7–12]. Nuclear spin relaxation measurements
yield important information about the electronic systems [13–22].
An essential ingredient of a nuclear spin relaxation measurement is to first drive the nuclear spin system out of

equilibrium. NMR provides the most direct way for eliciting changes in the degree of nuclear spin polarization.
The RF radiation in NMR experiments, however, unavoidably raises the electron temperature in the sample, in
particular when operating at dilution refrigerator temperatures. This is detrimental to the fragile states such as those
formed as a result of electron correlations in the fractional quantum Hall regime. Fortunately, alternative methods
for manipulating nuclear spin polarization are available. They are based on the spin flip-flop term of the hyperfine
interaction:

Hflip−flop =
1

2
AHF(Î+ · Ŝ− + Î− · Ŝ+), (1)

where AHF is the hyperfine constant, and Î+(Î−) and Ŝ+(Ŝ−) are raising (lowering) operators for the nuclear and
electron spins, respectively. This term describes processes in which the flip of an electron spin simultaneously triggers
the reversal of a nuclear spin. Driving the electron spin system out of thermal equilibrium by an external source (e.g.
microwave, light, or electric current) will cause the electron spins to relax back. The electron relaxation is accompanied
by polarization of the nuclear spins. This dynamic nuclear polarization (DNP) process has been realized in numerous
experiments, including optical pumping by circularly polarized light, [7] electron spin resonance (ESR) [23], inter-
edge channel scattering in the quantum Hall regime [24], current induced scattering near Landau level filling factor
ν =2/3 [25–27], and other fractional fillings [10, 28, 29]. It also occurs in the breakdown regime of the integer and
fractional quantum Hall effects [30–32].
In this work we highlight a different method for manipulating the nuclear spin polarization. It does not rely on the

aforementioned conventional dynamic nuclear polarization processes. It will be referred to as electrically controlled
thermal depolarization. It is based on current induced heating in the two-dimensional electron system (2DES) when
a partially polarized composite fermion liquid at half filling of the lowest Landau level forms. The strong hyperfine
interaction transfers energy from electrons to nuclear spins and hence raises the entropy as well as the temperature of
the nuclear spin system. Significant changes in nuclear spin polarization can be obtained with low current densities.
In contrast to previously reported techniques for electrical control of the nuclear spin polarization, this ν = 1/2 based
technique can in principle produce spatially homogeneous changes in the nuclear spin polarization across a large
area [33]. The changes in nuclear spin polarization are measured with two different methods. One is based on the
spin transition in the ν = 1/2 state itself [20, 22], and the other relies on the spin phase transition at ν = 2/3 [25, 34].
The nuclear spin depolarization induced by the current can be described by a Curie law.
This paper is organized as follows. In Sec. II, we give a brief description of the composite fermion picture and the spin

transitions at fillings 1/2 and 2/3. Sec. III is devoted to the experimental details, including the sample preparation,
the measurement setup, and the principles of the nuclear magnetometry using the 1/2 and 2/3 spin transitions. Effects
associated with the finite thickness of the two-dimensional electron system will also be discussed in this section. In
Sec. IV the main experimental results will be presented. They include the current induced effects on the nuclear
spins and electron transport properties. The mechanism for electrical controlled nuclear spin depolarization will be
discussed based on measurements of electron temperatures. Finally, concluding remarks will be given in Sec. V.

II. THEORETICAL BACKGROUND

For a 2D electron system with density ns subject to a perpendicular magnetic field B, all electrons reside in the

lowest Landau level when B exceeds nsh/e (i.e. Landau level filling factor ν ≡ ns/h
eB < 1), where ns is the density

of the 2DES, h is the Planck constant, and e is the electron’s charge. The orbital degree of freedom is no longer
relevant and the physics is governed by electron-electron interactions. They give rise to a large number of fractional
quantum Hall states when the disorder is sufficiently weak [35]. The many-body wavefunctions proposed by Laughlin
provide a solid foundation for understanding the nature of these states [36]. It is however also possible to describe
the appearance of these correlated fractional quantum Hall ground states in an intuitive, single particle picture by
introducing quasi-particles referred to as composite fermions [37, 38].
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A composite fermion (CF) comprises one electron and an even number (q = 2, 4) of magnetic flux quanta. CFs
no longer experience the external magnetic field, but a drastically reduced effective magnetic field which in a mean
field approximation [38] is given by Beff = B − qnsh/e and vanishes exactly at even denominator filling 1/q. At this
filling composite fermions form a compressible Fermi sea which in many ways resembles the 2D electron Fermi liquid
at zero magnetic field. At filling factors away from 1/q, the Landau quantization of composite fermions in a non-zero
Beff gives rise to the integer quantum Hall effect of composite fermions. It is equivalent to the fractional quantum
Hall effect at fillings p/(pq ± 1), where p is the number of filled CF Landau levels. For example, the ν = 2/3 state
corresponds to the integer quantum Hall state of composite fermions with two attached flux quanta when two CF
Landau levels are completely filled.

A. Spin transitions at ν = 2/3 and 1/2

The cyclotron mass and Landau quantization energy of composite fermions are not related to the conduction band
mass of the electrons [39]. This has some important implications for the spin related physics in the fractional quantum
Hall regime. In the following, we only discuss two cases which will be important for the nuclear magnetometry carried
out in this work. For simplicity, we start our discussion with an ideal 2D electron system, whose wavefunction has
zero spread in the growth direction. We also do not consider the effect of nuclear spin polarization. It will be treated
in a subsequent subsection.
At filling factor 2/3, composite fermions experience an effective (perpendicular) magnetic field of −B/3. The energy

spectrum is quantized into a ladder of CF Landau levels (n = 0, 1, 2, ...) with a spacing of h̄ωCF = h̄ e
mCF

B
3
= h̄e

3ξme

√
B,

where me is the free electron mass, and the composite fermion mass is written as mCF = ξ
√
Bme [39]. Each of the CF

Landau levels is split into two spin sub-levels (s =↑, ↓) by the Zeeman energy EZ = geµBBtot, where Btot is the total
magnetic field. Note the effective field only controls the orbital degree of freedom of the composite fermions. As shown
in Fig. 1(a), energy levels (0,↓) and (1,↑) cross each other at perpendicular field B = Btr due to the different field
dependencies of EC and EZ . When B < Btr, the two occupied levels, (0,↑) and (0,↓), have opposite spin orientation,
so the ground state is spin unpolarized. In contrast, when B > Btr the two filled levels, (0,↑) and(1,↑), have identical
spin orientations in Fig. 1(a) and the ground state is fully spin polarized. The spin transition field Btr satisfies

Btr|λ=0,BN=0 =
4

9
(
1

geξ
)2 cos2 θ, (2)

where θ is the tilt angle, i.e. the angle between the total field Btot and the perpendicular field B. Here the indices
λ = 0 and BN = 0 indicate that we are dealing with a special case of zero thickness of the electron wavefunction and
zero nuclear spin polarization. More general cases will be discussed in subsequent sections.
For the Fermi sea at ν = 1/2, the composite fermion spins are not always fully polarized as well [8, 9, 40]. A

transition from partial to full spin polarization takes place when the Zeeman energy exceeds the Fermi energy of the
composite fermions. In the simplest model, the composite fermions are treated as non-interacting particles and the
disorder is ignored. Under these assumptions, the Fermi energy can be written as εF = h̄2k2F /(2mCF), where kF is the
CF Fermi wavevector. It is straightforward to obtain that when the (perpendicular) magnetic field B ≥ ( 1

geξ
)2 cos2 θ,

the composite fermion sea becomes fully spin polarized (see Fig. 1(b)). It is interesting to note that the spin transition
field at ν = 2/3 only differs from that at ν = 1/2 by a factor of 4/9.
A useful feature of the partially polarized Fermi sea at ν = 1/2 is that the energy spectrum is continuous near

the Fermi energy for both spin populations. A spin flip of a composite fermion may require a change in orbital
momentum, but costs no or very little energy just like a nuclear spin flop. Hence, the interaction between nuclear
spins and electron spins is expected to be strong. The situation resembles the Korringa type of nuclear spin-electron
spin interaction in simple metals [20, 41]. Indeed, in experiments the nuclear spin relaxation time has been found to
be as short as ∼100 s even at temperatures below 30mK [22]. Therefore, the ν = 1/2 state lends itself to manipulate
nuclear spins because of the efficient coupling between these two spin systems. This will be the central theme of this
paper.

B. Finite thickness effect

It should be pointed out that the transition fields given in the previous subsection are calculated for truly 2D
systems. For a 2DES which forms in a GaAs/AlGaAs quantum well or heterostructure, the finite thickness of the

electron wavefunction in the growth direction softens the Coulomb potential. When the magnetic length, lB =
√

h̄/eB,
becomes comparable to the thickness of the electron wavefunction, the ratio η = EZ/EC , which determines the spin
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transition fields for both ν = 2/3 and 1/2, is no longer proportional to
√
B. In the strong B limit, the Coulomb

potential scales with logB instead of
√
B. As will be shown in Sec. III B, the finite thickness effect significantly

modifies the spin transition field even for a narrow quantum well.
A precise treatment of the finite thickness effect requires numerical calculations [42, 43], which are beyond the scope

of this paper. Here we follow an approach introduced by Zhang and Das Sarma [44]. According to their theoretical
study, a modified Coulomb potential of the form V (r) ∝ (r2 + λ2)−1/2 provides a reasonably good approximation to
more rigorous numerical calculations. Here λ is a length parameter that can be viewed as the effective thickness of
the electron wavefunction. In this model the Coulomb energy follows EC ∝ (l2B +λ2)−1/2, instead of EC ∝ l−1

B in the
zero thickness limit. For analyzing experiments, it is useful to define Bλ = h̄/(eλ2), and rewrite the Coulomb energy
as

EC =
1

4πǫǫ0

e2

lB

√

Bλ

B +Bλ
∝
√

BλB

B +Bλ
. (3)

If the tilt angle θ is small so that the orbital effect of the in-plane field is negligible, the spin transition field, taking
into account the non-zero thickness of the 2DES, can be written as

Btr|BN=0 =
1

2

(

−Bλ +
√

B2
λ + 4B0

trBλ cos2 θ

)

. (4)

Here B0
tr denotes the spin transition field for the case of zero-thickness, zero tilt angle, and no nuclear spin polarization.

It equals 4
9
( 1
geξ

)2 and ( 1
geξ

)2 for ν = 2/3 and 1/2, respectively. Eq. (4) is quite different from the cos2 θ dependence

expected for the zero-thickness 2DES (see Eq. 2). Hence, the measurements in tilted fields can be used to evaluate
how significant the finite thickness effect is.

C. Influence of nuclear spin polarization

The Zeeman term in the Hamiltonian of the hyperfine interaction between an electron and the nuclei is

HZ = AHFÎZ · ŜZ . (5)

The influence of the polarized nuclear spins on the electron Zeeman splitting can be described in terms of an effective
field BN

HZ = geµBBN . (6)

For fully polarized nuclear spins in bulk GaAs BN equals −5.3T. [45] The minus sign reflects that BN is opposite
to the external magnetic field Btot. The nuclear spin polarizations of all three isotopes in GaAs (i.e. 69Ga, 71Ga and
75As) follow the Brillouin function. For small B/T (< 0.5Tesla/mK approximately), this function can be simplified
to a Curie law form:

PN =
〈I〉
I

=
γnh̄(I + 1)Btot

3kBT
. (7)

For all nuclei in GaAs, I equals 3/2 and γn is the nuclear gyromagnetic ratio. Summing up the contributions from
all three types of nuclei yields the following expression

BN =

3
∑

i=1

bN,iPN,i ≃
0.87mK

ge

Btot

T
, (8)

where bN,i is the maximum effective field of the nuclei of type i. Note that BN is inversely proportional to the
electron g-factor ge. For a 2D electron system confined in a narrow GaAs quantum well, |ge| can be considerably
smaller than the bulk value |−0.44| [46]. It has been demonstrated in electron spin resonance experiments that strong
perpendicular magnetic fields can further decrease the magnitude of ge [47].
Polarized nuclear spins only modify the electron Zeeman energy, i.e. EZ = geµB(Btot + BN ). They do not affect

the orbital motion of the electrons. Since the Coulomb energy remains unaltered, the spin transition fields for the
ν = 2/3 and the ν = 1/2 state change. Let’s first consider the case of the ν = 2/3 spin transition when the sample is
mounted perpendicular to the external applied magnetic field (θ = 0). The transition field is obtained from equation

h̄e

3ξme

√

BλB

B +Bλ
= geµB(B + BN). (9)
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When BN is much smaller than B, one finds

Btr|θ=0 ≃ Btr|θ=0,BN=0 −
(

1 +

√

Bλ

Bλ + 4B0
tr

)

BN , (10)

where Btr|θ=0,BN=0 = 1
2

(

−Bλ +
√

B2
λ + 4B0

tr

)

is the transition field in the absence of nuclear spin polarization. In

the limit of zero-thickness, Bλ → ∞, Eq. (10) reduces to

Btr|λ=0,θ=0 ≃ B0
tr − 2BN . (11)

When the effect of BN , the influence of finite thickness as well as a sample tilt are all included, the calculation of
the transition field is more tedious. Nevertheless, a simplified treatment is possible when BN follows the Curie law.
The transition field is obtained by solving

h̄e

3ξme

√

BλB

B +Bλ
= geµB(1 + δ)Btot, (12)

with δ = 0.87mK/(geT ). This gives rise to a solution similar to Eq. (4):

Btr =
1

2

(

−Bλ +

√

B2
λ + 4

B0
tr

(1 + δ)2
Bλ cos2 θ

)

. (13)

For many quantum wells of interest, ge is smaller than zero and the nuclear spins in thermal equilibrium increase
the spin transition field. For a typical g-factor (ge ∼ −0.4), the correction due to nuclear spins is, however, rather
small even at very low temperatures. For instance at T = 20mK, 1 + δ ≈ 0.9. Also noteworthy is that in the limit of
zero-thickness, Eq. (13) reduces to Btr|λ=0 = B0

tr cos
2 θ/(1 + δ)2.

III. EXPERIMENTAL METHODS

A. Sample preparation and measurement setup

The samples studied in this work are either single- or double-sided doped AlxGa1−xAs/GaAs quantum wells with
thicknesses between 16 nm and 18 nm. Although qualitatively similar results were observed on all samples, the data
presented here were recorded on a 16 nm thick, single-sided doped quantum well with an in-situ grown n+-GaAs
backgate. The sample was patterned into 400µm wide Hall bars with voltage probes along the top and bottom
perimeter that are 400µm apart. The electron density and mobility at zero backgate voltage are 1.77 × 1011 cm−2

and 0.8× 106 cm2/V·s, respectively.
Electron transport measurements were carried out in dilution refrigerators with base temperatures less than 20mK.

For the tilted field measurements, the samples were mounted on a stage with a low friction rotation mechanism driven
by a high precision dc motor. The tilt angle θ was calibrated with low field Hall measurements. Standard lock-in
techniques were used for the transport measurements. In order to study the current induced effects, two currents are
applied to the samples. The first is a small ac current which is typically 1 nA, and the other is a dc current or an ac
current with different frequency from the first one. The lock-in amplifiers are locked to the first ac current, and hence
they measure the differential longitudinal resistance dVxx/dI and the differential Hall resistance dVxy/dI, which are
denoted as Rxx and Rxy, respectively, for simplicity. The differential resistances could be considerably different from
the longitudinal resistance Vxx/I and the Hall resistance Vxy/I under sufficiently large bias current, but the latter are
irrelevant for most of the discussion in this paper.

B. Nuclear magnetometry based on the ν = 2/3 spin transition

As described in Sec. II A, the crossing of the CF levels (0,↓) and (1,↑) is accompanied by a transition from an
unpolarized ground state with P = 0 to a fully polarized ground state with P = 1. This spin transition as a result
of the competition between the Coulomb energy and the Zeeman energy leaves a signature in a measurement of Rxx,
since longitudinal transport becomes dissipative near the transition [15, 27, 28, 48, 49]. Fig. 2 shows an example of
a transport measurement. A color rendition of the longitudinal resistance in the filling factor versus B-field plane
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is depicted in the top panel. Arrows mark the spin orientation of the Landau levels which are occupied for states
with fractional fillings 2/3 and 3/5. At filling factor 2/3 the resistance becomes non-zero near 9.5 T. This is more
clearly seen in a plot of the resistance along the line of constant filling factor 2/3 displayed in the bottom panel.
Below this field the ground state is unpolarized. Also displayed in this graph is the Hall resistance. At the transition
the Hall resistance deviates from the quantized Hall resistance. At higher B-fields, the formation of the fully spin
polarized ground state gives rise to reentrant behavior in Rxx and Rxy. As described above, the transition field Btr is
determined by the relative strength of EC and EZ and can therefore be varied either by tilting the magnetic field [28],
or changing the nuclear spin polarization [14]. Conversely, a measurement of the 2/3 transition field can serve as a
method for nuclear magnetometry, since the displacement of the 2/3 transition provides information on the degree of
nuclear spin polarization [34]. It follows from Eq. (10) that for small nuclear fields BN , the change in BN is simply
proportional to the shift of the transition along the magnetic field axis, or more specifically,

∆BN ≃ −
(

1 +

√

Bλ

Bλ + 4B0
tr

)−1

∆Btr. (14)

A very useful scheme to study the interaction physics between nuclear spins and electron spins at filling factors
other than 2/3 was introduced in Ref [34]. The measurement sequence is illustrated in Fig. 3(a). It allows measuring
the nuclear spin polarization at filling factor νrest, the filling factor of interest. Throughout this work, νrest equals 1/2.
The system is allowed to relax and reach a steady state during an extended period of time trest at filling νrest. In order
to determine the degree of nuclear spin polarization at this filling factor, the magnetic field is swept in small steps in
a range large enough to cover the 2/3 phase transition peak. Each time after changing the magnetic field slightly, the
system is again allowed to relax during a time trest. The gate voltage tracks the externally applied magnetic field to
ensure that the electron system remains at νrest even during the short B-field sweep. So the filling factor is at all times
νrest except during a short excursion period to νmeas (typically a value close to 2/3) where we perform the nuclear
magnetometry. A small ac current (Iac =1nA) is turned on for recording Rxx during this excursion time tmeas. In
this work, trest was chosen to be 120 or 180 s and tmeas=1.5 s in order to minimize the effect of nuclear spin relaxation
at νmeas itself. It was verified that longer trest did not bring noticeable changes in the results on the nuclear spin
phenomena at ν = 1/2. From the magnetic field at which the spin transition peak appears the effective field BN is
extracted. An important prerequisite to be able to calculate BN is the knowledge of the transition field in the absence
of nuclear spin polarization. How this reference value is obtained will be discussed in more detail in Sec. IVD.
Fig. 3(b) displays Rxx traces recorded according to the sequence in panel a for three different temperatures. The spin

transition at filling factor 2/3, signaled by the peak in Rxx, moves to lower magnetic fields as T increases. As discussed
in the previous section, the partially polarized Fermi sea allows for efficient coupling between the nuclear and electron
spin systems. At thermal equilibrium, the nuclear spin temperature is the same as the electron temperature. Cooling
the electrons at ν = 1/2 increases the degree of nuclear spin polarization. The nuclear spin polarization acts back on
the electron spins as a result of the reduced Zeeman energy, i.e. EZ = Btot + BN , with BN given in Eq. 8. For the
temperatures encountered in this experiment, |BN | < 1T, which is about one order of magnitude smaller than Btr, so
the assumption under which Eq. (14) has been derived is satisfied. One would expect that the shift on Btr follows the
Curie law and depends linearly on 1/T . The data plotted in Fig. 3(c), however, clearly does not follow a 1/T behavior.
We attribute this to two factors. The resistance maximum associated with the spin transition is broad and possesses
an asymmetric background as a result of thermal activation at high temperatures. This precludes us to extract precise
values for the transition fields. A second problem is the difficulty in determining the electron temperature. The actual
electron temperature Te may deviate from the bath temperature T , even though the thermometer for measuring the
bath temperature is mounted very close to the sample. The difference between Te and T becomes non-negligible at
temperatures lower than 45mK. This issue will be discussed in the following sections.
The results above suggest that the dependence of the maximum in the spin transition peak on the bath temperature

does not provide a reliable framework to extract the nuclear spin polarization based on the 2/3 spin transition. This
difficulty can, however, be overcome by measuring the transition field Btr in titled magnetic fields. In this work we
limited the measurements to small tilt angles so that the orbital effect of the in-plane field can be ignored. As displayed
in Fig. 4(a), the peak of the 2/3 spin transition moves to lower perpendicular field as the tilt angle increases. The
height of the peak increases considerably with tilt, but the width of the peak varies very little. This is in contrast with
the temperature dependent behavior which is dominated by strong broadening at high temperatures. This feature is
particularly helpful for a precise evaluation of Btr. The transition field is plotted in Fig. 4(b) as a function of cos2 θ.
The experimental values of Btr deviate significantly from what one would expect for a zero-thickness 2D electron
system. Fitting the data to Eq. (13) yields B0

tr/(1 + δ)2 ≈ 26T and Bλ ≈5.4T. The latter corresponds to an effective
width of λ ≈11nm. It is slightly larger than the half width of the 16 nm thick quantum well. Taking (1 + δ)−2 ≈ 0.8
at T = 20mK (see Sec. II C), one obtains B0

tr ≈21T. It follows from Eq. (10) that ∆Btr ≈ −1.2∆BN , significantly
different from the ∆Btr = −2BN expected in the limit of zero-thickness.
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The main effect of the small angle tilted field is that the extra Zeeman energy brought by the in-plane field lowers
the transition field. This is very similar to the role of thermally depolarized nuclear spins. Therefore, the extra Zeeman
field, defined as Bextra = Btr(1/ cos θ − 1), could provide a convenient route to determine ∆BN without the need for
estimating B0

tr. An example is plotted in Fig. 4(c). The linear fit of the Btr-Bextra data gives ∆Btr ≈ −1.24Bextra, or
equivalently ∆Btr ≈ −1.24∆BN in case that the nuclear spins are involved.

C. Nuclear magnetometry based on the ν = 1/2 spin transition

The nuclear magnetometry based on the ν =2/3 spin transition requires a rather sophisticated measurement
sequence. Its application is limited to a narrow magnetic field range in the vicinity of the ν = 2/3 spin transition only.
For a 2D electron system residing in a wider quantum well, which is desirable in order to benefit from higher electron
mobilities, the 2/3 transition peak does not even show up in the transport measurement at sufficiently low T . This
makes the ν =2/3 detection scheme no longer useful. Moreover, the magnetic field sweeps during the measurement
sequence raise concerns over whether the nuclear spin system is truly in thermal equilibrium. This becomes even more
problematic for filling factors at which the coupling between nuclear and electron spins is weak.

Here we describe a new type of nuclear magnetometry. It is based on the Fermi sea at ν = 1/2. The degree of
spin polarization of this Fermi sea is also determined by EZ/EC and can therefore readily be tuned as well by either
changing the nuclear spin polarization [20], or by tilting the sample while keeping the perpendicular field B fixed [22].
For the 16 nm thick sample used in this work, the electron system remains partially polarized up to at least 16T
if the magnetic field is not tilted. In tilted field measurements with a fixed perpendicular field B, the longitudinal
resistance Rxx increases with Btot (or EZ) until it reaches a maximum near full spin polarization. As demonstrated
in our previous work [22], Rxx no longer responds to the change in EZ in case full spin polarization has been reached.
The Rxx-Btot curves in Fig. 5(a) can be interpreted as Rxx versus EZ curves and hence changes in the resistance can
be converted into changes of the nuclear field, i.e. the degree of nuclear spin polarization. The orbital effect of the
in-plane field, which is responsible for the small negative slope at large Btot, should be subtracted for large tilt angles.
Fig. 5(b) shows an example for B = 8T.

Nuclear magnetometry using the properties of the CF Fermi sea at ν = 1/2 is performed with the following sequence
of operations: First, the sample relaxes at ν = 1/2, usually with a small current (typically 1 nA) applied for monitoring
Rxx. The relaxation time, trelax, is usually chosen about one order of magnitude longer than the nuclear spin relaxation
time T1. In this experiment, trelax=900 s unless otherwise specified. The nuclear spin system is expected to be close
to equilibrium with the electron spin system at the end of this time period. The sample is then brought to the state
of interest at filling factor νpol for a certain time. This may be the same or a different filling factor and RF radiation
may be turned on in resonance with nuclear spins or the system may also be excited by a large current. Subsequently,
the filling factor is set back to 1/2 (if it has been changed in the previous step) and all of the external excitation
sources (if any were turned on) are shut off. Only the small measurement current (Iac =1nA) remains turned on in
order to record the relaxation of Rxx at filling 1/2. After Rxx has saturated, the system is ready for a new set of
measurements.

The time evolution of Rxx at filling 1/2 recorded after the excursion to filling factor νpol can be fitted to the following
exponential decay function:

Rxx(t) = R0 +∆R exp(−t/τ). (15)

Comparing ∆R with the Rxx curve recorded at a fixed perpendicular magnetic field as a function of tilt angle (for
instance the one shown in Fig. 5(b)) enables to extract the time dependent change in the Zeeman energy, and hence
the change in BN . It should be noted that the time constant τ is equal to T1 only when Rxx depends linearly on
EZ . A strong non-linearity would cause a large discrepancy between τ and T1. A fitting procedure applicable even if
Rxx depends in a non-linear fashion on EZ can however be easily devised by converting the Rxx values to values of
∆EZ/(geµB) and then fitting the data to

∆EZ(t) = ∆E0
Z exp(−t/T1). (16)

Fortunately for much of the region where the ν = 1/2 state is partially polarized, a linear approximation is justified
if ∆EZ remains small and consequently T1 is usually close to τ . For example, the relaxation shown in Fig. 5(c) yields
a τ = 250 s whereas the procedure using Eq. (16) gives T1 = 255 s.
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IV. RESULTS AND DISCUSSION

A. Current induced nuclear spin depolarization detected with the ν = 2/3 spin transition

Fig. 6 illustrates measurements performed by using the sequence described in Sec. III B involving the spin transition
at filling 2/3. These experiments were carried out in order to investigate how the dc current influences the nuclear
spin polarization at filling 1/2. For each filling factor νmeas, the magnetic field was swept from 6.5T to 11.5T in steps
of 0.1T. The field sweep rate was 0.1T/minute. The field was then set to remain constant for 2minutes before being
ramped to the next value. The filling factor was fixed at 1/2 all the time except for a short excursion period of 1.5 s
during which the filling factor was changed to νmeas and a small ac current (Iac=1nA) was switched on to record Rxx.
The dc current Idc was turned on only when νrest = 1/2. Repeating the above measurement for νmeas=0.575 to 0.755
resulted in the color renditions of Rxx in the (νmeas,B)-plane.

The four color plots in Fig. 6 (top panels) reveal the spin phase transition for the ν = 2/3 state at base temperature
when a dc current excitation is applied during the time the system is kept at νrest = 1/2 with Idc =0, 5, 20 and 400 nA
(from left to right). The phase transition moves to lower field values as Idc is increased. The transition field shifts by
more than 1T when Idc is varied from 0 to 400nA. Fig. 6(b) shows the dependence of the transition field Btr on Idc
for three different bath temperatures T =18, 45 and 71mK. As T becomes higher, Btr remains independent of the dc
current up to high current values. At higher dc currents however, the curves nearly coincide.

Similar effects were also observed for ac current excitation. Fig. 7 shows the results of a set of measurements carried
out with a similar measurement sequence, except that Idc is replaced with an ac current, denoted as Iac2 throughout
this paper, with a frequency different from the one for measuring Rxx, i.e. Iac. As previously for the dc-current, Iac2
was turned on during the time period when the filling is set to νrest = 1/2.

B. Current induced effect on electron transport properties

In Sec. III B, we have learned that raising the temperature lowers Btr as a result of nuclear spin depolarization.
The current induced decrease in Btr is also attributed to changes in the nuclear spin polarization. A decrease in Btr

corresponds to a positive ∆BN or a decrease of |BN |. It is natural to suspect that the electron system gets heated as
a consequence of weak electron-phonon coupling at ultra-low temperatures and that the entropy is transferred to the
nuclei in case a strong interaction between the electron spins and nuclear spins exists. The current induced electron
heating has been detected previously in many systems [50–53], but to the best of our knowledge, the electron heating
effects at ν = 1/2 have not been studied systematically. At ν = 1/2, the nuclear spin system near the 2DES has only
one, but very effective way interacting with the environment, namely the spin flip-flop process via the Fermi contact
hyperfine interaction. The elevated temperature of the electron system due to the applied current can therefore be
transferred to the nuclear spin system.

The longitudinal resistance Rxx is subject to temperature dependent quantum corrections at low temperatures.
This temperature dependence of Rxx seems the most obvious route to estimate the actual electron temperature under
the influence of an externally imposed current in order to verify the above explanation for the current induced decrease
of Btr or |BN |. A similar approach to estimate the electron temperature has been used in other systems such as 2D
electron systems in zero magnetic fields [52, 53]. The ac current dependence of Rxx plotted in Fig. 8 was measured as
follows. Two ac currents were applied. One is Iac=1nA with a frequency of 22.7Hz, which was locked to the detection
electronics for recording Rxx. The frequency of the other current, Iac2, was set to 83.9Hz. At T > 54mK, the overall
behavior of the current induced changes in the longitudinal resistance is similar to those observed previously in other
systems [50, 52, 53]. Yet, in our system there are some complications that limit the usefulness for extracting the actual
electron temperature at lower temperatures. Rxx exhibits an anomaly at ν =1/2 seen in Fig. 8. The resistance at the
base temperature with Iac2 ∼10 nA applied is lower than that at T =54mK. It is opposite to what one would expect
from the electron heating picture. This is not completely surprising if one considers that the strongly interacting
Fermi sea of electrons at filling 1/2 is not an ordinary Fermi liquid [38]. No theory is available yet to describe the
transport properties of the partially polarized Fermi sea at 1/2. Sizeable nuclear spin polarization at low T further
complicates the interpretation of this nonlinear temperature dependence of Rxx. Because of these complications, we
did not further pursue the temperature dependence of Rxx to evaluate the amount of current induced electron heating
in this work.
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C. Using T1 for sensing the electron temperature

Here we describe a more attractive alternative to sense the actual electron temperature using the nuclear spin
relaxation rate. At filling factor 1/2, efficient coupling between nuclear spins and electron spins is assured in case of
partial spin polarization of the electronic system, because of the continuous energy spectrum near the Fermi energy
for both electron spin directions. For a disorder free and non-interacting composite fermion system at ν =1/2, the
nuclear spin relaxation is described by the Korringa law. It states that the inverse of the relaxation time, 1/T1, is
proportional to D↑(εF )D↓(εF )T . Here, D↑,↓(εF ) are the density of states at the Fermi energy for up and down spins,
respectively. If the spin polarization is close to 100%, disorder will result in an inhomogeneous spatial distribution
of the minority spins and deviations from the Korringa law have been observed [22]. Nevertheless, T1 still depends
monotonically on temperature, as discussed below and shown in Fig. 9(b).
A measurement of T1 in the presence of an extra ac current Iac2 was carried out as follows. An ac current of

Iac =1-10nA was applied to the sample to monitor the time dependence of Rxx. The system was left to rest for 900 s
before the second ac current, Iac2, was turned on. The resistance as a function of time is plotted in Fig. 9(a). It
changes immediately after turning on Iac2 due to heating of the electronic system, The resistance would then change
as a function of time as a result of the current induced agitation of the nuclear spins. This time dependent data after
turning on Iac2 was fitted to the exponential decay function [Eq. (15)] to extract T1. The result is displayed in the lower
inset of Fig. 9(b). The nuclear spin relaxation rate 1/T1 increases as Iac2 becomes larger. This is presumably due to
the electron heating. Being aware that the bath temperature may differ from the electron temperature at very low T ,
we only fit the 1/T1-T data down to 45mK in order to obtain a reliable curve to extract the electron temperature Te

from the 1/T1 values. The 1/T1-Iac2 data is then converted. Te is determined for every value of Iac2 by using the 1/T1

versus T data. The outcome of this conversion is depicted in Fig. 9(c). The electron temperature approximately follows

the power law Te ≈ 13.3
√

Iac2/nAmK. This is very close to the behavior predicted by the hydrodynamical model,
which was developed long ago to describe electron heating in the plateau-to-plateau transition region in quantum
Hall systems [53]. According to this model, Te ≃ 24.9(σxxρxx)

1/4[J/(A/m)]1/2 K, where J is the current density. This

would give Te ≈ 13.7
√

Iac2/nAmK. It is noteworthy that there is no free parameter in the hydrodynamic model [53].
Hence, from the nuclear spin relaxation rate we can determine the actual electron temperature.

D. Mechanism for current induced nuclear spin depolarization

The extraction of the electron temperature from the nuclear spin relaxation measurements is helpful to gain insight
into the influence of the current on the nuclear spin polarization. We illustrate this with the data recorded in Fig. 7
for the position of the spin phase transition at filling factor 2/3 at base temperature as a function of the applied
current Iac2. In the top inset of Fig. 10, this raw data has been replotted using 1/

√
Iac2 as abscissa in view of

the close connection between 1/
√
Iac2 and 1/Te. In the main graph, the current has been converted into the electron

temperature using the nuclear spin relaxation data of Fig. 9. Data points are only shown for those points for which the
electron temperature is no longer determined by the bath temperature, but predominantly controlled by the applied
Iac2. The 2/3 spin transition field Btr follows a linear dependence on 1/Te, namely Btr = (8.38 + 0.0305/Te)T. For
the smallest Iac2, Btr reaches 9.44T (top inset). From the linear fit, we conclude that the electron temperature Te

equals 28.7mK in this case, which is considerably higher than the base temperature of the bath (15-18mK).
Based on the calibration of the finite thickness effect obtained in tilted field measurements, i.e. ∆Btr ≃ −1.24BN

(see Sec. III B), the Btr data can be converted into BN and are displayed in the lower inset of Fig. 10. Since BN can
be written as 0.87mKB/(geTe) according to Eq. (8), it is possible to extract the electron g-factor ge ≈ −0.34 for this
16 nm thick quantum well from this slope. This is consistent with a previous ESR experiment, in which the electron
g-factor of a 15 nm thick GaAs quantum well was determined to be ge = −(0.40− 0.00575 ∗B) for the lowest Landau
level [47]. At B =9.44T, the ESR experiment would give ge = −0.35. Considering there is about 5% uncertainty in
the evaluation of Te from the nuclear relaxation time T1, the agreement in the g-factor with ESR experiments is good.
The linear fit of the 1/Te dependence of the transition field also leads to Btr = 8.38T in the limit BN → 0. An effective
nuclear field BN = −(9.44− 8.38)/1.24 ≈ −0.85T at base temperature or an electron temperature Te = 28.7 mK can
therefore be deduced from these measurements.
An independent confirmation of the validity of the nuclear magnetometry based on the 2/3 spin phase transition

comes from the resistive detection method at ν = 1/2. The measurement sequence has been described in detail in
Sec. III C, but is repeated here briefly for the sake of clarity. The system is allowed to equilibrate for trelax = 900s
at half filling in the presence of a small current Iac = 1nA used to monitor Rxx, then Iac2 is turned on to depolarize
the nuclear spins for 900 s. This depolarizing current is turned off and the time dependence of Rxx is recorded
during a time period trelax. The procedure is then repeated for different values of Iac2. The Rxx relaxation data
during timeperiod trelax can then be fitted to Eq. (15) in order to extract ∆BN as described in Sec. III C. The data
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are summarized in Fig. 11. The change in the nuclear field, ∆BN , again has a linear dependence on 1/
√
Iac2 (or

Te), similar to that observed in the ν=2/3 detection experiment, in the regime where the electron temperature is
controlled by the externally imposed current Iac2 and not by the bath temperature T . Extrapolating the data to
the high current limit (corresponding to Te → ∞), one obtains ∆BN ≈ 0.9T for B =9T or a degree of nuclear spin
polarization corresponding to BN = −0.9 T at base temperature. This is close to BN ≈ −0.85T extracted from the
nuclear magnetometry method based on the 2/3 transition.

E. The Curie law dependence

The Curie law dependence of Btr on Te obtained from the current induced nuclear spin depolarization data is also
consistent with the Btr values measured with Iac2=0 in the experiment described in section III.B and summarized in
Fig. 3, where the temperature of the bath is tuned in the intermediate temperature regime T ∼40-80mK. Deviations
from the Curie law at higher temperatures are related to the shape of the 2/3 transition peak as a result of the
thermally activated electron transport. It broadens the peak and makes it asymmetric which prevents a reliable
extraction of Btr. This difficulty can be overcome, however, by using the information obtained from our studies on
the influence of an additional ac-current Iac2. As shown in Fig. 8, for large enough Iac2, the longitudinal resistivity at
ν = 1/2 is independent of the bath temperature. In this case, the electron temperature only depends on the current
Iac2, even though it may not be the only parameter that controls the transport properties, as discussed in Sec. IVB.
The small temperature dependence of Btr observed at large Iac2 in Fig. 7 can be attributed to artefacts related to the
thermal broadening and asymmetric shape of the transition peak at high temperatures. Without these effects, all of
the Btr-Iac2 data in Fig. 7 would merge into a single curve at sufficiently high current densities. The offsets in Btr

observed in the large current limit can therefore be used to correct the Btr values at high temperatures for Iac2 = 0.
As shown in Fig. 3(c), the corrected Btr values (open circles) agree very well with the Curie law dependence deduced
from the current dependence of Btr measured at the base temperature.
Now that all aspects of the experimental data are consistent with each other, we are in a position to extract the

effective mass of the composite fermions with the help of Eq. (4-13). Taking Te = 28.7mK and ge = −0.34, we
obtain 1 + δ ≈ 0.87/|geTe| = 0.91. Based on the fit of the tilted field data shown in Fig. 4 to Eq. (13), one obtains
B0

tr/(1+δ)2 ≈ 26T. Using B0
tr = (geξ)

−2 (see Eq. (4) and the related discussion), we get the effective mass parameter,

ξ ≡ mCF

me

1√
B

≈ 0.4Tesla−1/2 (note that mCF = ξ
√
Bme with B in units of Tesla), which is close to the predicted value

(ξ=0.6Tesla−1/2) for the polarization mass, but about 5 times larger than the activation mass [39]. The latter is
expected to be relevant in the thermally activated transport measurement in the incompressible regime. In contrast,
the transport measurements in this work were carried out in the spin phase transition region where the energy gap is
reduced and the displacement of the phase transition peak is used to obtain mCF instead. As a result, the relevant
composite fermion mass is the polarization mass, which was measured previously with optical experiments [40] and
NMR [8, 9].

V. SUMMARY

It has been demonstrated in this work that the electric current applied to a 2D electron system at filling factor 1/2
can cause a large change in the degree of nuclear spin polarization. Much of the effect can be attributed to current
induced electron heating. This can be described well by the hydrodynamic model. For the current densities applied
in this work, the nuclear spin polarization follows a Curie law dependence on the electron temperature. The electron
heating induced nuclear depolarization effect is mediated by the efficient coupling between the nuclear spin and the
electron spin system.
Some advances in nuclear magnetometry have also been made in this work. The finite thickness effect has been

included in the study of the spin transition at ν=2/3. The finite thickness correction is found to be indispensable
even for the 16 nm thick quantum well sample. An alternative nuclear magnetometry technique based on the spin
transition at ν = 1/2 has also been developed in this work. The results obtained from these two different methods of
nuclear magnetometry are consistent with each other.
The capability of manipulating nuclear spin polarization with current as well as the detection of the change in the

degree of nuclear spin polarization by electron transport provide a complete toolbox for all-electrical nuclear spin
relaxation measurements. The advantage of this approach is that the measurement can be carried out under very
weak external excitations (a small quasi-dc perturbation without the need for high frequency radiation) and hence
at the lowest possible electron temperature. This is highly desirable for studying the spin properties of for instance
fragile fractional quantum Hall states.
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FIGURES

FIG. 1. (a) Energy level diagram for filling factor 2/3. The spin transition field Btr is marked with the dotted line. When
B < Btr, the ground state is spin unpolarized with the composite fermion Landau levels (0,↑) and (0,↓) occupied, while for
B > Btr the two filled levels are (0,↑) and (1,↑), and the ground state becomes fully polarized; (b) Spin transition for a
non-interacting and disorder free composite fermion system at ν=1/2. The density of states solely depends on the composite
fermion effective mass. Transition from partial to full spin polarization takes place when the Zeeman energy surpasses the
Fermi energy.

FIG. 2. Top panel: 2D plot of Rxx in the (ν,B) plane with Iac=1nA at the base temperature. Regions labeled with ↑↓ and ↑↑
correspond to the incompressible ν = 2/3 fractional quantum Hall state with spin polarization P =0 and 1, respectively. The
two ground states of the ν = 3/5 quantum Hall fluid with different spin polarizations are also shown; Bottom panel: traces of
Rxx and Rxy as a function of B with ν fixed at 2/3. Dissipative transport takes place in the phase transition region.

FIG. 3. (a) Measurement sequence for nuclear magnetometry based on the spin transition at ν=2/3. (b) 2/3 transition peaks
for νrest=1/2 measured at T=17, 54, and 134mK. (c) Temperature dependence of the 2/3 spin transition field Btr for νrest=1/2.
Plotted in solid diamonds are Btr values extracted from single peak fits. Open circles represent the corrected Btr values in which
the offsets from the effects irrelevant to nuclear spins are removed. The dotted line marks the expected Curie law dependence
of the transition field. See Sec. IVD for more details.

FIG. 4. (a) Measurement of the spin transition position at ν=2/3 for νrest =1/2 in titled magnetic fields; (b) 2/3 transition
fields plotted as a function of cos2 θ (squares) and its fit to Eq. (13) with finite thickness effect included (dotted lines). Also
plotted for comparison is the expected angular dependence of Btr for a zero-thickness 2DES (solid line); (c) Btr as the function
of Bextra (squares) and its linear fit (line), which can serve as a calibration curve for the nuclear magnetometry based on
the 2/3 transition. The linear fit gives ∆Btr ≈ −1.24∆BN for the 16 nm quantum well. This is considerably different from
∆Btr ≃ −2∆BN expected for the 2DES with zero-thickness.

FIG. 5. (a) Longitudinal resistance Rxx at ν = 1/2 as a function of Btot with the perpendicular field B fixed at 6T, 7T, 8T,
10T, and 12T. (b) Rxx plotted as a function of the extra Zeeman field. Triangles are experimental points obtained by directly
converting Btot to Btot−B. The line is the result of subtracting the contribution from the orbital effect of the in-plane magnetic
field. (c) An example of the time evolution of Rxx (open dots) as a consequence of nuclear spin relaxation at ν = 1/2 and the
corresponding change in the Zeeman field ∆EZ/(geµB) (line) as a function of time. The conversion from Rxx to ∆EZ/(geµB)
is based on the calibration data in (b).

FIG. 6. Top panels: The phase transition diagrams of Rxx (defined as dVxx

dI
) plotted in the (νmeas, B) plane with νrest=1/2

and an applied Idc of 0, 5, 20, 400 nA from left to right. The detection filling factor νmeas is varied from 0.575-0.755 for each of
the diagrams. Bottom panels: (a) The ν = 2/3 spin transition peaks for an applied Idc=0, 5, 20, 400 nA during the time the
system is left at νrest=1/2; (b) The dc current dependence of the phase transition field Btr at T=18, 45, and 71mK. See text
for details.

FIG. 7. The ac current dependence of the phase transition field Btr for νrest=1/2 at various bath temperatures. The values of
Btr are extracted from the spin transition peaks of Rxx with Iac = 1nA. The lock-in amplifier is locked to Iac. The frequency of
the second ac current Iac2 is chosen to be different from Iac so that it does not interfere with the measurement of the differential
resistance.

FIG. 8. The current induced effects on transport properties at ν=1/2 measured at the various bath temperatures (less than
20 to 194mK). The differential resistance Rxx is plotted as a function of the second ac current Iac2. A perpendicular magnetic
field of B=8T was applied in all of the measurements.
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FIG. 9. (a) An example of the measurement sequence for extracting the nuclear spin relaxation rate 1/T1. A small ac current,
Iac is always turned on to measure the (differential) resistance Rxx, and the second ac current Iac2 (usually much larger than
Iac) is turned on and off alternately to drive the nuclear spin polarization into different values. An averaging over multiple runs
and small changes in the nuclear spin polarization were used in the measurements in order to obtain reliable 1/T1-data. (b)
Temperature dependence of 1/T1. The squares are the experimental data and the solid line is a linear fit down to ∼ 45mK. In
the lower inset 1/T1 at the base temperature is plotted as a function of Iac2. (c) Iac2 dependence of the electron temperature
Te (diamonds). Also plotted for comparison are the fits to the square root of the current, i.e. Te ∝

√
Iac2 (thicker line), as well

as the predicted values of the parameter-free hydrodynamic model (thinner, red line).

FIG. 10. The ν = 2/3 transition field Btr for νrest=1/2 plotted as a function of electron temperature Te. The upper inset shows
the raw data of the Iac2 dependence of Btr measured at the base temperature. The electron temperature is converted from
Iac2 using the thermometry based on the nuclear spin relaxation rates shown in Fig. 9. In the lower inset the corresponding
|BN |/B, namely the ratio between the magnitude of the nuclear field and external magnetic field is plotted as function of 1/Te.
It follows the Curie law BN = 0.87mK

ge

B
Te

.

FIG. 11. Comparison of the two methods of nuclear magnetometry, which are based on the spin transitions at ν=2/3 (open
symbols) and ν=1/2 (solid squares). The ac current (Iac2) induced change in nuclear field, ∆BN , at ν=1/2 is plotted as a

function of I
−1/2
ac2 , which is proportional to 1/Te. See text for details.
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