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We develop a π-electron effective field theory (π-EFT) wherein the two-body Hamiltonian for
a π-electron system is expressed in terms of three effective parameters: the π-orbital quadrupole
moment, the on-site repulsion, and a dielectric constant. As a first application of this π-EFT, we
develop a model of screening in molecular junctions based on image multipole moments, and use
this to investigate the reduction of the HOMO-LUMO gap of benzene. Beyond this, we also use
π-EFT to calculate the differential conductance spectrum of the prototypical benzenedithiol-Au
single-molecule junction and the π-electron contribution to the van der Waals interaction between
benzene and a metallic electrode.

I. INTRODUCTION

Owing to the profound versatility of the carbon-carbon
bond, organic molecules form the basis for a myriad of po-
tential nanotechnology applications. Many of these make
use of the ability of conjugated organic molecules to con-
duct electricity, in which case the system of delocalized
π-electrons plays a role analogous to that of the con-
duction band in a conventional semiconductor. In such
devices, the most important degrees of freedom from a
technological perspective are those associated with these
current-carrying π-electrons.

The main motivation of the present work is to derive a
model Hamiltonian for π-electron systems to facilitate
the study of many-body effects on transport through
molecular heterojunctions. The standard paradigm for
molecular junction transport calculations involves local
or semilocal approximations to density functional the-
ory (DFT) combined with nonequilibrium Green’s func-
tions (NEGF). This DFT-NEGF approach1 has tremen-
dous advantages in terms of computational efficiency
and chemical realism. However, it has notorious diffi-
culties describing the energetics most relevant for elec-
tron transport, namely the energy level alignment be-
tween molecule and metal electrodes, and the funda-
mental (or HOMO-LUMO) gap. Some possible under-
lying reasons for this are (i) the failure to include nonlo-
cal correlations responsible for screening of intramolecu-
lar interactions by nearby metal electrodes;2,3 (ii) self-
interaction error;4–7 and (iii) omission of the deriva-
tive discontinuity8,9 needed to describe the quantiza-
tion of the molecular charge within the junction.10 Self-
consistent many-body perturbation theory11 is able to
overcome hurdles (i) and (ii), but still leaves (iii) as an
open problem.

An alternative approach is to formulate a model includ-
ing only the degrees of freedom essential to describing the
π-electron dynamics, thereby reducing the overhead asso-
ciated with an exact treatment of interactions within the
junction. Electron transport can then be treated using

FIG. 1. Two isosurfaces of the average π-electron density
〈ψ†(~x)ψ(~x)〉 depict the electronic structure of gas-phase ben-
zene within π-EFT.

many-body Green’s function techniques,12,13 the Master
equation approach,14–18 or quantum impurity solvers.19

This procedure begins with the observation that pro-
cesses in systems of π-electrons take place at characteris-
tic length, energy and time scales all ultimately dictated
by the strength of the π-electron bond. Intuitively, one
expects that only degrees of freedom with scales com-
parable to these need to be explicitly included. Semi-
empirical models based on this notion have been in use
for over fifty years,20–23 and work to improve their accu-
racy is ongoing.24–26 However, since these are based on
ad hoc parameterizations22,24–27 of interparticle Coulomb
interactions that do not satisfy Maxwell’s equations, it is
difficult to extend such techniques to include effects like
the screening of intramolecular interactions by the elec-
trodes in molecular junctions.

In contrast to this, effective field theory (EFT) pro-
vides a concise, systematic method of constructing a π-
electron Hamiltonian starting from first principles by per-
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forming an expansion in a small parameter and then im-
posing symmetry constraints. The result contains a few
physically meaningful parameters, which are then renor-
malized to include the aggregate effect of the degrees of
freedom not explicitly retained. In this article we pro-
ceed along these lines, first expanding the full electronic
Hamiltonian of a conjugated organic molecule in a ba-
sis of atomic orbitals and then dropping terms involving
energies far from the π-electron bond energy.
Imposing symmetry constraints and performing an ex-

pansion in powers of the interatomic bond length then
allows us to construct an effective Hamiltonian for the π-
electrons in a conjugated organic molecule that accounts
for the effects of σ-electrons virtually.28 As an example
of this, we consider the particular case of gas-phase ben-
zene, for which we formulate an effective Hamiltonian
with only four adjustable parameters: the on-site repul-
sion U , the nearest-neighbor hopping matrix element t, a
dielectric constant ǫ, and the π-electron quadrupole mo-
ment Q. In principle, these could then be renormalized
ab initio, e.g. by using perturbation theory to freeze out
degrees of freedom far from the π-electron energy scale;
however, since this is tedious and would not enhance the
predictive power of our model, we instead fit the param-
eters directly to experiment.
Next, we show how screening from metallic electrodes

can be incorporated into this scheme without introduc-
ing additional parameters by considering the multipole
moments of image charge distributions. We then use this
method of screening to calculate the screened HOMO-
LUMO gap of benzene near a metallic electrode, as well
as to formulate a realistic model of a gold-benzenedithiol-
gold junction, including effects arising from the presence
of the thiol sidegroups. The differential conductance
spectrum of the junction is calculated as a function of
the gate and bias voltages in the experimentally relevant
regime,30 exhibiting the characteristic diamond-shaped
features12 indicative of quantized charge on the molecule
within the junction. Finally, we also use this π-electron
effective field theory (π-EFT) to compute the π-electron
contribution to the van der Waals interaction between
benzene and a metallic electrode.

II. BARE HAMILTONIAN

Using the Born-Oppenheimer approximation, the one-
body term in the electronic Hamiltonian for an isolated
molecule can be written as

H(1) =
∑

σ

∫

d3xψ†
σ(~x)

(

−~
2

2m
∇2 + V

)

ψσ(~x) (1)

where V is the interaction between the electrons and the
atomic nuclei. The operator that creates an electron with
spin σ in the nth element of a basis of atomic orbitals
{φn} can be expressed as:

d†nσ =

∫

d3xφn(~x)ψ
†
σ(~x)

Multiplying this by the inverse of the overlap matrix
Snm = 〈φn|φm〉 and summing over m implies

∑

m

d†nσS
−1
nmφ

∗
m(~x) =

∫

d3x′
∑

m

φn(~x
′)S−1

nmφ
∗
m(~x)ψ†

σ(~x
′)

= ψ†
σ(x) (2)

where we have made use of the completeness relation for
a non-orthogonal basis:31

∑

nm

φn(~x
′)S−1

nmφ
∗
m(~x) = δ(~x− ~x′)

Combining equations (1) and (2) then gives:

H(1) =
∑

nmσ

Hnmd
†
nσdmσ (3)

where

H(1)
nm =

∫

d3xφ∗n(~x)

(

−~
2

2m
∇2 + V

)

φm(~x) (4)

and

Hnm =
∑

kl

S−1
nkH

(1)
kl (S−1

ml )
∗. (5)

If we keep only nearest-neighbor terms this reduces to
the Hückel Hamiltonian

H(1) =
∑

n

εnd
†
nσdnσ −

∑

〈n,m〉,σ

tnmd
†
nσdmσ

where tnm = H
(1)
nm and εn = H

(1)
nn .

Similarly, the two-body term in the electronic Hamil-
tonian can be written as

H(2) =
1

2

∑

σσ′

∫

d3x1d
3x2 ψ

†
σ(~x1)ψ

†
σ′(~x2)

e2

|~x1 − ~x2|
×

ψσ′(~x2)ψσ(~x1),

which, in terms of the atomic orbital basis, is equivalent
to

H(2) =
1

2

∑

nmlkσσ′

Unmlkd
†
nσd

†
mσ′dlσ′dkσ (6)

where

Unmkl =

∫

d3x1d
3x2 φ

∗
n(~x1)φ

∗
m(~x2)

e2

|~x1 − ~x2|
×

φk(~x2)φl(~x1)

and

Unmkl =
∑

opqr

S−1
no S

−1
mpUopqr(S

−1
kq )

∗(S−1
lr )∗. (7)

Together, equations (3)-(5) and (6)-(7) give the full
electronic Hamiltonian from first principles:

H = H(1) +H(2),
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but do so in terms of a basis that is impractically large
for use within existing many-body techniques. To over-
come this difficulty, in the next section we formulate an
effective Hamiltonian in a reduced basis, explicitly re-
taining only the degrees of freedom necessary to describe
the π-electron dynamics.

III. EFFECTIVE HAMILTONIAN

The first step in constructing the effective Hamilto-
nian is culling elements of the basis that lie far from the
energy scale of interest. To this end, we first exclude
atomic orbitals that do not participate in chemical bond-
ing (those corresponding to core or excited electrons),
which, in a π-electron system, leaves an effective s or-
bital and three effective p orbitals at each atom. The
former hybridize with the effective px and py orbitals
giving rise to three sp2 hybrids that form the σ bonds
between the atoms. The remaining effective pz orbitals,
which, for a planar molecule, cannot hybridize with any
of the σ-electrons without breaking inversion symmetry,
are occupied by one electron on each atom and form π
bonds with weaker binding energies. Because of this en-
ergy difference we also omit the atomic orbitals partici-
pating in the σ bonds, though this approximation could
be relaxed at the expense of a larger basis.
The effective Hamiltonian for the remaining effective

p orbitals can then be determined using equations (3)
through (7) if the effective orbitals are known. In prin-
ciple, these could be calculated directly, e.g. by using
perturbation theory to freeze out the degrees of freedom
far from the π-electron energy scale; however, as noted
previously we find it more practical to parametrize these
expressions by imposing symmetry constraints.
To do this, we work initially in the asymptotic limit

where the interatomic bond length is large compared
to the size of the effective orbitals. This condition im-
plies that matrix elements Unmkl with n 6= l or m 6= k
and overlap integrals Snm with n 6= m are exponentially
small, allowing us to reduce the interaction matrix (Eq.
(7)) to

Unmkl = Unmkl

= δnlδmk

∫

d3x1d
3x2

e2|φn(~x1)|
2|φm(~x2)|

2

|~x1 − ~x2|

≡ δnlδmkUnm (8)

where φn are now effective instead of bare orbitals. Al-
though it is known22 that the terms neglected are not a
priori negligible at typical interatomic distances, it has
been suggested that this approximation can be justified
by the use of orthogonalized orbitals,32 and it has been
explicitly shown33 that this is an accurate approximation
for π-conjugated systems. Here we offer a simpler per-
spective more consistent with the spirit of EFT, namely
that the neglected terms are accounted for virtually when
the parameters in the Hamiltonian are renormalized. We

also note that Eq. (8) is equivalent to the “neglect of dif-
ferential overlap approximation” that has already been
used extensively elsewhere, but that in the context of
EFT it is simply the requirement that the effective Hamil-
tonian be local. However, we note here that in order to
extend the present work to the case where multiple or-
bitals (e.g. both σ and π) are centered on the same atom,
it would be necessary to include the same-site interaction
matrix elements as additional parameters.
Expanding Eq. (8) in powers of the interatomic bond

length yields a standard electrostatic multipole expan-
sion, and, if we assume the effective p orbitals pos-
sess azimuthal and inversion symmetry, Unm can be
parametrized up to the quadrupole-quadrupole interac-
tion in terms of the on-site repulsion Unn and the zz com-
ponent of the quadrupole moment Qn associated with
each orbital, as well as a dielectric constant ǫ included to
account for the polarizability of the σ and core electrons.
Explicitly, this gives

Unm = Unnδnm

+ (1− δnm)
(

UMM
nm + UQM

nm + UQM
mn + UQQ

nm

)

+O(r−6), (9)

where UMM is the monopole-monopole interaction, UQM

is the quadrupole-monopole interaction, and UQQ is
the quadrupole-quadrupole interaction. For two orbitals
with arbitrary quadrupole moments Qij

n and Qkl
m sepa-

rated by a displacement ~r, the expressions for these are

UMM
nm =

e2

ǫr
(10)

UQM
nm =

−e

2ǫr3

∑

ij

Qij
mr̂ir̂j (11)

UQM
mn =

−e

2ǫr3

∑

ij

Qij
n r̂ir̂j (12)

UQQ
nm =

1

12ǫr5

∑

ijkl

Qij
nQ

kl
mWijkl , (13)

where

Wijkl = δliδkj + δkiδlj − 5r−2(rkδlirj + rkriδlj

+ δkirjrl + riδkjrl + rkrlδij) + 35r−4rirjrlrk

is a rank-four tensor that characterizes the interaction of
two quadrupoles.34 Altogether, this provides an expres-
sion for the interaction energy that is correct up to fifth
order in the interatomic distance.
To further reduce the number of free parameters it is

convenient to simplify the effective Hamiltonian by re-
quiring it to satisfy particle-hole symmetry. Although
this is not strictly necessary within the context of π-EFT,
the success of Pariser-Parr-Pople type semi-empirical
models–which implicitly assume particle-hole symmetry–
suggests that it is a good approximation to do so. Taking
this to be the case, Eq. (4) then gives for the one-body
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Hamiltonian:

H(1)
nm =

∫

d3xφ∗n(~x)

(

−~
2

2m
∇2 +

∑

l

Vl(~x)

)

φm(~x),

where Vl(~x) is the effective potential due to the ionic hole
at site l:

Vl(~x) =

∫

d3x′
−e2|φl(~x

′)|2

ǫ|~x− ~x′|
.

Using Eq. (8) then gives

H(1)
nm = δnm



ε(at)n −
∑

l 6=n

Unl



+ (1− δnm)tnm,

where we have defined the atomic on-site energy as:

ε(at)n =

∫

d3xφ∗n(~x)

(

−~
2

2m
∇2 + Vn(~x)

)

φn(~x).

Defining ρn =
∑

σ d
†
nσdnσ and rearranging the two-body

term then yields:

H(1) +H(2) =
∑

n

ε(at)n ρn −
∑

〈n,m〉,σ

tnmd
†
nσdmσ

+
1

2

∑

nm

Unm(ρn − 1)(ρm − 1)

+
1

2

∑

n

Unnρn −
1

2

∑

nm

Unm.

Finally, adding the mutual repulsion of the ionic cores
1
2

∑

n6=m Unm gives the full effective molecular Hamilto-
nian:

H =
∑

n

ε(at)n ρn −
∑

〈n,m〉,σ

tnmd
†
nσdmσ

+
1

2

∑

nm

Unmqnqm

+
1

2

∑

n

Unnqn,

where we have introduced the effective charge operator
defined by qn = ρn − 1. In conjunction with Eq. (9),
this expresses the effective Hamiltonian for an arbitrary
π-electron system in terms of the tight-binding matrix
tnm, the on-site repulsion Unn, a dielectric constant ǫ,
and the π-electron quadrupole moment Qn.
In the remainder of this paper we focus on benzene

as a benchmark system, in which case the Hamiltonian
reduces to

H = µ
∑

n

ρn − t
∑

〈n,m〉,σ

d†nσdmσ +
1

2

∑

nm

Unmqnqm, (14)

where Unn = U and Qzz
n = −Qxx

n /2 = −Qyy
n /2 ≡ Q by

symmetry. The molecular chemical potential µ is fixed

by the experimental ionization energy35–39 and electron
affinity:40

µ =
IE − EA

2
= −4.06 eV,

whereas the four other parameters must be renormalized
by fitting to experiment, which is the subject of the fol-
lowing section.

IV. RENORMALIZATION: FITTING THE

GAS-PHASE SPECTRUM

We have renormalized the parameters in our effec-
tive Hamiltonian for gas-phase benzene by fitting to ex-
perimental values that should be accurately reproduced
within a π-electron only model. In particular, we have
simultaneously optimized the theoretical predictions of
1) the vertical ionization energy, 2) the vertical electron
affinity, and 3) the six lowest singlet and triplet excita-
tions of the neutral molecule.
This was done by exactly diagonalizing Eq. (14) with

the interatomic bond length45 fixed at 1.40 Å. In partic-
ular, using the OQNLP algorithm46 for nonlinear global
optimization we minimized the RMS relative error of our
predictions for the quantities in the first column of Table
I. The results of this procedure, which converged to the
same solution regardless of initial conditions, are sum-
marized in column two of the same table. The optimal
parametrization for the π-EFT was found to be t = 2.70
eV, U = 9.69 eV, Q = −0.65 eÅ2 and ǫ = 1.56 with a
RMS relative error of 4.2 percent.
Also appearing in Table I are the predictions of a re-

cent Pariser-Parr-Pople type semi-empirical model26 as
well as those of the original Ohno parametrization.22,27

Compared to the recent PPP model, π-EFT fits the op-
tical spectrum of gas-phase benzene to a similar degree
of accuracy and gives better results for the ionization
energy and electron affinity. Moreover, the parameters
common to both models have comparable values, namely
those given above for our model and those of the model
of Castleton et al.26 (t = 2.64 eV, U = 8.9 eV, and
ǫ = 1.28). The π-EFT on-site repulsion is also in quali-
tative agreement with recent RPA-based calculations of
the effective Coulomb repulsion in graphene.47

Although our effective quadrupole moment has no di-
rect counterpart in phenomenological models, its value
can be compared to the bare quadrupole moment of a
hydrogenic 2pz orbital, which is given by

Qzz = −24e(a0/Z)
2, (15)

where a0 is the Bohr radius and +Ze is the nuclear
charge. Using this, we find that our π-orbital quadrupole
moment corresponds to a hydrogenic p orbital bound by
an effective charge of +3.22e, or, equivalently, with an
effective Bohr radius of 0.16 Å. This is consistent with
the expectation that the sp2 orbitals forming the σ bonds
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Exp.35–44 π-EFT PPP PPP
Castleton et. al26 Ohno22,27

Ionization Energy (eV) 9.23 9.26 9.05 9.78

Electron Affinity (eV) -1.12 -1.14 -0.93 -1.67

Neutral Spectrum (eV)

Singlet 4.90 4.87 4.76 4.23

6.21 6.08 6.30 5.52

6.93 7.59 6.93 6.81

Triplet 3.93 4.10 3.99 3.52

4.75 4.92 4.74 4.32

5.60 6.17 5.84 5.58

RMS Relative Error (%) N/A 4.2 6.0 19.0

TABLE I. Experimental data for the vertical ionization energy,35–39 vertical electron affinity,40 and optical spectrum,41–44 of
gas-phase benzene compared to the predictions of π-EFT, a recent PPP-type model,26 and the Ohno parametrization.22,27 The
best fit parameterization of our π-EFT was determined to be t = 2.70 eV, U = 9.69 eV, Q = −0.65 eÅ2 and ǫ = 1.56.

provide only weak screening of the atomic core, which has
a net charge of +4e. For the purpose of visualization, ef-
fective hydrogenic orbitals can also be used to render the
average π-electron density 〈ψ†(~x)ψ(~x)〉, as shown in Fig-
ure 1.

V. SCREENING BY METALLIC ELECTRODES:

THE IMAGE MULTIPOLE METHOD

In this section, we extend the preceding model to in-
clude the effect of screening by metallic electrodes, which
for simplicity are modeled as planar or spherical conduc-
tors. In the regime where the characteristic response time
of the electrons in the electrode is much shorter than the
timescale of the π-electron dynamics, this can be done us-
ing the method of images via a straightforward extension
of Eq. (9). This is expected to be the case for conjugated
organic molecules in the vicinity of gold electrodes, in
which case the metallic plasma frequency48 ωp ≈ 9 eV/~
is large compared to the frequency scale of π excitations
ωπ ≈ 2t/~ ≈ 5 eV/~. The leading order correction to the
metallic dielectric function, given by the GW approxima-
tion, then goes as (ωπ/ωp)

2 ≈ 0.3. Explicit calculations
using the GW approach also suggest that corrections to
the image charge method tend to be small for organic
molecules adsorbed on a metallic surface.2

In the following subsections, the multipole moments
of the image charge distribution generated by an orbital
near planar and spherical conductors are described. To
determine the screened interaction matrix, interactions
between these and the orbital multipole moments are in-
cluded in Unm using equations (10) through (13). Over-
all, the two-body Hamiltonian should give the energy re-
quired to prepare the molecular charge distribution by
bringing each of the electrons in from infinity with the
electrodes maintained at fixed electrostatic potentials.
This can be ensured using a number of different count-

ing schemes, but we take one that ensures a symmetric
interaction matrix, namely

Ũnm = Unm + δnmU
(i)
nn +

1

2
(1− δnm)(U (i)

nm + U (i)
mn),

where Unm is the unscreened interaction matrix, U
(i)
nm is

the interaction between the nth orbital and the image
of the mth orbital, and Ũnm is the screened interaction
matrix. Since the image multipole moments of an or-
bital change as it is brought in from infinity, one might
expect a prefactor of 1/2 in the second term of the pre-
ceding equation, however, this is already present in the
Hamiltonian itself.

When multiple electrodes are present, the image of an
orbital in one conductor produces images in the other
electrodes, resulting in an effect reminiscent of a hall of
mirrors. We deal with this by including these “higher
order” multipole moments iteratively until the difference
between successive approximations of Ũnm drops below
a predetermined threshold. In practice, this procedure
converged rapidly.

Within the foregoing scheme, the case where one or
more electrodes are maintained at a fixed potential other
than zero can be treated straightforwardly by including
image charges that contribute to the one-body Hamilto-
nian rather than to Ũnm. For example, a spherical con-
tact with radius R at potential V can be treated using
a hypothetical point charge q = V R at the center of the
electrode. This technique is especially useful for trans-
port calculations in the context of molecular junctions,
as it provides the full junction Hamiltonian at finite bias,
alleviating the need for the phenomenological models of
capacitive lead-molecule coupling that have been relied
upon on in the past.12
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A. Screening by a planar electrode

In classical electrostatics, the image of a charge dis-
tribution near a planar conductor is merely the mir-
ror image of the charge distribution itself. Thus an
orbital with monopole moment q and quadrupole mo-
ment Qij located a distance r away from a conducting
plane produces an image orbital inside the conductor lo-
cated at depth r with multipole moments q̃ = −q and
Q̃ij = −

∑

kl TikTjlQ
kl, where Tik is a transformation

matrix representing a reflection about a plane parallel to
the surface of the conductor, i.e.

Tik = δik − 2n̂in̂k, (16)

where n̂ is the unit vector normal to the planar surface.

B. Screening by a spherical electrode

An orbital with monopole moment q and quadrupole
moment Qij located a distance r from the center of a
spherical electrode with radius R induces an image dis-
tribution at r̃ = R2/r with monopole and quadrupole
moments

q̃ = −q
R

r
−

R

2r3

∑

ij

Qij r̂ir̂j

and

Q̃ij = −

(

R

r

)5
∑

kl

TikTjlQ
kl

respectively, where Tik is a transformation matrix repre-
senting a reflection about the plane normal to the vector
r̂, similar to Eq. (16).
Thus the orbital quadrupole moment induces a higher

order image monopole moment, as well as an image of
itself that is deformed and reflected. An image dipole is
also generated, but its interaction with the orbital charge
distribution is of order r−7 and so we have neglected it
here.

VI. SCREENING OF THE HOMO-LUMO GAP

Although π-EFT could be used to study a wide variety
of phenomena involving conjugated organic molecules,
our primary motivation in formulating it has been to
facilitate realistic many-body calculations of transport
phenomena in molecular junctions. In particular, while
recent semi-empirical models26 reproduce the low-lying
excitations of gas-phase benzene, their predictions of
quantities relevant to transport, namely the fundamen-
tal (or HOMO-LUMO) gap and the optical excitations
of the ionized molecule, are less accurate. Moreover, in a
molecular junction these quantities are renormalized by

FIG. 2. The spectral function of gas-phase benzene broadened
artificially as a guide to the eye. The dashed orange lines are
fixed by (left to right) the lowest lying optical excitation of
the molecular cation,36–39,49 the vertical ionization energy of
the neutral molecule,35–39 and the vertical electron affinity of
the neutral molecule.40

screening from metallic electrodes as well as the presence
of linker groups not explicitly included in the molecular
Hilbert space.

Within π-EFT these effects can be clearly seen: Con-
sider the spectral function of gas-phase benzene, which
we evaluate at the many-body level using the non-
equilibrium Green’s function formalism as described in
appendix A. Figure 2 shows this quantity, along with ex-
perimental values for the vertical ionization energy (9.23
eV), vertical electron affinity (−1.12 eV), and the first
optical excitation of the cation (3.04 eV). As a guide to
the eye, the spectrum has been broadened artificially us-
ing a broadening matrix of Γnm = (0.2 eV)δnm. As an
aside, we note here that the close agreement between the
experimental values and the maxima of the spectral func-
tion suggests our model is accurate at this energy scale.
In particular, the accuracy of the theoretical value for
the lowest optical excitation of the cation is noteworthy,
as this quantity was not fit during the renormalization
procedure but rather represents a prediction of π-EFT.

Screening effects become evident when the molecule is
brought into proximity with the surface of a planar elec-
trode. Figure 3 shows the reduction of the ionization
energy and electron affinity as a function of electrode-
molecule distance in this scenario, and the HOMO-
LUMO gap, given by IE − EA, is reduced commen-
surately. These results, based on the image multipole
method, are also consistent with recent GW-based inves-
tigations of screening.2,3

We also considered the prototypical benzene-gold junc-
tion, consisting of benzene linked to two gold electrodes
via thiol side groups. Although this junction can oc-
cur with a wide variety of different geometries, in this
example we have taken the configuration shown in Fig-
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FIG. 4. The geometry52,53 for the benzenedithiol junction as-
sociated with the spectral function shown in Figure 5. The
electrodes have been placed so that the screening surface
lies one covalent radius54 beyond the position of the outer-
most gold nuclei, a convention that has been investigated
elsewhere55 in the context of atom-surface van der Waals in-
teractions.

ure 4. The electrodes are modeled as metallic spheres
with radii of 0.5 nm, and the partially ionic character
of the gold-sulfur bond has been accounted for by plac-
ing point charges of −0.67e at the locations of the sulfur
atoms. The latter value was determined in conjunction
with the tunneling-width matrix (Γ11 = Γ44 = 0.44 eV)
via a simultaneous fit of the experimental thermopower50

and conductance,51 using the techniques described in ap-
pendix A. The upper panel of Figure 5 shows the spec-
tral function for this junction in the simple case where
the tunneling-width matrix is the same as in Figure 2, a
choice which simplifies comparison of the two cases.
Screening from the electrodes reduces the HOMO-

LUMO gap by 12.5 percent as compared to the gas-phase,

FIG. 5. Top: The spectral function of the Au-1,4-
benzenedithiol-Au junction depicted in Figure 4 at room tem-
perature, together with the gas-phase density of states from
Figure 2. To facilitate comparison, the same broadening has
been used in both cases. The dotted orange line at −5.1 eV
indicates the position of the experimental chemical potential
of clean gold.56 Bottom: The spectral function of the same
junction with planar instead of spherical electrodes.

and the dipole formed by the gold-sulfur bond shifts the
chemical potential of the molecule up by 1.4 eV. For com-
parison, we have also calculated the spectral function of
the same junction, but with the electrodes modeled as
planes (Figure 5, bottom), in which case the screening
is maximal and the HOMO-LUMO gap is reduced by 19
percent. These results are qualitatively consistent with
GW-based investigations of screening effects wherein a
molecule is adsorbed on a metallic surface,2,3 as well
as with the recent state-of-the-art GW calculations for
benzenedithiol-Au junctions.11 In comparison to Ref. 11,
the HOMO and LUMO resonances in Fig. 5 are both
shifted slightly upward in energy, but the gap between
them is comparable. It should be pointed out that the
upward shifts of HOMO and LUMO in our model are due
in part to the dipole moments of the S-Au bonds, which
are treated phenomenologically in our model, while the
screening of the HOMO-LUMO gap is a fundamental ef-
fect described by the image multipole method. As com-
pared to models of screening that treat only the π-orbital
monopole moment,57 the reduction of the HOMO-LUMO
gap predicted herein is somewhat smaller, presumably
owing to the tendency of the monopole-quadrupole and
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quadrupole-quadrupole interactions to soften short-range
Coulomb interactions. For both of the electrode geome-
tries we considered, a splitting of the two-fold degenerate
HOMO and LUMO resonances can also be seen, which
arises from the interaction between the π-electrons and
the dipoles associated with the partly ionic gold-sulfur
bonds.
We also note that, as compared to DFT-based treat-

ments of similar junctions,58 the HOMO-LUMO gap seen
in Figure 5 is dramatically larger, consistent with the
observation59 that correlation effects beyond the scope of
local DFT must be included to accurately model trans-
port through this junction.

VII. DIFFERENTIAL CONDUCTANCE

SPECTRUM

The advantages of a computational approach such as π-
EFT combined with many-body NEGF are perhaps most
evident in describing transport through a molecular junc-
tion far from equilibrium.30,60–62 For then, not only must
the equilibrium energetics of electron addition and re-
moval be described correctly, but the dependence of both
processes on both gate and bias voltages must be correct,
a significant challenge for conventional approaches.10 To
illustrate the advantages of π-EFT in this context, we
have calculated the differential conductance spectrum of
a Au-1,4-benzenedithiol-Au junction. Figure 6 shows the
absolute value of the differential conductance on a loga-
rithmic scale, calculated as a function of bias voltage and
the electrostatic potential on a spherical gate electrode
of radius 3Å centered 5Å above the benzene ring. The
effective electrostatic lever arm of the gate is 0.21eV/V.
The junction geometry is otherwise identical to that de-
picted in Fig. 4. In Fig. 6, we have used the physical
tunneling-width matrix Γ11 = Γ44 = 0.44 eV.
Of particular note are the diamond-shaped features in

the differential conductance spectrum: the charge on the
molecule within the junction is quantized and the dif-
ferential conductance is suppressed within the diamond-
shaped regions centered along the horizontal axis due to
the phenomenon of Coulomb blockade.10,12 This is simi-
lar to what has been observed experimentally in junctions
based on larger dithiolated molecules,60–62 in which case
the charging energy is significantly smaller. To describe
this phenomenon within DFT would require a proper
treatment of the derivative discontinuity8,9 far from equi-
librium, for which no theory currently exists. To the best
of our knowledge, charge quantization effects like these
are beyond the scope even of self-consistent many-body
perturbation theory, e.g. as in the case of the state-of-
the-art DFT + GW approach.11

Resonant tunneling through electronic excited states
at large bias and suppression of transport at small bias
due to destructive quantum interference (blue fringes)
are also clearly visible in Fig. 6. This differential conduc-
tance spectrum is similar to that obtained previously12

using a PPP model of the electronic structure. The main
differences are that the sizes of the Coulomb diamonds
are reduced due to screening from the metal electrodes,
and the particle-hole symmetry of the PPP spectrum is
broken by the presence of the S-Au dipoles.

VIII. π-ELECTRON CONTRIBUTION TO THE

VAN DER WAALS INTERACTION

As a final application of the image-multipole method,
we consider the π-electron contribution to the van der
Waals interaction between a molecule and a metallic
electrode. Experimentally, such interactions are impor-
tant when a molecule is adsorbed on a metal surface, or
in single-molecule junctions in which a molecule bonds
directly to metallic electrodes, as in the Pt-benzene-Pt
junctions investigated recently by Kiguchi et al.63 The-
oretically, the van der Waals interaction also represents
a unique challenge in that it is a true many-body phe-
nomenon arising from quantum correlations induced by
long-range interactions. As such, it is outside the scope
of local approximations to density functional theory, and
modeling van der Waals interactions using nonlocal func-
tionals is a topic of ongoing research.64–66 In contrast to
this, the preceding treatment of screening, in conjunction
with a full many-body treatment of the π-electrons on the
molecule, makes it possible to calculate the π-electron
contribution to van der Waals interaction straightfor-
wardly with no extra adjustable parameters.
In particular, by exactly diagonalizing the few-body

molecular Hamiltonian with and without the effects of
screening included in Unm, it is possible to infer the
van der Waals interaction at zero temperature between a
molecule and a metallic electrode by comparing the ex-
pectation values of the Hamiltonian in these two cases:

EvdW = 〈H̃〉 − 〈H〉

This procedure was carried out at zero temperature
for benzene oriented parallel to the surface of a spherical
electrode over a large range of electrode-molecule dis-
tances, and the results are shown in Figure 7. When
the molecule is near the surface of the electrode EvdW =
−C3

r3
, which is the expected asymptotic dependence for

the van der Waals interaction between a molecule and
a planar conductor. Conversely, when the molecule is
far from the electrode EvdW = −C6

r6
, which is the usual

asymptotic dependence of the van der Waals interaction
as given by the Lennard-Jones potential. A clear tran-
sition between the two regimes can be seen around 10
nm, the radius of the electrode. In the near-field region
the constant of proportionality predicted by π-EFT is
C3 ≈ 1.56 eV Å3. We also investigated the orientation
dependence of the van der Waals interaction between a
planar electrode and a benzene molecule, as depicted in
Figure 8, which shows a significantly stronger attractive
interaction when the plane of the molecule is oriented
perpendicular to the surface of the electrode.
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FIG. 7. The π-electron contribution to the van der Waals
interaction between benzene and a spherical electrode with a
radius of 10 nm, plotted as a function of the distance from
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green and orange lines show the expected asymptotic depen-
dence in the near and far fields respectively. Inset: The same
quantity very near the surface of the electrode, including a
phenomenological67 gold-carbon hard-core repulsion.

The van der Waals coefficient C3 is fundamentally re-
lated to the molecular polarizability tensor αij . Thus, for
an axially symmetric molecule such as benzene, a simpli-
fied single-oscillator model can be used to derive semi-
empirical formulae relating αij to C3 with the molecule
oriented either parallel or perpendicular to the surface of
a planar electrode:68

C
‖
3 ≈

Ed

32
(2α⊥ + 2α‖) (17)

C⊥
3 ≈

Ed

32
(α⊥ + 3α‖) (18)
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FIG. 8. The orientation dependence of the π-electron contri-
bution to van der Waals interaction between a planar elec-
trode and a benzene molecule centered 2 nm from the metal
surface. The molecule is initially oriented parallel to the elec-
trode and then rotated by an angle θ⊥ about the axis perpen-
dicular to the plane of the molecule, followed by a rotation of
θ‖ about an axis within the plane of the molecule.

Here Ed is the energy of the principal dipole-allowed
optical transition, and α‖ and α⊥ are respectively the
molecular polarizabilities parallel and perpendicular to
its plane of symmetry. As an internal consistency check
and to demonstrate that our technique captures the ba-
sic physics of the van der Waals interaction, we have cal-
culated these quantities within π-EFT (Ed = 7.59 eV,
α‖ = 3.24 Å3 and α⊥ = 0.00 Å3), and used them to de-

duce C
‖
3 ≈ 1.54 eV·Å3 and C⊥

3 /C
‖
3 = 1.5, which are in

close agreement with the values of C3 obtained via direct
calculation.

Experimentally, α‖ = 12.31 Å3, α⊥ = 6.35 Å3 and
Ed = 6.93 eV for benzene, and in this case Eq. (17) gives

C
‖
3 ≈ 8.08 eV Å3, which is roughly five times larger than
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that predicted by π-EFT. This discrepancy can be at-
tributed to the significant contribution of the σ-electrons
to the molecular polarizability, as evidenced by the large
experimental value of α⊥, which arises from σ-π tran-
sitions. Consistent with this and the notion that all of
the valence electrons contribute more or less equally to
the molecular polarizability, the angular average of the

π-EFT polarizability, i.e.
α⊥+2α‖

3 , is roughly a quarter
of the same quantity calculated using experimental val-
ues. This underscores the importance of the σ-electron
dynamics in the context of van der Waals interactions,
which arise from the long-range spatial correlation of
purely virtual processes. In contrast to this, the effect
of the σ-electrons on real π-π transitions, such as those
involved in transport, should be well described by π-EFT.
Moreover, as noted previously, the σ-electrons dynamics
can be explicitly included within effective field theory at
the expense of a larger Hilbert space, and we believe that
such a πσ-EFT would accurately reproduce the full van
der Waals interaction between a conjugated molecule and
a metallic electrode.

IX. CONCLUSIONS

We have shown how EFT can be used to provide a con-
cise derivation of an effective Hamiltonian for π-electron
systems by performing a multipole expansion, imposing
symmetry constraints, and then renormalizing a few ad-
justable parameters. In particular, we have optimized
the parameters appearing in an effective Hamiltonian for
gas-phase benzene, Eq. (14), by fitting to experimental
data for 1) the vertical ionization energy, 2) the vertical
electron affinity, and 3) the six lowest singlet and triplet
excitations of the neutral molecule. This procedure yields
a fit which is comparable to or better than traditional
PPP models22,26,27, and gives U = 9.69 eV for the on-site
repulsion, t = 2.70 eV for the nearest-neighbor hopping
matrix element, ǫ = 1.56 eV for the dielectric constant,
and Q = −0.65 eÅ2 for the π-electron quadrupole mo-
ment. These values of U , t, and ǫ are consistent with
those used in previous π-electron models26,27,47, while Q
is a new physical parameter in our approach, which takes
the place of the ad-hoc functional forms assumed in PPP
models and governs the corrections to 1/r interactions at
short distances.
We have also utilized π-EFT to model the screening of

intramolecular Coulomb interactions by nearby metallic
electrodes. Within our approach, lead-molecule coupling
is treated using a two-step process wherein all long range
Coulomb interactions are included nonperturbatively be-
fore lead-molecule tunneling is accounted for via Dyson’s
equation. The ability to include finite bias and screen-
ing effects via image multipoles–without additional ad-
justable parameters–represents a significant advantage of
π-EFT over PPP models, which utilize interactions that
do not satisfy Maxwell’s equations.
In particular, we have shown how π-EFT facili-

tates a realistic description of the prototypical Au-1,4-
benzenedithiol-Au junction, including transport far from
equilibrium. The accurate description of ionization po-
tential and electron affinity as poles of the Green’s
function—and their shifts due to interactions with metal
electrodes, sets π-EFT apart from standard DFT-NEGF
approaches, and promises to enable accurate transport
calculations for junctions involving a variety of con-
jugated organic molecules. The ability to simultane-
ously describe Coulomb blockade and coherent quantum
transport appears to set our approach apart even from
state-of-the-art self-consistent many-body perturbation
theory.11 The main disadvantages of our approach com-
pared to either DFT or DFT + GW are (i) that certain
aspects of the junction are described only phenomenolog-
ically, such as the linker groups between the molecule and
the metal electrodes; and (ii) that a full diagonalization
even of the limited Hilbert space of the π-electrons scales
very poorly. Nonetheless, exact diagonalization of π-EFT
should be tractable for conjugated molecules significantly
larger than benzene, such as biphenyl or triphenyl, and
the use of configuration-interaction techniques such as
coupled-cluster singles and doubles should allow its appli-
cation to still larger molecules. For these systems, π-EFT
provides a framework combining an accurate treatment
of electron correlation with a higher degree of realism
than is present in conventional PPP techniques.
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Appendix A: Many-body theory of transport in

molecular junctions

Within the non-equilibrium Green’s function approach
to studying transport in molecular junctions, a quantity
of central importance is the retarded Green’s function G
of the molecule coupled to the electrodes. In the energy
domain and using matrix notation, this can be expressed
via the Dyson equation as:

G = Gmol +GmolΣG, (A1)

where Gmol is the interacting Green’s function of the
molecule without tunnel coupling to the electrodes, but
including long-range Coulomb interactions between the
π-electrons and their image multipole moments in the
leads. The self-energy Σ can be partitioned into the tun-
neling self-energy ΣT associated with the lead-molecule
bonds, and a correction to the Coulomb self-energy ∆ΣC

arising from lead-molecule coherence:

Σ = ΣT +∆ΣC .
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Far from resonance and at room temperature ∆ΣC ≈
0, and so in the present context we neglect this
correction–an approximation which is justified in detail
in ref. 12. Assuming the leads can be modeled as Fermi
liquids with good screening, the electron-electron inter-
actions within them can be neglected and the tunneling
self-energy associated with a given electrode can be ex-
pressed as:69

ΣT = V g(E)V †,

where g(E) is the retarded Green’s function of the lead
and Vnk are the matrix elements coupling the lead and
molecule. In the broad-band limit wherein the density
of states in the electrodes varies slowly in the vicinity of
the metallic Fermi level, the self-energy then reduces to
a purely imaginary matrix with no energy dependence:69

ΣT = −
i

2

∑

α

Γα. (A2)

Here the tunneling-width matrix Γα associated with lead
α given is by

Γnσ,mσ = 2πρ(εf )VnV
∗
mδσσ′ ,

where ρ(εf ) is the density of states at the metallic Fermi
level, and Vn is the matrix element between the nth π-
orbital in the molecule and the lead states in the vicinity
of the Fermi level. The diagonal elements of this equa-
tion are equivalent to Fermi’s golden rule, with Tr {Γα/~}
giving the rate at which electrons in lead α are being in-
jected into the molecule.
Aside from the self-energy, the other ingredient needed

to evaluate Eq. (A1) is the Green’s function of the iso-
lated molecule. This is determined exactly by first find-
ing the few-body eigenstates {|ν〉} and eigenenergies Eν

of the gas-phase molecule, and then using these to ex-
plicitly evaluate the molecular Green’s function:12,70

Gmol =
∑

ν,ν′

[P (ν) + P (ν′)]C(ν, ν′)

E − (Eν′ − Eν) + i0+
(A3)

Here P (ν) is the statistical occupancy of the νth eigen-
state, given at equilibrium by the grand canonical ensem-
ble, and

Cnσ,mσ′(ν, ν′) = 〈ν|dnσ|ν
′〉〈ν′|d†mσ′ |ν〉

are many-body matrix elements, where, in the present
context, d†mσ creates an electron with spin σ in the mth
π-orbital of the molecule.
Altogether, equations (A1), (A2) and (A3) provide a

method for obtaining the full interacting Green’s function
of the molecule coupled to the electrodes, which may then
be used to calculate the various physical quantities of
interest. For example, the spectral function is given by:69

A(E) = −2 ImG,

the trace of which is proportional to the effective single-
particle density of states:

ρ(E) =
1

2π
Tr {A}

Similarly, the elastic transmission function between
two electrodes can also be obtained from the full molec-
ular Green’s function via the expression:

Tαβ = Tr
{

ΓαGΓβG
†
}

,

where Γα and Γβ are the tunneling-width matrices as-
sociated with leads α and β respectively. This quantity
may then be used to evaluate the various electronic trans-
port quantities of interest,71 such as the elastic electrical
current

Ieα =
−e

h

∑

β

∫

dE Tαβ (fβ − fα)

and elastic thermal current

IQα =
1

h

∑

β

∫

dE (E − µα)Tαβ (fβ − fα)

flowing into lead α. Here fα(E) and µα are respectively
the Fermi-Dirac distribution and chemical potential as-
sociated with lead α.
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uation of the kubo formula conductance of strongly in-
teracting quantum systems. EPL (Europhysics Letters),
73(2):246, 2006.

20 Rudolph Pariser and Robert G. Parr. A semi-empirical
theory of the electronic spectra and electronic structure of
complex unsaturated molecules. ii. The Journal of Chem-
ical Physics, 21(5):767–776, 1953.

21 Robert G. Parr. Three remarks on molecular orbital theory
of complex molecules. The Journal of Chemical Physics,
33(4):1184–1199, 1960.

22 Kimio Ohno. Some remarks on the pariser-parr-pople
method. Theoretical Chemistry Accounts: Theory, Com-
putation, and Modeling (Theoretica Chimica Acta), 2:219–
227, 1964. 10.1007/BF00528281.

23 J. A. Pople. Electron interaction in unsaturated hydrocar-
bons. Trans. Faraday Soc., 49:1375–1385, 1953.

24 M. Chandross, S. Mazumdar, M. Liess, P. A. Lane, Z. V.
Vardeny, M. Hamaguchi, and K. Yoshino. Optical absorp-
tion in the substituted phenylene-based conjugated poly-
mers: Theory and experiment. Phys. Rev. B, 55:1486–
1496, 1997.

25 Robert J Bursill, Christopher Castleton, and William Bar-
ford. Optimal parametrisation of the pariser-parr-pople
model for benzene and biphenyl. Chemical Physics Let-
ters, 294(4-5):305 – 313, 1998.

26 C. W. M. Castleton and W. Barford. Screening and the
quantitative pi-model description of the optical spectra
and polarizations of phenyl based oligomers. The Jour-
nal of Chemical Physics, 117(8):3570–3582, 2002.

27 S. Ramasesha, I.D.L. Albert, and B. Sinha. Optical and
magnetic properties of the exact ppp states of biphenyl.
Molecular Physics, 72:537–547(11), 20 February 1991.

28 Within EFT, the σ-electrons can be included explicitly at
the expense of a larger basis, and this may be necessary in
order to explain transport in some experiments.29.

29 Latha Venkataraman, Jennifer E. Klare, Iris W. Tam,
Colin Nuckolls, Mark S. Hybertsen, and Michael L. Steiger-
wald. Single-molecule circuits with well-defined molecular
conductance. Nano Lett., 6(3):458–462, 2006.

30 Hyunwook Song, Youngsang Kim, Yun Hee Jang, Heejun
Jeong, Mark A. Reed, and Takhee Lee. Observation of
molecular orbital gating. NATURE, 462(7276):1039–1043,
2009.

31 Kristian S. Thygesen. Electron transport through an in-
teracting region: The case of a nonorthogonal basis set.
Phys. Rev. B, 73(3):035309, Jan 2006.

32 K. R. Roby. On the justifiability of neglect of differen-
tial overlap molecular orbital methods. Chemical Physics
Letters, 11(1):6 – 10, 1971.

33 D. Baeriswyl, D. K. Campbell, and S. Mazumdar.
In H. Kiess, editor, Conjugated Conducting Polymers.
Springer-Verlag, Berlin, 1992.

34 Jesus Hernandez-Trujillo, Miguel Costas, and Alberto
Vela. Quadrupole interactions in pure non-dipolar fluo-
rinated or methylated benzenes and their binary mixtures.
J. Chem. Soc., Faraday Trans., 89:2441–2443, 1993.

35 J. O. Howell, J. M. Goncalves, C. Amatore, L. Klasinc,
R. M. Wightman, and J. K. Kochi. Electron transfer from



13

aromatic hydrocarbons and their .pi.-complexes with met-
als. comparison of the standard oxidation potentials and
vertical ionization potentials. Journal of the American
Chemical Society, 106(14):3968–3976, 1984.

36 Branka Kovac, Manijeh Mohraz, Edgar Heilbronner, Virgil
Boekelheide, and Henning Hopf. Photoelectron spectra of
the cyclophanes. Journal of the American Chemical Soci-
ety, 102(13):4314–4324, 1980.

37 Jeffrey A. Sell and Aron Kuppermann. Angular distri-
butions in the photoelectron spectra of benzene and its
monohalogenated derivatives. Chemical Physics, 33(3):367
– 378, 1978.

38 Tsunetoshi Kobayoshi. A simple general tendency in pho-
toelectron angular distributions of some monosubstituted
benzenes. Physics Letters A, 69(2):105 – 108, 1978.

39 W. Schmidt. Photoelectron spectra of polynuclear aro-
matics. v. correlations with ultraviolet absorption spec-
tra in the catacondensed series. The Journal of Chemical
Physics, 66(2):828–845, 1977.

40 P. D. Burrow, J. A. Michejda, and K. D. Jordan. Electron
transmission study of the temporary negative ion states of
selected benzenoid and conjugated aromatic hydrocarbons.
The Journal of Chemical Physics, 86(1):9–24, 1987.

41 Atsunari Hiraya and Kosuke Shobatake. Direct absorption
spectra of jet-cooled benzene in 130–260 nm. The Journal
of Chemical Physics, 94(12):7700–7706, 1991.

42 John P. Doering. Low-energy electron-impact study of the
first, second, and third triplet states of benzene. The Jour-
nal of Chemical Physics, 51(7):2866–2870, 1969.

43 Robert P. Frueholz, Wayne M. Flicker, Oren A. Mosher,
and Aron Kuppermann. Electronic spectroscopy of ben-
zene and the fluorobenzenes by variable angle electron im-
pact. The Journal of Chemical Physics, 70(6):3057–3070,
1979.

44 E. E. Koch and A. Otto. Optical absorption of benzene
vapour for photon energies from 6 ev to 35 ev. Chemical
Physics Letters, 12(3):476 – 480, 1972.

45 Koichi Tamagawa, Takao Iijima, and Masao Kimura.
Molecular structure of benzene. Journal of Molecular
Structure, 30(2):243 – 253, 1976.

46 Zsolt Ugray, Leon Lasdon, John Plummer, Fred Glover,
James Kelly, and Rafael Marti. Scatter search and local nlp
solvers: A multistart framework for global optimization.
INFORMS JOURNAL ON COMPUTING, 19(3):328–340,
2007.
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