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In this article, we derive an effective theory of graphene on a hexagonal Boron Nitride (h-BN)
substrate. We show that the h-BN substrate generically opens a spectral gap in graphene despite
the lattice mismatch. The origin of that gap is particularly intuitive in the regime of strong coupling
between graphene and its substrate, when the low-energy physics is determined by the topology of a
network of zero energy modes. For twisted graphene bilayers, where inversion symmetry is present,
this network percolates through the system and the spectrum is gapless. The breaking of that
symmetry by h-BN causes the zero energy modes to close into rings. The eigenstates of these rings
hybridize into flat bands with gaps in between. The size of this band gap can be tuned by a gate
voltage and it can reach the order of magnitude needed to confine electrons at room temperature.

PACS numbers: 73.20.-r,73.22.Pr,79.60.Jv

INTRODUCTION

Graphene is a two-dimensional semimetal with low-
energy excitations that obey the massless Dirac equa-
tion [1–3]. As most applications in electronics require a
bandgap, much effort has been exerted to find ways of in-
ducing a gap in the electronic spectrum of graphene. One
possible route is to use hexagonal boron nitride (h-BN)
substrates [4, 5], which lack sublattice inversion sym-
metry. If inherited by the graphene layer, this broken
symmetry leads to the opening of a gap in the spec-
trum, which is described by a mass in the Dirac model.
First principles calculations for graphene supported by
a perfectly lattice matched h-BN substrate predicted a
bandgap on the order 50meV [4]. Experiments, however,
have not observed any clear indication of a gap [6, 7].

Subsequent theory [8, 9] identified the reason for this
discrepancy: the lattice constants of h-BN and graphene
differ by about 1.8% and for multi-layered h-BN sub-
strates it is energetically unfavorable for graphene and
its substrate to conform their lattice constants [8]. The
result is Moiré patterns of varying local lattice alignment,
as illustrated in Fig. 1, which have been observed in scan-
ning tunneling microscopy [10]. Evidently, the h-BN sub-
strate breaks sublattice symmetry differently in different
regions of the Moiré pattern. Density functional theory
(DFT) calculations have shown a tendency for the sub-
lattice symmetry breaking to be compensated between
different regions of the Moiré pattern such that the sym-
metry is almost restored after spatial average [8]. This
has motivated the proposal of effective Dirac models of
graphene on h-BN with a mass term that has vanish-
ing integral, such that sublattice inversion symmetry is
restored on (spatial) average. On the basis of those mod-
els, it was argued that a band gap in graphene on h-BN is
absent [8, 9], consistently with the existing experimental
data [6, 7].

In this article, we derive an effective theory for

graphene on h-BN based on a bilayer model that has been
successfully applied to twisted graphene bilayers [11–13].
Our theory is formulated for a single-layer of graphene
and it accounts for the coupling to the substrate by a
mass term and effective potentials that oscillate with the
period of the Moiré pattern. We find that graphene sup-
ported by a hexagonal substrate generically develops a
gap in the spectrum. In particular, the emergence of a
spectral gap is not precluded by an average sublattice
symmetry. A gap is avoided only by additional sym-
metries, such as in twisted graphene bilayers, where the
Dirac points are topologically protected by a combina-
tion of space inversion and time reversal symmetry [14].
The magnitude of this gap under typical conditions is,
however, smaller than the resolution of all previous ex-
periments [6, 7] and has therefore not been observed, yet.

In the regime of strong coupling between graphene and
its substrate a particularly intuitive picture of that gap
formation emerges: the oscillatory mass in our effective
theory then defines one-dimensional modes that are topo-
logically protected and gapless for a large Moiré period.
In the presence of space inversion symmetry, such as in
twisted graphene bilayers, these modes form a network
that percolates through the system, corresponding to a
metallic state. When space inversion symmetry is bro-

FIG. 1: Two layer system made of graphene (top layer) and
h-BN (bottom layer) with a lattice mismatch (exaggerated in
the figure). Red line: Moiré unit cell of the system.
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ken, for instance by h-BN, this network breaks up into
isolated rings of 1D-modes. The states in these rings
hybridize exponentially weakly and form narrow bands
with large gaps set by the level spacing in the rings.
Finally, we show that the spectral gap of graphene on

h-BN can be controlled by the application of a perpen-
dicular electric field. Using parameters fitted to experi-
ments and DFT calculations, we find that the gap can be
tuned to reach the order of magnitude needed to confine
charge carriers at room temperature, a key requirement
for electronics applications.

MODEL

We base our analysis of graphene with an h-BN sub-
strate on a tight-binding model of two coupled honey-
comb lattices with parameters fitted to experiment [15].
The two layers have a lattice mismatch of δ ≈ 1.8% (cf.
Fig. 1) and we allow in addition a rotational misalign-
ment by angle θ. In the two-layer basis of graphene and
h-BN, the electronic Hamiltonian is

H =

(

Hg Hint

H†
int HBN

)

. (1)

In the limit θ ≪ 1 and δ ≪ 1, where a long-wavelength
description is appropriate, the isolated graphene layer
can be described by a Dirac model Hamiltonian Hg =
vp · Σ, and the h-BN layer is similarly described by
HBN = vBNp · Σ + mv2σz + V [5], where v and vBN

are the carrier velocities in graphene and h-BN, respec-
tively and p is the momentum relative to the Dirac
points. Hg and HBN each act on 4 component spinors
of the form (ψA,+, ψB,+, ψA,−, ψB,−), with A, B label-
ing the two different sublattices of the honeycomb lattice
and ± denoting the two different band structure valleys.
Σ = (τzσx, σy) is a vector of Pauli matrices acting on the
A/B sublattice basis (through the pseudospin σ) and the
valley spin (τ ). The mass m and the interlayer bias V
account for the different on-site potentials of the Boron
(the A sublattice of h-BN) and the Nitrogen (B-)atoms.
DFT calculations indicate mv2 ≈ 2.3 eV and V ≈ 0.8 eV
[5]. The bias V can be tuned by a perpendicular electric
field.
Following Ref. [13], we take the interlayer coupling of

Eq. (1) at long-wavelengths to be of the form [11, 13]

Hint =
γ

3

∑

n

eiτzδKn·r

(

1 ζ eiτzφn

ζ e−iτzφn 1

)

. (2)

Here, Hint is written explicitly in the A, B sublattice
basis, γ ≈ 0.3 eV is the hopping energy to the sub-
strate, ζ parametrizes a sublattice asymmetry due to
structural differences between different regions of the
Moiré pattern [13], and φn = 2πn/3 is a phase that de-
pends on the index n = 0, 1, 2, which labels the three

corners of the graphene Brillouin zone corresponding to
a given valley. Those points have wavevectors Kn =
R(φn+π/6)â 4π/3

√
3a, where â is a unit vector along an

A-B bond, a the bond length, and R(ϕ) is a rotation by
angle ϕ. The wavevectors δKn are the differences of Kn

and their counterparts in the closest valley of the h-BN
layer. They are shorter than Kn by a factor δKn/Kn =
√

δ2 − 2(1 + δ)(cos θ − 1)/(1 + δ) and rotated with re-
spect to Kn by angle Φ = arctan [sin θ/(1 + δ − cos θ)].
We neglect commensuration effects, which are small for
δ, θ ≪ 1 [16].

EFFECTIVE SINGLE-LAYER THEORY

Integrating out the electrons in the h-BN layer, we ar-
rive at an effective Hamiltonian Heff

g (ω) = Hg + δHeff
g (ω)

for the graphene layer with (we set h̄ = 1)

δHeff
g (ω) = Hint(ω −HBN)

−1H†
int. (3)

The mass term m dominates the Hamiltonian HBN for
all wavevectors where the employed Dirac model holds.
At those momenta, p ≪ Kn, we may set vBN = 0 to
a good approximation, resulting in an effective Hamilto-
nian which is local in space [20],

δHeff
g =

1

ω − V +mv2
Hint

(

η 0
0 1

)

H†
int, (4)

where η parametrizes the inversion symmetry breaking
through the h-BN substrate,

η = (ω − V +mv2)/(ω − V −mv2). (5)

The effective Hamiltonian (4) can be parametrized in
terms of effective potentials that oscillate in space with
the periodicity of the bilayer Moiré pattern,

δHeff
g = V eff(r) + νveΣ ·Aeff(r) +meff(r)v2σz . (6)

For perfect rotational alignment, θ = Φ = 0, the effec-
tive vector potential Aeff may be gauged away. In the
more general case Φ 6= 0 the vector potential generates a
pseudo-magnetic field and it satisfies the Coulomb gauge
condition∇·Aeff = 0 at Φ = π/2. The mass termmeff(r)
breaks the sublattice exchange symmetry locally and it
opens a local gap in the spectrum wherever it exceeds
1/vL, such that the wavefunctions are localized on the
length scale L of the Moiré pattern.
A global gap in the spectrum is nevertheless precluded

when the effective theory Eq. (4) is invariant under P =
σxτxR(π) [21], that is sublattice exchange σx coupled
with point reflection R(π) and valley exchange τx, such
that the underlying lattice model has inversion and time
reversal symmetry, as for twisted graphene bilayers. In
the following, we analyze the spectral gap of graphene on
h-BN in the absence of that symmetry, which is explicitly
broken by the inequivalence of the B and N sites.
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FIG. 2: Energy spectra in the Moiré Brillouin zone for strong
coupling ε = Lγ2/[(V − mv2)v] ≫ 1. (Left) η = 1, as in
twisted graphene bilayers (corresponding to the triangular
network of zero energy modes shown in Fig. 3 a), with a
metallic spectrum. (Right) ζ = 1 and η = −0.5 (correspond-
ing to isolated rings of low-energy modes, as shown in Fig. 3
b-d), with narrow bands separated by large gaps (red circle).

PERTURBATION THEORY

We start our analysis of the effective theory Eq. (4)
by a perturbative calculation, valid for weak coupling
γ2/|ω − V ± mv2| ≪ vδK. For a lattice mismatch of
δ ∼ 1.8% one has vδK >∼ 0.22 eV, where the lower bound
corresponds to θ = 0. Since γ ≈ 0.3 eV and in the
absence of an external bias |V ±m| >∼ 1.5 eV, the system
is well in this perturbative regime at low energies (|ω| ≪
|V ±m| eV).
When η = 1 the model has inversion symmetry P in

addition to time reversal invariance and topological ar-
guments [14] require the presence of at least two Dirac
points (or arcs) [22] in the Moiré Brillouin zone. This is
the situation in twisted graphene bilayers.
When the sublattice symmetry of the substrate is bro-

ken (η 6= 1) such as through h-BN, a gap is not precluded
by symmetry anymore. In the case ζ = 1 it turns out
that the spatial average 〈meff〉 =

∫

drmeff(r) vanishes
and correspondingly no gap is found to leading order in
the effective potentials. Unlike previously assumed [8, 9],
this restoration of a symmetry on (spatial) average, how-
ever, does not suppress the gap in the spectrum entirely.
A gap does appear at third order in δHeff

g [23]:

∆ =

∣

∣

∣

∣

η(1− η)(2 cos 2Φ− 1)
γ6

81v2δK2(V −mv2)3

∣

∣

∣

∣

. (7)

In the more general situation, when ζ 6= 1, the spatial
average of the mass term 〈meff〉 is non-zero, and the band
gap appears already at leading order in perturbation,

∆ =

∣

∣

∣

∣

(1 − η)(1− ζ2)
γ2

3(V −mv2)

∣

∣

∣

∣

. (8)

A recent DFT calculation [8] predicted ∆ ≈ 4meV in
the absence of an external perpendicular field, when η ≈
−0.5. Assuming γ = 0.3 eV, we estimate |1 − ζ2| ≈ 0.14
from Eq. (8). The relative magnitude of the local gaps in
various Moiré regions found in the DFT calculation [8]
indicate ζ > 1, so we conclude that ζ ≈ 1.07. A direct

−

+
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FIG. 3: Spatial dependence of the mass term resulting from
the local lattice misalignment in a bilayer as shown in Fig.
1. The red line indicates the Moiré unit cell, and the ± signs
specify the sign of the mass. a) η = 1: metallic state, with
percolating zeros of meff ; b) η = 0.9; c) η = 0.5; d) η =
−0.5: the network of zeros breaks up into rings. In the strong
coupling regime, those rings contain fully localized states (the
states are localized by the periodic effective mass term in our
low-energy theory, which opens a local gap in the blue regions
of the above figure).

fit to the local gaps of Ref. [8] in the AA-, AB-, and BA-
stacked regions, respectively, yields ζ = 1.19, η = −0.72,
and γ = 0.25 eV. One possible reason for the discrepancy
is higher Fourier harmonics of δHeff that we neglect.

Eq. (8) predicts that the spectral gap of graphene on
h-BN can be substantially increased by application of a
perpendicular electric field that decreases the B/N on-
site energies V ± mv2. As the gap increases, perturba-
tion theory eventually breaks down, and the gap has a
crossover to a nonperturbative regime.

NONPERTURBATIVE REGIME

In the nonperturbative limit γ2/|ω−V ±mv2| ≫ vδK
the spectrum is gapped locally in regions wheremeff(r) 6=
0. The low-energy physics of the system is then domi-
nated by one-dimensional modes along the zeros of meff

[17, 18]. In the absence of intervalley scattering and in
the limit of a large Moiré size L → ∞ these modes are
guaranteed to be gapless by topological arguments [19]:
the lines with meff = 0 separate regions with effective
masses of opposite signs, as indicated by the “+” and
“-” signs in Fig. 3. The massive, single-valley Dirac
Hamiltonian H = g(k) · σ, where g = v(kx, ky,m

effv)
and σ = (σx, σy, σz), has a topological charge N3 =
∫

dkxdky ĝ·
(

∂kx
ĝ × ∂ky

ĝ
)

/4π = meff/(2|meff |) associated
with it (here, ĝ = g/|g|). The difference of the charges
N+

3 and N−
3 to both sides of a line meff = 0 enforces

|N+
3 − N−

3 | = 1 zero modes per valley [19]. For rota-
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FIG. 4: Left panels: scaling function D(ε, η, ζ) for realistic
parameter values at θ = 0. The predicted crossover from
linear scaling D(ε, η 6= 1, ζ 6= 1) ∝ ε at ζ 6= 1 (a,b), Eq.
(8), to cubic D(ε, η 6= 1, ζ = 1) ∝ ε3 at ζ = 1 (c), Eq.
(7) is confirmed. Right: Predicted gap as a function of the
interlayer bias V (tunable by a perpendicular electric field) for
parameter values from two fits to DFT: γ = 0.3 eV, η = −0.5,
ζ = 1.07 (d) and γ = 0.25 eV, η = −0.72, ζ = 1.19 (e) (see
text).

tional alignment Φ = 0, when Aeff is a pure gauge and
for strong screening of the scalar potential V eff , the qual-
itative low-energy physics thus is determined entirely by
the topology of the zeros of meff .

When η = 1, such as in twisted graphene bilayers, the
zeros ofmeff(r) form a triangular network that percolates
through the entire system, as seen in Fig. 3a. The ex-
pected pairs of zero modes along these lines provide an
intuitive explanation for the metallic state required by
the topological arguments quoted earlier [14].

For graphene on h-BN with η 6= 1 on the other hand,
this triangular network of zero energy modes breaks
up into isolated rings (cf. Fig. 3 b-d). The low-energy
modes confined to the rings of meff(r) = 0 form discrete
states with an energy separation set by the circumference
C ≃ L of those rings. The states hosted by neighbor-
ing rings have an overlap that is exponentially small in
Lγ2/(V −mv2)v and form correspondingly narrow (val-
ley) pairs of bands with gaps ∆ ≈ 2πv/C in between. Ev-
idently, in this strong coupling regime, a gap of that or-
der of magnitude will appear regardless of whether 〈meff〉
vanishes or not. This gives a physical reason why an av-
erage sublattice symmetry cannot prevent the opening of
a gap in the spectrum.

For graphene on h-BN the above nonperturbative con-
siderations do not strictly apply: there is no V such that
the limit γ2/(ω − V ± mv2) ≫ vδK is reached for all
energies ω inside the predicted gap of order 2πv/C ≈
vδK ≥ 220meV. We thus next perform numerical cal-
culations that use a tight-binding model. Computations
for the true size of the unit cell at θ = 0 are challenging.
We therefore exploit the scale invariance of our theory,

expressing

∆ = D[γ2/(V −mv2)vδK, η, ζ]× vδK (9)

in terms of a function D(ε, η, ζ) that may be evaluated
for smaller unit cells [24]. The scaling parameter ε =
γ2/(V −mv2)vδK separates the weak (ε ≪ 1) from the
strong (ε≫ 1) coupling regime.
In Fig. 3a-c, we plot the scaling function D found from

tight-binding calculations on a unit cell containing 512
atoms for typical parameters. When ζ = 1, the scaling
of the gap is cubic in ε for weak coupling, crossing over
to linear (∆ ∝ ε) behavior for ζ 6= 1, in agreement with
the perturbative analysis of Eqs. (7) and (8). Fig. 3d-e
shows the gap as a function of V for parameters taken
from the two above fits to DFT data [25]. Despite the
uncertainty of the parameters entering our model these
calculations clearly suggest that it is possible to induce
gaps in graphene on h-BN on the order of room temper-
ature.

CONCLUSIONS

We have derived a low-energy theory for graphene on
hexagonal substrates. Our theory demonstrates that a
h-BN substrate opens a gap in the spectrum of graphene
through a breaking of inversion symmetry even when the
sublattice symmetry of graphene is restored on (spatial)
average. We moreover have shown that perpendicular
electric fields may be used to enhance the predicted gaps
up to the scale of room temperature.
We thank A. H. Castro Neto, P. M. Goldbart, P.

Jarillo-Herrero and E. J. Mele for discussions and grate-
fully acknowledge financial support from the NSF (DMR-
1055799 and DMR-0820382). Contribution of an agency
of the U.S. government, not subject to copyright.

[1] K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Kat-
snelson, I. Grigorieva, S. Dubonos, and A. Firsov, Nature
438, 197 (2005).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
438, 201 (2005).

[3] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[4] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly,
and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
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