
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Mechanical and electronic properties of strained Ge
nanowires using ab initio real-space pseudopotentials

Alex J. Lee, Minjung Kim, Charles Lena, and James R. Chelikowsky
Phys. Rev. B 86, 115331 — Published 27 September 2012

DOI: 10.1103/PhysRevB.86.115331

http://dx.doi.org/10.1103/PhysRevB.86.115331


BS11982

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Mechanical and electronic properties of strained Ge nanowires using ab initio

real-space pseudopotentials

Alex J. Lee, Minjung Kim, Charles Lena
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

James R. Chelikowsky
Center for Computational Materials, Institute for Computational Engineering and Sciences

Departments of Physics and Chemical Engineering,

The University of Texas at Austin, Austin, Texas 78712, USA

(Dated: August 28, 2012)

Theoretical calculations with real-space pseudopotentials constructed within density-functional
theory are employed to calculate mechanical and electronic properties for [100], [110], and [111]
germanium nanowires up to 2.7 nm in diameter. Uniaxial strain is applied to wires within the range
of -5 to 5%. The strain energy is used to calculate Young’s modulus for each wire, whose values are
found to increase with diameter up to approximately the theoretical bulk values. Electronic band
structures are calculated for each wire with respect to strain, and from these structures band gaps
are obtained. The size and the nature (direct or indirect) of the band gaps are found to be influenced
by the growth direction, wire size, and strain amount. Carrier effective masses are calculated from
the band structures and are found to jump sharply under certain amounts of strain owing to band
crossing, which can correspond to sudden drops in carrier mobilities in applications.

I. INTRODUCTION

Semiconductor nanowires have sparked recent research
interest owing to their unique properties that make them
suitable for use in device applications such as photo-
voltaics and photodetectors.1,2 While Si has been the
most widely used and studied material in the semicon-
ductor industry, Ge has various advantageous properties
over Si such as a smaller band gap and carrier effective
masses,3 which can correspond to higher carrier mobil-
ities and faster devices. Studies show that nanowires
with higher carrier mobilities are less sensitive to sur-
face roughness scattering.4 Quantum confinement effects
may be more pronounced in Ge compared to Si owing to
the much larger Bohr exciton radius of 24.3 nm in Ge
compared to 4.9 nm in Si,5,6 making Ge potentially more
flexible for tuning properties. Some unique applications
for Ge include near-IR photodetectors, where Si cannot
be used owing to its larger band gap,7 and multijunction
photovoltaics like the InGaP/GaAs/Ge solar cell, which
has the highest reported efficiency in current solar cell
technologies.8

Compared to the bulk semiconductor materials, which
are often brittle except at very high temperatures,
nanoscale structures exhibit enhanced strengths owing
to higher surface area to volume ratios. Self-purification
in nanostructures often decrease the concentration of de-
fects that weaken the material.9 Researchers have syn-
thesized Ge nanowires that show mechanical strengths
comparable to those of idealized perfect crystals, which
is an improvement over the bulk material by orders
of magnitude.10 Under certain conditions, nanowires
can even show plasticity at room temperature, mak-
ing for a durable, flexible semiconductor useful in many
applications.11

The properties of Ge nanowires depend on their crys-

tal orientation and can change significantly with size and
strain effects. Knowledge of how these effects work can
be used to tune properties for functionalization.12 Ex-
perimental groups have synthesized nanowires that show
a blueshift in the photoluminescence spectrum with de-
creasing particle size and propose strain to be the cause
of this.2 A theoretical study showed how strain can be
applied to Si/Ge core-shell nanowires to control band
offsets in heterojunctions.13 Strain has been reported to
significantly enhance carrier mobilities in Si field-effect
transistors.14,15 Strain is also an unavoidable, naturally
occurring state in many applications. Oxides formed on
the surface of nanowires have been shown to add a com-
pressive strain to the nanowire core, which can have an ef-
fect on wire properties.16 While numerous ab initio com-
putational studies have been performed on Si nanowires,
few have been done for Ge,17–19 only some of which have
examined the effects of strain.20–22 Here we examine pre-
viously unstudied growth directions and further analyze
the effects of axial strain on the mechanical and electronic
properties of Ge nanowires.

II. COMPUTATIONAL METHODS

Electronic structure calculations were carried out using
PARSEC, a pseudopotential code for density-functional
theory (DFT) calculations in real-space without the use
of an explicit basis.23–26 The pseudopotential used for Ge
is an improved Troullier-Martins pseudopotential with
valence configuration 4s24p24d0 with partial core correc-
tions included and the p local component selected.27 This
pseudopotential has been used in previous studies on Ge
nanowires with good results.17 Exchange correlation was
handled with Ceperley-Alder, a local density approxima-
tion (LDA) functional.28 Structural relaxations were per-
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formed using the BFGS method29–32 with a force toler-
ance of 0.004 Ry/a.u. (1 a.u. =0.5292 Å) The computa-
tional parameters for the boundary radius, grid spacing,
and number of k-points sampled varied for each system
and were optimized until the total energy converged to
within 0.01 eV/atom.
With the Ge pseudopotential, the lattice constant for

bulk Ge was calculated to be 10.65 a.u., which is within
0.1% of the thermally corrected experimental value of
10.66 a.u.33 The bulk modulus was calculated by fitting
to the Murnaghan equation of state34 and gave a value
of 73.3 GPa, which is within 4% of the thermally cor-
rected experimental value of 75.8 GPa.33 The consistency
of these results with the literature values suggests the
pseudopotential is suitable for use in electronic structure
calculations.
Using 1-D periodic boundary conditions in the axial di-

rection, Ge nanowires with sizes ranging from 6 to 27 Å
in diameter were carved from the bulk structure in three
growth directions [100], [110], and [111]. In this context,
diameter refers to the “effective diameter” D defined as

D = 2
√

S

π
where S is the cross-sectional surface area, cal-

culated by outlining the centers of the outermost atoms
of the wire. The axial lattice constant is defined as the
periodic cell length for translational symmetry along the
wire axis. With a being the lattice parameter for the
cubic unit cell in bulk Ge, the axial lattice constants for

[100], [110], and [111] wires are a,a
√
2

2
, and a

√
3 respec-

tively. Active Ge atoms on the wire surface were passi-
vated with H atoms.35 Figure 1 shows cross-sections for
some of these wires with labelled surface facets. The [100]
wires contain four equivalent surface facets, the [110]
wires have six surface facets of two distinct types, and
the [111] wires have six equivalent surface facets. Note
that the surfaces for the [100] and [111] wires are equiv-
alent types.
Structural relaxation was used to calculate the equi-

librium axial lattice constant for each system, the results
of which are shown in Table I. The table shows that
the axial lattice constants contract slightly (∼ 1%) with
decreasing wire size and approach the bulk value with
increasing size. The lattice contraction is least signifi-
cant in the [110] direction and shows no variation in the
range of sizes tested. These results differ from previ-
ous nanowire studies that show a lattice expansion with
decreasing size.4,20,21 The mechanism behind the lattice
expansion is thought to be a compressive stress on the
wire surface that causes axial expansion by the Pois-
son effect.36 The nanowires in our simulation were found
to be consistent with the Poisson effect; that is, axial
tensile stress causes the cross-sectional area to contract
slightly, and compressive stress causes the area to ex-
pand. Our nanowires do not contradict the mechanism
that is thought to cause lattice expansion in previous
studies, but the lowest energy structures for our wires
were calculated to be those where the lattice constant is
slightly smaller than that of the bulk. A similar effect
has been observed in Si nanocrystals.37

FIG. 1. Cross-sections with labelled surface facets for a) [100],
b) [110], and c) [111] H-passivated Ge nanowires with varying
diameters. The surface facets for the [100] and [111] wires are
equivalent.

Strain was simulated by modifying the length of the
unit cell in the axial direction in 1% increments and cal-
culating the relaxed structure for each strain step. Wires
were strained in the range of -5 to 5%. Experiments have
shown that the maximum yield stress for Ge nanowires
is around 13% strain, so the range examined in the sim-
ulation should have physical meaning.10

III. MECHANICAL AND ELECTRONIC

PROPERTIES

The Young’s modulus was calculated for each system
from the strain energy curve using second-order polyno-

mial fits of the equation Y = 1
V0

∂
2
E

∂ǫ2

∣

∣

ǫ=0
where V0 is the

minimum total energy volume (obtained by multiplying
the axial unit cell length with the cross-sectional area S)
and ǫ is the strain. Figure 2 summarizes these calcula-
tions. For all three growth directions, the Young’s modu-
lus increases with diameter before appearing to converge
approximately the theoretical bulk values, which are 103,
138, and 155 GPa for the [100], [110], and [111] directions,
respectively.38,39 Assuming the data points are nearly
converged, the Young’s moduli end up slightly higher
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TABLE I. The number of atoms and axial lattice constants
with respect to wire diameter for each growth direction.

Diameter # of atoms Axial l.c.
(nm) (Ge; H) (Å)

[100]a

0.70 9; 12 5.58
1.2 25; 20 5.59
1.6 49; 28 5.60
2.1 81; 36 5.60
2.5 121; 44 5.62

[110]b

1.30 24; 16 3.98
1.99 54; 24 3.98
2.65 96; 32 3.98

[111]c

0.68 14; 18 9.66
1.09 38; 30 9.70
1.51 74; 42 9.70
1.93 122; 54 9.71
2.35 182; 66 9.72

a Bulk = 5.64 Å
b Bulk = 3.99 Å
c Bulk = 9.77 Å
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FIG. 2. Young’s modulus vs. diameter for each growth direc-
tion. The dashed lines represent the bulk values.38,39

than the bulk values. The figure shows that the behavior
of the Young’s modulus with size is similar for the [100]
and [111] wires whereas the [110] wires are noticeably
less sensitive. This result mirrors that of the lattice con-
stant contraction, where the [100] and [111] wires showed
a similar tendency to contract with decreasing size while
the [110] wires hardly varied (Table I). Surface effects
can explain these results, as the [100] and [111] wires
share equivalent surface facets whereas the [110] wires
contain different ones (Figure 1). Therefore, if surface
effects dominate in the nanoscale, it would be expected
that the Young’s modulus for [100] and [111] wires be-
have similarly to each other but different from that of
[110] wires.

Band structures were calculated for some of the smaller
nanowires in each growth direction. A sample structure
is shown in Figure 3. Band gaps were obtained from
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FIG. 3. Band structure near the band gap for the 1.99 nm
wire in the [110] direction. The left edge of k marks Γ, and
the right edge marks the BZ boundary. The top of the valence
band is set to 0 eV.

these structures and are shown in Figure III and Ta-
ble II. The band gap for bulk Ge was calculated to
be 0.41 eV compared to the literature value of 0.74 eV.3

While it is well known that DFT within LDA underesti-
mates the absolute magnitudes of band gaps, the general
trends for band gaps and carrier effective masses can be
reliably reproduced. Studies have shown that band gaps
calculated using DFT with LDA scale similarly to more
accurate and computationally intensive methods such as
GW.40–42 The most interesting findings in the carrier ef-
fective mass trends, which are the sudden jumps in value
under certain amounts of strain, can be illustrated with-
out absolute accuracy in the magnitudes of the effective
masses.

TABLE II. Band gaps with respect to size for the unstrained
wires. The literature value of the gap for bulk Ge is indirect
at L with a value of 0.74 eV at 0 K.3

Diameter Band gap Direct or indirect?
(nm) (eV) (D or I)

[100]
0.70 4.07 D
1.2 2.64 D
1.6 1.92 I

[110]
1.30 1.46 D
1.99 1.08 D

[111]
0.68 3.38 I
1.09 2.24 D
1.51 1.66 I
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FIG. 4. Band gap variations with strain, where 0 on the y-axis
marks the value for the unstrained cases.

The results are similar to those previously reported
by other groups,17,18 which showed direct band gaps for
[110] wires and a direct-to-indirect transition for [100]
wires above 1.2 nm in diameter. However, for [111], the
1.09 nm diameter wire shows a direct band gap whereas
in Medaboina, the band gap is indirect for all sizes. Since
the conduction band for the [111] wires has a relatively
flat dispersion, the location of the conduction band min-
imum (CBM) is extremely sensitive to the wire morphol-
ogy, and whether the band gap can be classified as di-
rect or indirect is often equivocal. Another group has re-
ported direct band gaps for small diameter Ge nanowires
in the [111] direction, which contradicts the results re-
ported by Medaboina.43 But more importantly, the mag-
nitudes of the band gaps are consistent with previous
reports and our findings.
The band gaps for Ge nanowires are higher than the

bulk value owing to the well-documented quantum con-
finement effect. The band gaps decrease with increas-
ing wire size and are expected to continue decreasing for
larger wires to approximately the bulk value. For compa-
rable wire diameters, band gaps tend to be smallest for
[110] wires followed by [111] and then [100] wires. Re-
garding the effects of strain, all growth directions follow

a similar trend, which is a slight decrease of the gap under
tension and a slight increase followed by a much steeper
decrease under compression. This variance tends to be
more sensitive for larger wires. These results are consis-
tent with previous findings on Si and Ge nanowires.4,18

Figure 5 shows the behavior of the valence and conduc-
tion bands with respect to strain for the 1.99 nm wire in
the [110] direction and the 1.51 nm wire in the [111] di-
rection. For the unstrained [110] wire, the band gap is
direct. Strain affects the shape of the bands more signif-
icantly near Γ with relatively little change occuring near
the Brillouin zone (BZ) edge. Note that under tension,
the energy of the valence band maximum (VBM) at Γ
tends to decrease. At 5% strain (not pictured explicitly
in the figure), band crossing occurs where the energy of
the VBM at Γ drops below the adjacent peak at a slightly
higher k-value to which the band gap becomes indirect.
Similarly, under compression the CBM at Γ increases and
is expected to continue increasing with strain until band
crossing occurs with the minimum near the BZ edge.
For the [111] wire, the valence band looks similar to

that of the [110] wire, where the VBM occurs at Γ and
does not vary much with strain near the BZ edge. The
conduction band shows a relatively flat dispersion, which
makes the CBM sensitive to wire morphology as men-
tioned previously. In the unstrained case, the band gap
is indirect, but under tensional strain, the energy at Γ can
be lowered enough to become a direct band gap. This in-
direct to direct transition with strain is consistent with
previous results44.
The effective masses for electrons and holes were ob-

tained through second-order polynomial fits around the

VBM and CBM using the equationm∗ = ~
2(∂

2
E

∂k2 )
−1. Ta-

ble III presents the effective masses for the unstrained
cases. The values are consistent with those previously re-

TABLE III. Carrier effective masses with respect to size for
the unstrained wires.

Diameter (nm) m
∗

e (m0) m
∗

h (m0)
[100]

0.70 0.66 1.89
1.2 0.33 1.06
1.6 0.30 2.18∗

[110]
1.30 0.13 0.12
1.99 0.13 0.08

[111]
0.68 0.86∗ 0.47
1.09 0.40 0.21
1.51 0.41∗ 0.14

∗Indicates that the VBM or CBM was not at Γ.

ported for wires in the [100] and [110] direction.21,45 The
trend shows a decrease in carrier effective masses with
increasing wire size.
Figure 6 shows the behavior of carrier effective masses

with respect to strain for various systems. In the range
of strain tested for the [110] wires, the electron effective
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FIG. 5. The valence and conduction bands with respect to strain for the (a) [110] wire with D=1.99 nm and the (b) [111] wire
with D=1.51 nm. The left edge of k marks Γ, and the right edge marks the BZ boundary.

mass does not vary significantly with tension. However,
under certain amounts of compressional strain, the elec-
tron effective mass jumps upward (for the 1.30 nm wire
moving from -3 to -4% strain, the electron effective mass
jumps by around 425%). This jump corresponds to incip-
ient band crossing that can be mapped to the band struc-
ture of Figure 5. With compression, the curvature of the
CBM at Γ decreases sharply as its energy increases to ap-
proach the value of the minimum near the BZ edge. The
hole effective mass shows the opposite behavior, where
the mass does not vary much with compression, but un-
der significant tensional strain (5% for the 1.99 nm wire),
the effective mass jumps. In the band structure, it can
be seen that the VBM at Γ starts to drop below the adja-
cent peak at a slightly higher k-value with 4-5% tensional
strain. Since carrier effective masses are inversely related
to their mobilities, these jumps can correspond to sudden
decreases in mobilities for certain amounts of strain.

For the [111] wires, the valence band does not show
band crossing in the range of strain tested, so no jumps
in hole effective masses are observed. The trend shows a
slight decrease in hole effective mass with tension and a
stronger increase with compression. This can be observed
in the band structure where the curvature of the VBM
at Γ increases with tension and decreases with compres-
sion. The sensitivity of the effective mass with strain
seems to decrease with increasing wire size. These re-
sults are qualitatively similar to those shown for [111]
Si nanowires.4 The electron effective masses are not in-
cluded due to the flat dispersion of the conduction band.
The effective masses for [100] wires are also omitted as
the band structures were plagued with band crossing and
did not show any meaningful trends.

IV. CONCLUSIONS

For the three growth directions tested, we find the
Young’s moduli approach their bulk values with increas-
ing wire size. The behavior of the Young’s modulus
with size is similar for the [100] and [111] wires, pos-
sibly because the surface facets are equivalent in those
growth directions. Regarding electronic properties, in
the unstrained cases [100] wires show a direct-to-indirect
band gap transition with increasing size, and [110] wires
show direct gaps for all sizes tested. Tensional strain
causes band gaps to decrease slightly whereas compres-
sional strain causes band gaps to first increase slightly
then drop off more steeply. For [110] wires, carrier ef-
fective masses jump sharply for certain values of strain,
which can correspond to sudden drops in carrier mobil-
ities. For [111] wires, hole effective masses do not show
sudden jumps in the range of strain tested. Knowledge
of how mechanical and electronic properties change with
size and strain can be useful in designing functionalized
nanostructures for applications.
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