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Chemical and structural diversity present in hexagonal boron nitride ((h-BN) and graphene hybrid
nanostructures provide new avenues for tuning various properties for their technological applications.
In this paper we investigate the variation of thermal conductivity (κ) of hybrid graphene/h-BN
nanostructures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are inves-
tigated using equilibrium molecular dynamics. To simulate these systems, we have parameterized a
Tersoff type interaction potential to reproduce the ab initio energetics of the B-C and N-C bonds
for studying the various interfaces that emerge in these hybrid nanostructures. We demonstrate
that both the details of the interface, including energetic stability and shape, as well as the spacing
of the interfaces in the material exert strong control on the thermal conductivity of these systems.
For stripe superlattices, we find that zigzag configured interfaces produce a higher κ in the direction
parallel to the interface than the armchair configuration, while the perpendicular conductivity is less
prone to the details of the interface and is limited by the κ of h-BN. Additionally, the embedded dot
structures, having mixed zigzag and armchair interfaces, affects the thermal transport properties
more strongly than superlattices. Though dot radius appears to have little effect on the magnitude
of reduction, we find that dot concentration (50% yielding the greatest reduction) and composition
(embedded graphene dots showing larger reduction that h-BN dot) have a significant effect.

PACS numbers: 61.46.w, 65.80.g, 68.65.k, 66.70.f

I. INTRODUCTION

Following the isolation of single layer graphene,1 studies on the electrical,2–6 optical,7,8 thermal,9–14 and mechan-
ical15,16 properties of this low-dimensional material have revealed their potential for many technological applica-
tions.17–20 This in turn has triggered interest in isomorphs of graphene, namely h-BN21–28 and hybrid h-BN/graphene
structures. Recently, fabrication of both random immersions of h-BN in graphene29,30 and well-defined clusters of
h-BN in graphene with possible kinetically controllable domain sizes31 has intensified this interest. In particular, such
hybrid systems have a considerable compositional and structural diversity that translates into greater freedom for
tuning the physical properties. Both experimental and density functional theory (DFT) studies have shown that the
physical properties of these materials can be significantly modified by simply varying the relative amount of h-BN
to graphene.32–34 For instance, Ci et al.31 have experimentally shown that decreasing the relative amount of h-BN
to graphene increases the electrical conductivity, which has been supported by DFT studies where increasing BN
concentration and cluster size results in band gap opening.35,36 It is recently shown that the details of the bonding
at the h-BN/graphene interface can change the type of intrinsic doping of the system.37 Just to name a few other
examples of how this chemical and structural diversity in this low dimensional hybrid system enable control over
magnetic properties; zigzag-edges in ribbons have been suggested to lead to ferromagnetic behavior38 while more
complex interfaces, like those present in h-BN clusters embedded in graphene, can be antiferromagnetic 39 may also
be mentioned.
Thermal transport in graphene with embedded h-BN quantum dots has been studied recently using real-space Kubo

approach.40 This study has shown that the decreasing dot size decreases the phonon mean free path (MFP) of both
in-plane and out-of-plane modes considerably. However, limited variation in MFP has been observed by changing the
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dot concentration at the smallest dot sizes. In another study, the effect of BN nanodots on the heat current in graphene
nanoribbons has been investigated by using non-equilibrium Green’s functions and nonequilibrium (direct method)
molecular dynamics.41 The authors claimed that there is a linear inverse relationship between the number of atoms
at the interface and the heat current. Although these studies provide valuable insight about the thermal transport,
the thermal conductivity of graphene/h-BN nanostructured systems has not been investigated systematically by
considering superlattices with different nano-morphologies. The objective of this study is to investigate the influence of
the chemical and structural diversity present in hexagonal boron nitride ((h-BN) and graphene hybrid nanostructures
on thermal transport and test possible pathways for tuning the thermal conductivity of these low dimensional hybrid
structures. In this paper, we investigate the variation of thermal conductivity of hybrid graphene/h-BN nanostructures
in particular: 1) stripe superlattice geometries while varying geometric parameters and composition and 2) BN
(graphene) dots embedded in graphene (BN) as a function of dot-diameter and composition. The theoretical findings
aim at providing basis for potential thermal management applications in miniaturized devices.
We have previously calculated the lattice thermal conductivities of nanotubes, graphene and h-BN based nanos-

tructures42–46 with considerable accuracy and compared the results with available experimental data.14 In this study,
we implement an accurate model for C-B and C-N interactions by employing DFT calculations in addition to our
previous h-BN potential. Using these Tersoff interatomic potentials, we calculated the lattice thermal conductivity
of several possible graphene/h-BN hybrid structures. The rest of the report is organized as follows: First, the model
utilized to develop the potential and the calculation methods for thermal conductivity are described. Then, the va-
lidity of our potentials for studying hybrid nanostructures is demonstrated. This is followed by a detailed description
of the considered hybrid nanostructures and a discussion of the effect of structure and composition on lattice thermal
transport properties.

II. METHOD

Equilibrium molecular dynamics simulations can be utilized to obtain instantaneous heat current (J) or energy
moment (R) as a function of time. Subsequently, thermal conductivity, κ can be evaluated by using either the
heat current autocorrelation function (Green-Kubo method)47–49 or mean square displacement of the energy moment
(Einstein relation)49 as discussed in detail in our earlier studies.43–45,50,51 Here, the thermal conductivity is evaluated
from the Einstein relation (the mean square displacement of energy moment, named hMSD) as given by52

〈

[Rµ(t)−Rµ(0)]
2
〉

2V kBT 2
= κµµ[t+ τ(e−t/τ − 1)]. (1)

Here, V is the volume, T is the temperature and kB is the Boltzmann constant. The energy moment through
direction µ is defined by Rµ. The right hand side of Eq. 1 represents a linear change in Einstein relation for the time
(t) much larger than the decay time (τ). The long-time behavior corresponds to diffusive regime in transport of heat.
For short-times, on the other hand, the average energy propagation is ballistic and results in a non-linear relation
between κ and hMSD. Given the time, a bulk system assumes a diffusive behavior at elevated temperatures and thus
we are more interested in this regime. Computationally, we eliminate the non-linear portion of the relationship by
discarding the first 100 ps of hMSD then fit the rest to a linear function, i.e., hMSD = 2V kBT

2κµµt, in order to
obtain thermal conductivity.
In this study, we investigate the thermal conductivity of graphene/h-BN superlattices in the form of stripes and

dots/“anti”dots, see Fig. 1. The stripe superlattices are discussed in two general categories. In the first case, equal
periods (lG = lBN), and in the second unequal periods (lG 6= lBN) of graphene and h-BN stripes are simulated. The
stripes of graphene and h-BN sublattices are connected via two different orientations namely, resulting in a zigzag
or an armchair interface. For all structures, approximately 60×60 nm2 periodic domains are considered. Previously,
we showed that such large systems are required for the proper convergence of thermal conductivity in equilibrium
MD calculations of ribbon like systems.43 For the equal period simulations, in each orientation, five different period
thicknesses ranging from ∼1.25 to ∼30 nm are constructed. The atomistic details of these systems are given in Table I
in the Appendix. For the unequal period simulations, again five different configurations are created for the armchair
and zigzag interface systems where the thicknesses of BN sublattices change from ∼3 to ∼57 nm and the sum of lBN

and lG is set to ∼60 nm, see Table II in the Appendix for details.
As a second type of nanostructure, dots of h-BN are embedded in graphene with a close-packed arrangement as

shown in Fig.1. We select three different radii (4.95 Å, 12.38 Å, and 24.76 Å) for these ordered dots. Ordered
graphene dots in h-BN, so called anti-dots, are created with radius of 12.38 Å. Random configuration of antidots
are also considered with radii of 6.19 and 12.38 Å. The details of these structures are provided in Table III in the
Appendix.
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FIG. 1: (Color online) The hybrid structures structures considered in this work viz.: stripe superlattices and dots embedded
in sheet matrix.

Molecular dynamics simulations are performed in the microcanonical (NVE) ensemble with a time step of 1.0 fs
to conserve energy and a simulation length of 5 ns to obtain an acceptable ensemble average of hMSD. Each data
point for κ is therefore obtained by averaging the results of a minimum of five distinct simulations with different
initial velocity distributions. The error in κ value is calculated from the standard deviation of these independent
calculations. The volumes of the two-dimensional structures are defined as lw∆, where w and l are the width and
the length of simulated structures, and ∆ (0.335 nm) is the mean Van der Waals thickness for h-BN and graphene.
Finally, we did not consider isotopic disorder explicitly in thermal conductivity calculations. Instead, a single mass
of natural abundance is used for all elements.
We have previously developed a Tersoff-type potential for h-BN systems.44 Also, a Tersoff parametrization for

graphene is given by Lindsay and Broido.53 Both potentials have been optimized to reproduce the DFT phonon
dispersions for their respective material, necessary for ensuring accurate lattice thermal conductivities. In order to
simulate the interfaces, one needs to further develop interaction potentials for all possible element pairs coupling at the
interface. We have used DFT calculations to generate the data needed for the interfaces. These calculations have been
performed with Vienna ab initio simulation package (VASP)54,55 which is based on density functional theory. Projector
augmented wave (PAW)56,57 pseudo potential formalism was imposed with Perdew-Burke-Ernzerhof (PBE)58 form
of generalized gradient approximations (GGA). Using DFT energetics to condition empirical potentials has been
previously motivated for both pure graphene and h-BN. The PAW-PBE formalism, in particular, produces accurate
structures for our systems of interest, with the calculated lattice parameters for graphene and h-BN being 2.45Å
and 2.51Å, respectively.Long horizontal strips of the structures in Fig. 2 are used in periodic-boundary conditions in
order to avoid spurious interface-interface interactions. Depending on the basic repeating unit of the given structures,
in-plane dimensions of 29.95 Å ×2.47 Å (structures 2 and 3), 30.22 Å ×2.49 Å (structures 1 and 4), or 24.8 Å ×4.30 Å
(structure 5) were used with 2×16×1, 2×16×1, and 2×10×1 Monkhorst-Pack k point grids, respectively.400 eV is
selected for the plane wave energy cut-off to achieve the energy convergence.

III. RESULTS AND DISCUSSIONS

A. Optimization of C-BN Parameters

As pointed put in the previous section, reliable potentials for C-C and B-N interactions have appeared in the
literature. To simulate the hybrid structures of interest, we must then only define the interactions between B-C and
N-C. Since the structure and vibrational spectrum of h-BN and graphene are similar, we opt to employ the mixing
rules and fitting procedure put forth by Tersoff for Si-Ge and Si-C,59 which approximates the parameters as a mixture
of the existing BN and C parameters modified by two arbitrary values, χB−C and χN−C. These parameters adjust
the contribution from the attractive term to the potential. We have obtained χB−C and χN−C by imposing the
requirement on the potential to reproduce DFT energetics of all probable h-BN/graphene interfaces shown in Fig. 2.
In these graphs, ∆γ is the change in total energy per interface area (width × Van der Waals thickness) as the interface
separation, d, changes from the equilibrium value, d0, under the condition that the bond lengths in the graphene and
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FIG. 2: (Color online) The change in the total energy, as given by both the Tersoff potential and DFT, per interface area as a
function of interface separation, d. The corresponding structures for the interfaces are given with ball-and-stick representations
(C = yellow, N = small blue, B = big red atom).

h-BN regions are held fixed.The corresponding interfaces are also shown in Fig. 2. Note that the interface separation
parameter, d, accounts for both bond length and angle variations. Parameter fitting is accomplished by minimizing
the differences between the DFT and the force field derived ∆γ values for each displacement for each structure
simultaneously by updating the force field parameters using a genetic algorithm. The fitted parameters for χB−C and
χN−C (0.886777 and 1.013636 respectively) along with the parameters obtained from the mixing rule have produced
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MD energies in good agreement with DFT results. Moreover, the error in the calculated equilibrium B-C and N-C
bond lengths of all structures is no larger than 1.5%. A full list of parameters along with the description of interaction
potential function and the mixing rules are given in Table IV of the Appendix.

B. Stripe Superlattices with Equal Periods

In all striped superlattice structures, we calculated the lattice thermal conductivities parallel, κq, and perpendicular,
κ⊥, to the superlattice orientation. The chosen interfaces are shown in Fig. 3 and 4 with the associated thermal
conductivity values. The ball-and-stick structure in Fig. 3a and in Fig. 4a is the same interface given in Fig. 2 as
structure 5, essentially one armchair ribbon connected to the other two in a symmetrical fashion though forming B-C
and N-C bonds. Whereas the structure represented as Fig. 3b and Fig. 4b can be thought of as one zigzag ribbon
connected to two others on one side by B-C bonds and on the other by N-C bonds. These interfaces correspond to
structures 2 and 3 in Fig. 2. The effective stiffness at the interface, obtained by fitting the ∆γ to a quadratic function,
shows that the C-N bond is stronger than C-B bond. This is expected considering that both interactions are mainly
covalent and as more electrons are involved in the bonding, the strength of the bond increases.
Fig. 3 shows how the thermal conductivity of the aforementioned superlattice interfaces behave when the periods,

constrained by lG = lBN, are varied. The transport coefficients in the parallel direction, however, behave differently,
depending on the type of interface. The superlattice with armchair interface has smaller thermal conductivity com-
pared to the one with zigzag interface in the studied period range. As the period thickness increases, the stripe
structures appear to become less sensitive to interface effects on parallel thermal conductivity for both interfaces
approaching 1050-1200 W/mK. This is close to the midpoint of the thermal conductivity values of pristine h-BN,
450 W/mK, and graphene, 2300 W/mK. This behavior agrees quantitatively with what is expected from treating the
striped structure as the combination of two independent nanoribbons. Previously, it was shown that zigzag ribbons
have better thermal transport properties than armchair ribbons at small widths because of the latter having higher
atomic line density on the edge.43,44 Thicker ribbons have more transport channels and difference in scattering behav-
ior at the edges become less significant. Thus, it is sensible for striped structures combined through zigzag interfaces
to have larger transport coefficients in smaller periods. Another apparent observation is that the thermal transport
coefficients perpendicular to the different interfaces behave similarly, gradually increasing from 200-250 W/mK at
l = 1.5 nm to 350-400 W/mK at l = 30 nm. The perpendicular thermal transport is strongly controlled by the
lower thermal conductivity component (h-BN) and the interface phonon scattering even at a 30 nm thickness. If one
assumes that the periods of the stripes are longer than the phonon mean free path and the boundary resistance is
negligible, then κ⊥ of the stripe system of equal periods is bounded by 2(κgraphene × κh−BN)/(κgraphene + κh−BN).
For the calculated superlattices this equation give 752.7 W/mK. The actual physics of the simulated systems, on the
other hand, will not resemble to the idealized picture. First, the system has a finite thermal boundary resistance that
depends on the acoustic mismatch of the stripes and the intrinsic properties of the boundary. The effect of boundary
structure on κ⊥ is less pronounced when the results from Fig. 3 a) and b) compared, and it is almost independent for
zigzag and armchair interfaces. Second, some of the systems have period lengths of only few nanometers which is very
short compared to the MFP of the relevant phonons. Thermal conductivity perpendicular to the interface increases
slowly as the period size grows; however, the ideal value will not be reached because of the limiting effect of thermal
boundary resistance, which will be present even in systems with period sizes longer than the characteristic MFP.

C. Stripe Superlattices with Unequal Periods

Using the same interfaces, we remove the constraint of equal size periods and only require the sum of lBN and lG to
be 60 nm. We note here that the variation of the period lengths also enables us to see the influence of concentration.
When h-BN has a small concentration (or a small period), the parallel component of thermal transport increases
toward the limiting value of graphene as seen in Fig. 4. On the other hand, the perpendicular component does not
exceed 700 W/mK. Again, the zigzag interfaces have higher parallel thermal transport coefficients (35% larger) than
the armchair interfaces in almost all configurations. When the period of BN is small, the reduction in κ⊥ from the
pristine graphene value is mainly due to interfacial phonon scattering; systems with larger lBN drive κ⊥ toward the
pure BN values but are still limited by the influence of interfacial scattering. The effect of atomic bonding at the
interface on conduction is most clearly seen when lBN/lTotal=0.05. Conductivity perpendicular to the boundary
in armchair interfaced sample is noticeably higher than zigzag sample. This is most probably caused by enhanced
scattering from alternating types of interface bonding in zigzag boundaries.
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FIG. 3: (Color online) The thermal transport coefficients parallel and perpendicular to the two different graphene/h-BN
interfaces are shown in (a) and (b). The period lengths of both graphene and h-BN are constrained to be equal. The atomistic
details for the calculated structures are given in Table I in Appendix.

FIG. 4: (Color online) The thermal transport coefficients parallel and perpendicular to the two different graphene/h-BN
interfaces are shown in (a) and (b). The sum of period lengths of graphene and h-BN are constrained to be 60 nm. The
atomistic details for the calculated structures are given in Table II in Appendix.

D. Dot and Anti-dot Superlattices

We now turn to the investigation of the thermal conductivity of ordered and random distributions of h-BN dots
embedded in graphene. Fig. 5 shows the influence of dot size and concentration on the κ. From Fig. 5 we see that
larger dot sizes lead to higher thermal transport coefficients. At the lowest BN concentration (2%) the system with
the largest dot has a 20% larger transport coefficient than the other sizes. This could be understood by the fact
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that larger dots have a smaller boundary to bulk ratio at the same concentration. As more dots are introduced,
this interface effect is suppressed and the κ of all systems converge to 250 W/mK at 40% h-BN. Interestingly, this
large concentration limit is similar to the perpendicular conductivity of stripe superlattices with periods similar to
the diameter of the dots, see Fig. 3. It is likely that at large concentrations the h-BN dots can isotropically limit the
thermal transport in the same manner that the stripes limit the transport perpendicular to the boundary.
In addition to ordered BN dots, we have modeled ordered and random distributions of graphene dots in h-BN.

The thermal conductivity values of these systems are also presented in Fig. 5. A decreasing behavior in thermal
conductivity is also observed in these systems as the number of graphene dots increases. It is surprising to see
graphene, as the higher κ component, does not enhance the thermal conductivity of h-BN. This can be attributed
to the relatively small size of the dots and the large h-BN/graphene interface to area ratio, leading to interfacial
phonon scattering events dominating κ. At the lowest C concentration, the ordered dot system has higher thermal
conductivity than the bulk value of h-BN. It is not clear whether this is an actual physical phenomena or an averaging
problem since the error bars are large enough to include the bulk value. In creating the random dot configurations,
we maintain the mean dot separation similar to the one in the ordered configurations with same concentration. For
each concentration, the initial conditions of the simulations are not only varied by atom velocities but the also the
distribution of the dots. The thermal conductivities of the structures, having ordered and random dots, are not
significantly different for the same dot sizes and concentrations (see the inset of Fig. 5). Again, the smaller dots lead
to lower κ when the concentration of C is kept constant.

IV. SUMMARY AND CONCLUDING REMARKS

We have characterized the lattice thermal transport properties of hybrid graphene and h-BN structures: graphene-
white graphene stripes and dot/antidot superlattices. The κ⊥ of striped nanostructures with large periods is limited
by the less conductive component, h-BN. The parallel transport, on the other hand, attains a value close to the
average of the two components. As the periods of the stripes are reduced, interface scattering effects become more
prevalent with zigzag interfaces resulting in higher κ than the armchair interfaces. The thermal conductivity of the
dot systems can be tailored by both dot diameter and concentration. Small dot concentration and large dot diameter
leading to larger conductivities. Moreover, the transport properties of nanosystems with high dot concentrations are
independent of size, approaching the κ⊥ of the small period striped superlattices.
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FIG. 5: (Color online) The thermal transport properties of graphene with embedded h-BN dots and h-BN with embedded
graphene. Three different radii, 4.95 Å, 12.38 Å, and 24.76 Å are used for h-BN dots. The number of dots in the systems are
varied such that the BN concentration ranges from 2-98%. Two different radii, 6.19 Å, 12.38 Å are employed for graphene
dots. The superscript “d” indicates the disordered dot arrangement. BN concentration on the horizontal axis is calculated as
the percent ratio of the total number of boron and nitrogen atoms to the total number of atoms. The inset graph has the same
axis units as the outer graph. The atomistic details for these systems are given in Table III in Appendix.



9

VI. APPENDIX

Structural details of stripe and dot superlattices are given in Table I, Table II and Table III.

TABLE I: Simulation details for the stripe superlattices where graphene and h-BN have equal period thicknesses. Thermal
conductivities of these structures are given in Fig. 3. The total size of the systems are given by Lengtharm and Lengthzig where
the subscripts define whether the length is measured along the armchair or the zigzag configuration.

Boundary \ Period (nm) # of B # of N # of C Lengtharm (nm) Lengthzig (nm)
Armchair \ l = 1.246854 33600 33600 67200 60.46925 59.84897
Armchair \ l = 7.481121 33600 33600 67200 60.46925 59.84897
Armchair \ l = 9.974828 33600 33600 67200 60.46925 59.84897
Armchair \ l = 14.9622 33600 33600 67200 60.46925 59.84897
Armchair \ l = 29.92449 33600 33600 67200 60.46925 59.84897
Zigzag \ l = 1.2957698 32982 32982 65964 59.60541 59.59960
Zigzag \ l = 5.1830792 34560 34560 69120 62.19695 59.84897
Zigzag \ l = 9.934235 32982 32982 65964 59.60541 59.59960
Zigzag \ l = 15.1173 33600 33600 67200 60.46925 59.84897
Zigzag \ l = 30.234625 33600 33600 67200 60.46925 59.84897
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TABLE II: Simulation details for the stripe superlattices where graphene and h-BN have different period thicknesses. Thermal
conductivities of these structures are given in Fig. 4. The total size of the systems are given by Lengtharm and Lengthzig where
the subscripts define whether the length is measured along the armchair or the zigzag configuration.

Boundary \ lBN/ltotal # of B # of N # of C Lengtharm (nm) Lengthzig (nm)
Armchair \ 0.05 3360 3360 127680 60.46925 59.84897
Armchair \ 0.25 16800 16801 100800 60.46925 59.84897
Armchair \ 0.50 33600 33600 67200 60.46925 59.84897
Armchair \ 0.75 50400 50400 33600 60.46925 59.84897
Armchair \ 0.95 63840 63840 6720 60.46925 59.84897
Zigzag \ 0.05 3360 3360 127680 60.46925 59.84897
Zigzag \ 0.25 16800 16800 100800 60.46925 59.84897
Zigzag \ 0.50 33600 33600 67200 60.46925 59.84897
Zigzag \ 0.75 50400 50400 33600 60.46925 59.84897
Zigzag \ 0.95 63840 63840 6720 60.46925 59.84897
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TABLE III: Simulation details for graphene with embedded h-BN dots and h-BN with embedded graphene anti-dots. Thermal
conductivities of these structures are given in Fig. 5.

Radius (nm) # of B # of N # of C LengthX (nm) LengthY (nm)
6000 4800 18000 29.71200 25.73130
3840 3072 25856 31.69280 27.44680

rBN = 0.495 2016 1728 31104 32.68320 28.30446
960 768 31040 31.69280 27.44676
540 432 44028 37.14000 32.16417

12384 12960 39456 44.56800 38.59704
5504 5760 45184 41.59680 36.02388

rBN = 1.238 3096 3240 58464 44.56800 38.59701
1376 1440 53632 41.59680 36.02388
348 360 34140 32.68320 28.30448

13032 12744 39024 44.56800 38.59701
5792 5664 44992 41.59680 36.02388

rBN = 2.476 1448 1416 25936 29.71200 25.73135
1448 1416 53584 41.59680 36.02389
1448 1416 136528 65.36640 56.60896
14000 13500 17500 37.14000 32.16420
22784 22464 11200 41.59680 36.02388

rC = 1.238 29340 29160 6300 44.56800 38.59701
26864 26784 2800 41.59680 36.02388
68320 68256 2816 65.36640 56.60896

rdC = 1.238 26750 26820 5950 39.88552 40.15493
29150 29145 1225 39.87575 40.14509

rdC = 0.619 26795 26765 5960 39.89808 40.16757
29160 29160 1200 39.88407 40.15347
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The potential used in this study is developed by Tersoff.59

Vij = fC(rij) [fR(rij) + bijfA(rij)]

fC(rij) =











1 : rij < Rij

1
2 + 1

2 cos
(

π
rij−Rij

Sij−Rij

)

: Rij < rij < Sij

0 : rij > Sij

fR(rij) = Aij exp
(

−λI
ijrij

)

fA(rij) = −B
′

ij exp
(

−λII
ij rij

)

, B
′

ij = Bijχij

bij =
(

1 + βni

i ζni

ij

)− 1

2ni

ζij =
∑

k 6=i,j

fC(rik)g(θijk)

g(θijk) =

(

1 +
c2i
d2i

−
c2i

[d2i + (cos θijk − hi)2]

)

In this description the lower indices i, j and k mark the atoms where i-j bond is modified by a third atom k. The
potential parameters and their corresponding values are given in Table IV. The parameter χij was used as a fitting
parameter in our study. For the mixing of parameters, the geometric mean is calculated for the multiplier parameters
and arithmetic mean is calculated for the exponential parameters. These rules are given below.

λI
ij =

(

λI
i + λI

j

)

/2, λII
ij =

(

λII
i + λII

j

)

/2, Aij = (AiAj)
(1/2)

Bij = (BiBj)
(1/2)

, Rij = (RiRj)
(1/2)

, Sij = (SiSj)
(1/2)

It should be mentioned that χij modifies Bij which is obtained as a result of the mixing procedure. Here, we also
note that the developed potential is not parameterized to represent N-N or B-B interactions as can be seen from
Table IV.
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TABLE IV: The parameters of Tersoff potential optimized for C-BN interactions. The atom X represent the bond modifying
element where all parameters are exactly the same whether it is C, B or N.

Parameters C B X C C X C N X B C X B N X N B X N C X
A (eV) 1386.78 1393.6 1386.78 1386.78 1380.0 1380.0 1386.78

B
′

(eV) 339.06891 430.0 387.575152 339.068910 340.0 340.0 387.575152
λI (Å−1) 3.5279 3.4879 3.5279 3.5279 3.568 3.568 3.5279
λII (Å−1) 2.2054 2.2119 2.2054 2.2054 2.199 2.199 2.2054
n 0.72751 0.72751 0.72751 0.72751 0.72751 0.72751 0.72751
β (10−7) 1.5724 1.5724 1.5724 1.25724 1.25724 1.25724 1.25724
c 38049 38049 38049 25000 25000 25000 25000
d 4.3484 4.3484 4.3484 4.3484 4.3484 4.3484 4.3484
h -0.93 -0.93 -0.93 -0.89 -0.89 -0.89 -0.89
R (Å) 1.85 1.80 1.85 1.85 1.90 1.90 1.85
S (Å) 2.05 2.10 2.05 2.05 2.00 2.00 2.05
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