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Abstract 

     Using a first principles approach based on density functional perturbation theory and an exact 

numerical solution to the phonon Boltzmann equation, we show that application of large 

compressive hydrostatic pressure dramatically increases the thermal conductivity of diamond.  

We connect this enhancement to the overall increased frequency scale with pressure, which 

makes acoustic velocities larger and reduces phonon-phonon scattering rates.  Of particular 

importance is the often neglected fact that heat-carrying acoustic phonons are coupled through 

lattice anharmonicity to higher frequency optic modes.  An increase in optic mode frequencies 

with pressure weakens this coupling and contributes to driving the diamond thermal 

conductivities to far larger values than in any material at ambient pressure and temperature. 

 

PACS:  66.70.-f, 63.20.kg, 71.15Mb 
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I.  Introduction 

    Diamond has a number of remarkable properties including unparalleled mechanical strength 

and transparency, and unusually high incompressibility, melting temperature, and thermal 

conductivity [1].  It is a covalent insulator with simple electronic and lattice structures.  As a 

result, diamond has for decades been the subject of intense investigation, both for scientific 

understanding as well as for technological applications. 

     Recently, considerable attention has been focused on the properties of diamond under extreme 

pressure in connection to planetary astrophysics [2, 3], to capsules for inertially confined fusion 

[4], and to the understanding of processes deep within the Earth [5].  Diamond has also proven to 

be an ideal test material for both theoretical [6-8] and experimental [9-11] high-pressure studies 

with measured pressures reaching as high as 800GPa [11]. 

     In this work we examine theoretically the thermal conductivity, k, of diamond under large 

compressive hydrostatic pressure.  The pressure dependence of the thermal conductivity of non-

metals was first studied almost a century ago by Bridgeman [12].  He found increases in k with 

pressure, P.  Many subsequent measurements over the intervening decades corroborated this 

behavior in a variety of materials including Alkali Halides [13-15], ice [16, 17], and those 

relevant to heat flow in the earth's mantle such as MgO [18].  Considerable progress has also 

been achieved in developing accurate measurement techniques of k(P) [15, 18-21], with P 

extending up to several tens of GPa. 

     The intrinsic thermal conductivity of insulators is governed by phonon-phonon interactions 

arising from the anharmonicity of the interatomic potential [22].  As a result of the complexity of 

accurately representing this interaction theoretical descriptions of k(P) have frequently relied on 

the simple Leibfried and Schlömann model [23, 24], which makes many approximations and also 
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assumes that the temperature range considered is well above the Debye temperature, θD.  Over 

the past few years, quantitative first principles approaches have been developed to calculate the 

thermal conductivity of semiconductors and insulators [25-38], and some of these were directly 

applied to examine the k(P) for MgO [27, 30, 31]. 

     The pressure dependence of the thermal conductivity of diamond should be particularly 

interesting.  At ambient pressure and temperature, diamond has the highest thermal conductivity, 

k0, of any bulk 3D material with recorded values for isotopically enriched crystals around 

3000W/m-1K-1 [39], over seven times higher than copper.  This high value arises from stiff 

atomic bonds and light carbon mass.  Diamond's unusually small compressibility allows it to 

withstand pressures exceeding 1000 GPa without undergoing a structural phase transition.  Thus, 

one might expect that record thermal conductivity values could be achieved in diamond under 

high pressure conditions. 

     In this work we demonstrate this behavior using a first principles approach, which combines 

accurate calculation of the harmonic and anharmonic interatomic force constants (IFCs) using 

density functional perturbation theory (DFPT) with an exact numerical solution to the Peierls-

Boltzmann transport equation (PBE) for phonons [25, 26, 40, 41].  Previous implementation of 

this approach for ambient pressure yielded excellent agreement with the measured thermal 

conductivities of silicon, germanium and diamond [25, 26] with no adjustable parameters.  At 

pressures of several hundred GPa, we find calculated k(P) values that are several times higher 

than k0 and thus far higher thermal conductivities than occur in any known material at ambient 

pressure and temperature.  The origin of this behavior is connected to the change in intrinsic 

anharmonic interaction between phonons.  A shift of the phonons to high frequencies with 

pressure weakens this interaction, which leads to large increases in thermal conductivity.  In 
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particular, the often-neglected coupling of the heat-carrying acoustic phonons to the optic modes 

plays a crucial role.  While optic phonons are frequently neglected in thermal conductivity 

calculations [23, 24] because they carry little heat, these phonons provide essential scattering 

channels for the acoustic phonons.  Their shift to higher frequency with pressure is a key factor 

in driving up the thermal conductivity.  These findings are consistent with previous ab initio 

calculations [25, 26, 36, 37, 42] which have noted that acoustic-optic mode coupling should play 

an important role in determining the thermal conductivity of a material.  In addition, recent 

measurements and theory have found it to explain the anomalously low thermal conductivity 

observed in PbTe [36, 37]. 

     In Section II, a description of the theoretical approach used here to calculate the thermal 

conductivity of diamond under pressure is given.  Section III presents and discusses our results. 

To connect to previous theories, we will also discuss in this section the application to diamond of 

the Leibfried and Schlömann model [23] as well as previous first principles approaches [27, 30, 

31].  We will show that these theories are not appropriate for diamond because of its stiff lattice 

and resulting high phonon frequency scale.  Section IV presents a summary of our findings. 

II. Ab initio Transport Theory. 

     In diamond, heat is predominantly carried by phonons.  A temperature gradient, ∇T, drives a 

phonon heat current ∑= λλλλ ω nVQ vJ =)/1(  through the sample.  The sum is over all phonon 

modes λ = (q, j) with q being the phonon wave vector and j labeling the phonon polarization, 

ω λ and vλ are the phonon frequency and velocity in mode λ and V is the crystal volume.  For 

small ∇T, the non-equilibrium distribution function, nλ = nλ
0 + nλ

1 , can be determined by solving 

the linearized PBE.  Here, )1)//(exp(10 −= Tkn Bλλ ω=  is the Bose factor at temperature T, 
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and nλ
1 = −(dnλ

0 /dT) α vλατλα dT /dxα∑ , where the sum is over the Cartesian components, x, y and 

z taken to be along the cubic axes.  Note that nλ
1  is explicitly related to τλα , the phonon lifetime 

in mode λ for temperature gradient along direction α [22, 43]. 

     Phonons are scattered by other phonons through intrinsic anharmonic processes, or by 

extrinsic processes such as isotopic impurities, defects, and crystal boundaries [22].  The phonon 

lifetime τλα  due to this scattering can be extracted from the solution of the linearized PBE [25, 

26, 41, 42], which can be cast as a set of coupled equations for τλα : 

τλα = τλ
0 +τλ

0 Δ(+)(Γλλ 'λ ''
(+) ,τλ 'ατλ ''α )

+
∑ + Δ(−)(Γλλ 'λ ''

(−) ,τλ 'ατλ ''α )
−
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (1) 

In Eq. 1 the sums are over all of the modes λ′, and λ′′ satisfying energy and momentum 

conservation conditions for “+” and “-“ three-phonon scattering processes: 

ω λ ± ω λ ' = ω λ ''  and q ± q'= q' '+K      (2) 

 where K  is a reciprocal lattice vector, which is zero for momentum-conserving Normal 

processes and non-zero for resistive Umklapp processes.  The functions Δ(± ) depend on phonon 

lifetimes in modes λ′, and λ′′ and on Γλ ′ λ ′ ′ λ 
(+) and Γλ ′ λ ′ ′ λ 

(−) , the intrinsic anharmonic scattering rates 

for processes satisfying Eq. 2.  These scattering rates are obtained to lowest-order in perturbation 

theory and describe the interaction of three phonons.  τλ
0  is given by: 

1/τλ
0 ≡ Γλλ 'λ ''

(+)

λ 'λ ''

(+)

∑ +1/2 Γλλ 'λ ''
(−)

λ 'λ ''

(−)

∑ +1/τλ
ext      (3) 

where the intrinsic three-phonon scattering probabilities are: 

  
Γλ ′ λ ′ ′ λ 

(±) =
hπ

4N0ω λω ′ λ ω ′ ′ λ 

n ′ λ 
0 − n ′ ′ λ 

0

n ′ λ 
0 + n ′ ′ λ 

0 +1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Φλ ,± ′ λ ,− ′ ′ λ 
(±) 2

δ(ω λ ± ω ′ λ −ω ′ ′ λ )   (4) 
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In Eq. 4, N0 is the number of unit cells, and the three-phonon matrix elements are given by 

Φλλ 'λ '' = Φαβγ 0κ, l'κ ', l' 'κ ' '( ) eακ
λ eβκ '

λ ' eγκ ''
λ ''

Mκ M ′ κ M ′ ′ κ 

eiq '⋅R l ' eiq ''⋅R l ''

αβγ
∑

l ''κ ''
∑

l 'κ '
∑

κ
∑   (5) 

where Φαβγ (0κ, l'κ ', l' 'κ ' ')  are the third-order anharmonic IFCs, eακ
λ  is the αth component of the 

phonon eigenvector for the thκ  atom in the unit cell with mass Mκ  and in mode λ, and Rl  is the 

lattice vector locating the lth unit cell.  In Eq. 3 1/τλ
ext  are the scattering rates due to extrinsic 

processes, to be specified below.  

     The lattice thermal conductivity, kL, is a scalar for cubic crystals such as diamond [22]: 

kL ≡ kαα = Cλvλα
2

λ
∑ τλα       (6) 

where   Cλ = kB nλ
0 (nλ

0 +1)(hω λ /kBT)2 /V  is the specific heat capacity per phonon mode.  The 

solution to the PBE, Eq. 1, has been described in detail elsewhere [25, 26, 40, 41].  Here we 

focus on the physical significance of its components.  τλ
0  is directly determined from the 

combined scattering rates for all intrinsic and extrinsic processes.  Of particular importance, 

Normal processes are treated as resistive.  In principle, this is incorrect since Normal processes 

do not change the heat current [22, 25, 26, 40, 41, 43].  The thermal conductivity, kL
0, obtained 

using τλ
0  in place of τλ  in Eq. 6 therefore underestimates kL.  The full PBE solution for τλα  

corrects for this giving kL = kL
0 + Δk  where Δk > 0.  For temperatures T~θD, Umklapp scattering 

dominates Normal scattering so Δk  is typically small.  Diamond has θD~2000K so around and 

below room temperature, T<<θD and Δk  is large and must be explicitly included in the full PBE 

solution to accurately describe kL [26]. 

     The total energy, E(V), hydrostatic pressure, P = −∂E /∂V  and harmonic IFCs were calculated 

ab initio using the Quantum Espresso package [44], while anharmonic IFCs were generated 
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following the approach of Ref. 45.  All IFCs for each P were determined within the framework 

of DFPT and the local density approximation (LDA), using the BHS pseudopotential [46]. The 

harmonic IFCs were calculated using a 6x6x6 Monkhorst-Pack [47] k-point mesh while the 

anharmonic IFCs were determined using a 4x4x4 mesh and including interactions out to seventh 

nearest neighbors [25, 26, 45].  Phonon frequencies and eigenvectors are obtained from the 

harmonic IFCs while phonon-phonon scattering rates require both harmonic and anharmonic 

IFCs.  We highlight that our approach introduces no adjustable parameters.  

III. Results and Discussion 

     We calculate kL for diamond as a function of T and P.  We ignore defects other than isotopes 

so our calculations best compare with type IIa diamond [40], the purest type.    Both naturally 

occurring isotope concentration (1.1% 13C) [39] and a hypothetical isotopically pure (i.e. 100% 

12C) material are investigated.  The phonon-isotope scattering rate can be written in the 

polarization-independent closed form [48]: 1/τλ
iso ≡1/τ iso(ω ) = πV0gω 2D(ω ) /6, where D(ω) is 

the phonon density of states, V0 = a3 /8  is the volume per atom where a is the zero-temperature 

lattice constant, g is the mass variance parameter ( g = 7.54 ×10−5 for diamond with 1.1% C13 

impurities in C12 [26]).  The effect of phonon scattering from sample boundaries has been 

included through an empirical scattering time:  τb = L / vλ  where L is the effective sample size 

[22]. 

     Figure 1 shows our calculated pressure as a function of the lattice constant (solid red curve), 

reflecting the equation of state for diamond, and it demonstrates excellent agreement with LDA 

results obtained previously in Ref. 6 (open circles).  Also represented by the solid black squares 

are the measured results from Ref. 9, which extend up to 140 GPa. These data are in good 

agreement with the calculated values.  They lie slightly higher than the calculated results because 
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the LDA has a tendency to overbind giving total-energy-minimized lattice constants that are 

about 1% smaller than that measured for diamond.  Figure 2 shows the phonon density of states 

for diamond at ambient pressure, P=0 and at P=125 GPa.  Compressive pressure barely changes 

the low frequency transverse acoustic (TA) phonons but shifts the longitudinal acoustic (LA) 

phonons and the optic phonons to larger frequencies, as has been demonstrated previously [6-9].  

     Figure 3 shows kL as a function of T for P=0 (solid and dashed black curves) and P=125GPa 

(solid and dashed red curves). Two cases are considered:  knat is the thermal conductivity for 

naturally occurring diamond with 1.1% 13C isotopic impurities.  kpure is for the hypothetical 

case of no isotopic impurities.  We have taken a sample size L=1mm consistent with previously 

chosen values for diamond [49].  For low temperature, the boundary scattering term dominates 

with kL~T3 for all cases.  In this regime, the slightly increased acoustic phonon velocities at 

high P enhance the boundary scattering causing the observed slightly smaller kL values.  Above 

the peaks, phonon-phonon scattering provides the dominant thermal resistance.  In this regime 

lowering T decreases the thermal occupation of phonons at all frequencies causing the phonon-

phonon scattering rates to decrease and knat and kpure to rise.  We note that for P=0, our 

previously calculated kL as a function of temperature [26] was found to be in very good 

agreement with measured values [39, 49-51].  For P=125GPa knat and kpure remain several times 

larger than the corresponding P=0 values throughout the range of temperatures above the 

peaks.  As a result, the peak locations shift to higher T.  In the vicinity of the peaks, the isotope 

effect for both cases becomes enormous with enhancement factors kpure/ knat of roughly seven. 

Figure 4 shows knat and kpure as a function of P at T=300K calculated using the ab initio 

approach described above.  For P=0 knat=2290 Wm-1K-1, while kpure =3450 Wm-1K-1, about 

50% larger than knat due to removal of the phonon isotope scattering.  With increasing P knat 
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and kpure become much larger; at 400GPa, knat≈12000 Wm-1K-1 and kpure =17000Wm-1K-1 

corresponding to nearly five-fold increases compared to the P=0 values.  These values are far 

higher than those in any known material at ambient P and T. 

The dramatic increase in kL with pressure is connected to the intrinsic anharmonic coupling 

between phonons. Our calculational scheme allows us to examine this coupling through the 

behavior of the momentum and energy conserving three-phonon processes.  The types of 

processes that dominate the three-phonon scattering rates for acoustic phonons are: a + a ↔ a 

and a + a →o.  Here a and o refer to acoustic and optic phonons, respectively.  The processes 

involving only acoustic phonons i.e. the a + a ↔ a contributions to the scattering rates 

dominate at lower frequencies while at higher frequencies a cross-over takes place in which the 

processes involving optic modes i.e. a + a →o become the most important.  In comparing 

a + a ↔ a and a + a →o processes, we find that vast majority of Umklapp processes are of the 

a + a →o type.  This makes sense since the a + a →o processes typically involve larger wave 

vector acoustic phonons.  However, it is important to note that both a + a ↔ a and a + a →o 

processes are required to accurately describe kL.  Removal of either type gives far too high 

kL.values. 

     In many theoretical treatments of thermal conductivity, only acoustic phonons are 

included.  However, the importance of the coupling between acoustic and optic modes in 

diamond has been noted previously [26, 52, 53].  While optic phonons carry little heat they are 

key participants in phonon-phonon scattering processes that limit kL.  In diamond at P=0, about 

80% of the three-phonon processes contributing to the total acoustic branch scattering rates 

involve optic phonons [26, 52].  Thus, removal of the acoustic-optic mode scattering channels 

causes kL to rise significantly with over a six-fold increase at room temperature [26]. 
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With increasing P, both acoustic and optic phonon modes involved in three-phonon 

scattering processes shift to higher frequencies. As a result, the acoustic phonon velocities 

become larger, but this is relatively modest, around 5% for the TA branch and around 15% for 

the LA branch for P=125GPa.  The increase in kL produced by this velocity change represents 

only a small fraction of that observed in Figs. 3 and 4.  The overall higher phonon frequencies 

with pressure are responsible for the majority of the increase in kL since this dramatically 

decreases the three-phonon scattering rates..  To highlight the connection between the optic 

phonon frequencies and kL the inset to Fig. 4 shows the calculated maximum optic phonon 

frequency, ωLTO, plotted against P [53].  It is evident that the rise in ωLTO with P tracks with the 

corresponding increase in kL. 

One can ask about the effect of pressure on the anharmonic IFCs since any changes in the 

anharmonic IFCs must also affect kL in conjunction with those from the harmonic IFCs.  We 

find that anharmonic IFCs increase in magnitude with increasing P, just as do the harmonic 

IFCs.  Since the anharmonic IFCs enter the three-phonon scattering matrix elements, Eq. 5, this 

means that the harmonic and anharmonic IFCs work in opposition, the former acting to 

increase kL while the latter acting to decrease it.  To appreciate this point, we have mixed 

harmonic and anharmonic IFCs at two different pressures, P=0 and P=125GPa.  For case 1, we 

combine the harmonic IFCs at P=0 and the anharmonic IFCs at P=125GPa.  For case 2, we 

reverse these, with harmonic IFCs at P=125GPa combined with the anharmonic IFCs at P=0.  

At T=300K, we obtain kpure =1170Wm-1K-1 for case 1 and kpure =18,690Wm-1K-1 for case 2.  

These numbers are to be compared to the actual values of kpure=3450Wm-1K-1 for P=0 and 

kpure=6880Wm-1K-1 for P=125GPa.  Thus, the increase of the harmonic IFCs with pressure is a 

more important driver of kL than that for the anharmonic IFCs.  Nevertheless, the increasing 
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anharmonic IFCs with pressure play an important role in suppressing what would be an even 

larger increase in kL. 

In the T regime where phonon-phonon scattering dominates, both decreasing T and 

increasing P cause kL to increase.  However, the effects of these changes on the spectral 

distribution of phonons contributing to kL are decidedly different.  To illustrate this we calculate 

the accumulated thermal conductivity kacc (l) , which adds up all contributions to kL from 

phonons with scattering lengths | vλ |τλz  less than l: 

   kacc (l) = Cλvλz
2 τλzθ(l− | vλ |τ λz )

λ
∑      (7) 

For clarity, we consider the isotopically pure case where only phonon-phonon scattering is 

included.  Figure 5 shows the ratio kacc (l) / kL for three cases.  The solid black curve gives 

kacc (l) /kL for P=0 and T=300K.  For this case, about 80% of the contributions to kL come for l 

between 0.5μm and 2μm. The spectral distribution is relatively narrow since T<<θD so only a 

small portion of the heat carrying acoustic phonon spectrum is thermally populated.  The blue 

curve shows kacc (l) / kL for P=0 and T=200K.  This curve is similar to the previous case but 

shifted to larger scattering lengths, highlighting that lowering the temperature increases the 

scattering lengths of all phonon modes contributing to kL.  The dotted red curve gives the kacc (l) / 

kL for P=125GPa and T=300K.  It shows that increasing pressure predominantly affects phonons 

with larger intrinsic scattering lengths. This can be understood as follows.  Increasing P shifts 

primarily the LA and optic phonon modes to higher frequency thereby decreasing their 

populations.  As a result, the scattering rates for low frequency acoustic phonons are 

substantially reduced since these phonons are mainly coupled through the anharmonic interaction 

to optic phonons.  This gives increased | vλ |τλz .  However, we find that with increasing P the 
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number of three-phonon scattering processes satisfying Eq. 2 actually becomes larger for higher 

frequency acoustic phonons.  This counteracts somewhat the effect of the suppressed LA and 

optic phonon populations and gives three-phonon scattering rates and | vλ |τλz  closer to those at 

P=0.  This results in the more extended spectral distribution illustrated in Fig. 5. 

     The above description for increasing kL with P can be directly connected to the relative 

strengths of Normal and Umklapp scattering processes.  Normal processes typically involve 

lower frequency phonons than Umklapp processes.  From the above discussion, we expect that 

with increasing P the scattering rates due to Normal processes will be weakened relative to 

their Umklapp counterparts.  As a result the correction factor, Δk , coming from proper 

treatment of Normal processes (see text below Eq. 6) should become a smaller fraction of kL.  

This is exactly what we find.  At room temperature, Δk /kL = 0.31 for P=0 while P=125GPa, 

Δk /kL = 0.16 . 

     We now examine previously developed theories to calculate kL(P).  The most commonly used 

theory to describe the pressure dependence of thermal conductivity is that given by Leibfried and 

Schlömann [23], which gives kL = AV0
1/ 3ω D

3 /γ 2T  where A is a pressure independent constant, 

ω D  is the Debye frequency and γ  is an averaged Grüneisen parameter, taken as a measure of the 

strength of the anharmonic scattering.  Within the Debye model, ω D = v qD  with v  being the 

averaged acoustic velocity defined by v = 3/(2 /vTA +1/vLA )  where vTA  ( vLA ) is the transverse 

(longitudinal) acoustic phonon velocity, and the Debye wavevector qD ~ V0
−1/ 3 .  For γ  we 

employ the commonly used mode-averaged expression:  γ = Cλγλ
λ
∑ / Cλ

λ
∑  where 

γλ = −d lnωλ /d lnV  is the Grüneisen parameter for mode λ and Cλ  was defined below Eq. 6.  

The mode Grüneisen parameters can be expressed in terms of the anharmonic IFCs as [26]: 
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γλ = −
1

6ωλ
2 Φαβγ 0κ, l'κ ',l' 'κ ' '( ) eακ

λ∗eβκ '
λ '

Mκ Mκ '

eiq ⋅R l ' rl ''κ ''γ
αβγ
∑

l ''κ ''
∑

l 'κ '
∑

κ
∑    (8) 

Here, Rl is a lattice vector locating the lth unit cell, κ  specifies an atom in this cell whose mass is 

Mκ , and α ,β   and γ are Cartesian components.  The Φαβγ 0κ, l'κ ', l' 'κ ' '( ) are third order IFCs, 

and eακ
λ  is the αth component of the phonon eigenvector for atom κ in mode λ.  Finally,  rAκγ  is the 

γth component of the vector locating the κ th lattice atom in the lth unit cell.   

     We use the Leibfried and Schlömann expression for kL to calculate the ratio kL (P) /kL (0)  at 

room temperature and with P=125GPa.  For this case, we find V0(P) /V0(0) = 0.936 , 

ω D (P) /ω D (0) =1.18 [55] and, using Eq. 8, γ (P) /γ (0) = 0.636 giving kL (P) /kL (0) =3.97.  This 

is about twice as large as the ratio kpure (P) /kpure (0) calculated from the first principles approach 

presented in this work.  This large difference is not surprising.  The Leibfried and Schlömann 

expression for kL was derived within a simple Debye model in which the intrinsic scattering was 

assumed to occur only between acoustic phonons and temperatures were assumed to be above 

θD.  Since θD ~2000K and, as discussed above, in diamond scattering of acoustic phonons by 

optic phonons plays an essential role in limiting kL the Leibfried and Schlömann expression 

should not be expected to work well for diamond.  

     As described above, our first-principles approach to phonon thermal transport uses an exact 

numerical solution of the PBE.  This contrasts with other ab initio approaches [27, 28, 30-35, 

37], which instead use relaxation time approximations (RTAs) to the PBE.  In our formulation, 

this amounts to calculating kL
0 , in place of kL (see discussion below Eq. 6) and is equivalent to 

incorrectly treating Normal phonon-phonon scattering processes as resistive.  For many 

materials, this is a good approximation at sufficiently high temperatures where Umklapp 
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scattering is relatively strong.  For example, in Si and Ge, we find less than 10% difference 

between kL
0 , in place of kL at T=300K.  However, in the carbon based crystals i.e. diamond [26], 

carbon nanotubes [56], graphene [57] and graphite [58] as well as for boron nitride systems [59, 

60] the RTA has been found to work poorly.  The stiff bonding and light carbon mass result in a 

very high frequency scale.  The diamond anharmonic scattering rates around room temperature 

are therefore qualitatively comparable to those of other materials at much lower temperature.  

Specifically, Normal phonon-phonon scattering plays an important role.  This is evident in Fig. 

6, which plots the ratio kL/ kL
0 as a function of temperature for the case of isotopically pure 

diamond at P=0 and P=125GPa.  For both cases the ratio increases with decreasing temperature 

attaining values of several times kL
0  in the low temperature region.  Note that the ratio is 

noticeably larger for P=0 compared to P=125GPa.  This reflects the decreasing strength of 

Normal scattering with increasing P, as discussed in connection with Fig. 5. 

     We briefly comment here on the validity of our use of the LDA for the exchange and 

correlation functional as compared to the Generalized Gradient Approximation (GGA).  At 

ambient pressure, we have found the calculated phonon dispersion curves and thermal 

conductivity using the LDA to be in very good agreement with measured values [26].  

Furthermore, the calculated LDA phonon frequencies at high symmetry points have been shown 

to be about as close to measured values as those using the GGA [61]. Figure 14 of Ref. 61 also 

shows that the linear thermal expansion coefficient calculated using the LDA is in very good 

agreement with measured data below 500K, the temperature range considered in this work.  This 

validates our use of the LDA for the calculated results presented here.  In any case, we 

emphasize that possible small differences that might exist between LDA and GGA results would 

not change any of the main findings in this work. 
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IV.  Summary and Conclusions 

We have calculated the lattice thermal conductivity, kL, of diamond as a function of 

compressive hydrostatic pressure up to several hundred GPa.  We find that kL increases to 

values well over 10,000Wm-1K-1 at room temperature and 400GPa, far higher than any known 

material.  We have identified the primary mechanism for this enhancement as the anharmonic 

coupling between phonons.  The shift of phonon modes to higher frequencies with applied 

pressure weakens the phonon-phonon scattering rates thereby driving kL to higher values.  The 

often neglected scattering of heat-carrying acoustic phonons by optic phonons has been shown 

here to be essential in accurately describing the pressure dependence of kL.  This mechanism is 

not considered in the frequently used theory of Leibfried and Schlömann [23].   

To our knowledge, there are currently no measurements of kL .vs. P for diamond.  While the 

large values of kL predicted by the first principles theory presented herein would be challenging 

to measure for high P, the recent progress in accurate techniques to measure kL(P) up to tens of 

GPa [18-21] provides some encouragement.  Finally, we note that diamond is unique among all 

bulk materials in combining extreme bond stiffness with unusually small compressibility and 

structural phase stability under high compressive pressure.  These properties are critical to 

achieve the record thermal conductivities predicted here. 
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Figure Captions 

Figure 1 The calculated P .vs. lattice constant (solid red curve) compared with calculated LDA 

results from Ref. 6 (black open circles) and the measured data from Ref. 9 (black solid 

squares). 

 

Figure 2 Density of phonon states in diamond as a function of phonon frequency for P=0 

(dashed red curve) and P=125GPa (solid blue curve). 

 

Figure 3  Calculated knat and kpure as a function of T for P=0 (solid and dashed black curves) 

and P=125GPa (solid and dashed red curves).  Sample size is taken to be L=1mm. 

 

Figure 4  Calculated knat (solid red curve) and kpure (dashed black curve) .vs. P for diamond at 

T=300K.  Inset shows the calculated maximum phonon energy ω LTO  .vs. P (solid black line).  

Also shown are measured results from Ref. 9 (dashed black line).  We note that the calculated 

ωLTO agrees within 3% of the measured values in Fig. 3 of Ref. 9. 

 

Figure 5  kacc (l) / kL for P=0 and T=300K (solid black curve), P=0 and T=200K (dashed blue 

curve) and P=125GPa and T=300K (dotted red curve). 

 

Figure 6 Ratio of the room temperature thermal conductivity obtained from the full PBE 

solution to that from the relaxation time approximation, kL/ kL
0 , for P=0 (dashed black curve), 

and P=125GPa  (solid red curve). 
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