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We study the coherent properties of transmission through Kondo impurities, by considering an
open Aharonov-Bohm ring with an embedded quantum dot. We develop a novel many-body scatter-
ing theory which enables us to calculate the conductance through the dot Gd, the transmission phase
shift ϕt, and the normalized visibility η, in terms of the single-particle T -matrix. For the single-
channel Kondo effect, we find at temperatures much below the Kondo temperature TK that ϕt = π/2
without any corrections up to order (T/TK)2. The visibility has the form η = 1−(πT/TK)2. For the
non-Fermi liquid fixed point of the two channel Kondo, we find that ϕt = π/2 despite the fact that a

scattering phase shift is not defined. The visibility is η = 1/2(1+4λ
√
πT ) with λ ∼ 1/

√
TK , thus at

zero temperature exactly half of the conductance is carried by single-particle processes, and coherent
transmission may actually increase with temperature. We explain that the spin summation masks
the inherent scattering phases of the dot, which can be accessed only via a spin-resolved experiment.
In addition, we calculate the effect of magnetic field and channel anisotropy, and generalize to the
k-channel Kondo case.

PACS numbers: 71.27.+a,72.15.Qm,75.20.Hr

I. INTRODUCTION

If the ground state of a quantum dot has a fixed num-
ber of electrons, decreasing the temperature to below the
charging energy of the dot reduces the conductance Gd
through the dot because of Coulomb blockade1–4. If the
electron occupancy is odd, lowering the temperature even
further increasesGd, until it reaches (for a symmetrically-
coupled dot) 2e2/h at zero temperature5–7.

The enhancement of the conductance is due to the
single-channel Kondo (1CK) effect8, in which the dot acts
as a magnetic impurity that interacts with the spins of
the electrons in the surrounding leads. At low tempera-
ture, below a characteristic temperature TK , a spin res-
onance is formed, and the conductance through the res-
onance is perfect and equals e2/h per spin. The physics
of 1CK at low energy can be described by a Fermi liquid
theory: at zero temperature, all the particles that scatter
off the impurity are scattered into single-particle states,
where the incoming and outgoing states are connected by
a π/2 scattering phase shift9 (see also Sec. III).

The 1CK physics can be generalized to more complex
models, known as multi-channel Kondo, where a few in-
dependent channels compete to screen the impurity10.
In the two-channel Kondo (2CK) case, when the cou-
plings of the two channels to the impurity are identical
the system flows to a non-Fermi liquid fixed point at zero
temperature. At a non-Fermi liquid fixed point, the sim-
ple picture of elastic scattering of single particles is no
longer valid. At zero temperature, a single particle that
is scattered off a 2CK impurity can be scattered only into
a many-body state11,12. Thus, there is no elastic single-
particle scattering off a 2CK impurity at the non-Fermi
liquid fixed point. The 2CK system was first discussed as
a purely theoretical problem10, but it was soon invoked as
a candidate explanation for remarkable low-energy prop-

erties of some heavy fermion materials13–16 and glassy
metals17–21 and more recently in graphene22–25. In the
past decade, a few single-impurity realizations of the 2CK
system were proposed26–30, offering the hope of micro-
scopically manipulating system parameters, and one of
the proposals29 was built and measured31. The conduc-
tance through a 2CK impurity, within one of the two
channels, at the non-Fermi liquid fixed point is e2/2h
per spin, assuming equal coupling to two leads in that
channel11.

Given that there are no elastic single-particle scatter-
ing events off the impurity in the non-Fermi liquid fixed
point, one might imagine that the transport through a
2CK impurity has no coherent part. In this work, we
show that at this fixed point exactly half of the conduc-
tance is carried by coherent processes32. This is because
in a transport measurement through a single-level quan-
tum dot there are (at least) two leads that are attached
by tunneling to the dot. The electrons that interact with
the effective spin of the dot are described by an operator
ψ, a linear combination of electron operators in the two
leads. Another linear combination of electron operators
in the two leads, ξ, is decoupled from the dot. While
there are no elastic single ψ-particle scattering events,
coherent transport via ξ-particles is possible.

The coherent properties of the transport through an
impurity can be measured in a two-path experiment, in
which electrons are sent from a source lead through two
possible paths to a drain lead (see Fig. 1). We assume
that the propagations along the different paths are inde-
pendent of each other, namely, changes in the properties
of one path do not affect the propagation along the other
path. One of the paths contains the impurity of interest,
and the two paths encircle a magnetic flux φ. The inter-
ference between the two paths depends on φ through the
Aharonov-Bohm (AB) effect. Hence, the conductance of
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Figure 1: Schematic picture of a two-path setup. Electrons
are sent from the source lead toward the drain lead through
two paths, whose partial waves which interfere with each
other. The transmission amplitudes of the two paths are td
and tref, and they encircle a magnetic flux φ. The coherent
transport through the Kondo impurity can be studied by em-
bedding it into one of the paths.

the setup contains two parts: a flux-independent part,
which is related to the separate conductances of the two
paths, and a flux-dependent part, which is related to the
interference of the two paths.

Two measurable quantities can be extracted from a
two-path experiment: the transmission phase shift of
the flux-dependent conductance, and the ratio between
the amplitude of the flux-dependent part and the flux-
independent part of the conductance. We cast the source-
to-drain conductance of the two-path device into the form

Gsd = Gd +Gref + 2
√
η
√

GdGref cos

(

eφ

~c
+ ϕt

)

, (1)

where Gd is the conductance through the path with the
impurity when the reference path is switched off, and
Gref is the conductance through the reference path when
the impurity’s conduction is switched off. The impurity
will generally be realized as one or more quantum dots,
so we will interchangeably refer to “impurity” and “dot”
depending on context. We assume that the paths are in-
dependent: manipulations of the dot (for example, with
gate potential) do not influence the conductance of the
reference path, and vice versa. The transmission phase,
ϕt, is related to the relative phase between the two paths,
and the normalized visibility η is related to the size of the
coherent part of the conductance compared to the total
conductance. Note: the phase of the reference path is ar-
bitrary, determined by path length, potential landscape,
etc. So is the phase of the path with the impurity, exclud-
ing the transmission phase of the impurity itself. Below
we assume for simplicity that each of these phases is 0
mod 2π, so that ϕt is purely the transmission phase of the
impurity itself. The definition of η, implicit in Eq. (1), is
such that for Fermi liquids, at zero temperature and with-
out spin, η = 1. This can be easily checked by applying
the Landauer formalism33–36 for the two-path experiment
setup.

The normalized visibility η can be reduced to below
one by four mechanisms: First, if the transmitted elec-
trons accumulate an energy-dependent phase when they

are scattered through the impurity, or just along either
path, then at nonzero temperature η is reduced because
of the thermal averaging. Second, if the phase depends on
the spin, the spin summation can also reduce η. Third, if
part of the conductance is carried by incoherent scatter-
ing processes, where single electrons are scattered into
many-body states, the interference and therefore η are
reduced. Fourth, electrons that are subjected to external
dephasing lose their coherence, so external dephasing also
decreases the interference and η. External dephasing de-
pends on the specific model and the details of the setup.
Hence, we focus mainly on the first three mechanisms,
and only qualitatively explore the effect of external de-
phasing on η.

Since Gd and Gref can be measured directly, the
normalized visibility can be experimentally determined.
This requires two measurements: the conductance
through one of the paths, and the two-path conductance.
Measuring the transmission phase of a 1CK impurity in
a two-path setup was already suggested before37, and the
predicted ϕt = π/2 was measured38, demonstrating co-
herent electron transmission through a many-body state.
Yet, no special attention was given to the amplitude of
the flux-dependent part of the conductance. In particu-
lar, non-Fermi liquid cases, where η can give information
on the underlying physics (and also ϕt is different from
that in the 1CK case), were not treated.

In Sec. III, we relate ϕt and η to the single-particle
elements of the T -matrix, Tψψ (where the ψ-particles are
the particles that interact with the dot). Using argu-
ments of many-body scattering, we find a relation be-
tween the coherent and the incoherent parts of the con-
ductance Gd, and rederive the known expression for the
conductance39–41

Gd = G0

ˆ

dǫ

(

−∂f
∂ǫ

)

2Im {Tψψ} , (2)

where G0 is the quantum conductance multiplied by a
symmetry factor related to relative coupling to different
leads. We also derive the following relations

ϕt = arg (〈Tψψ〉) , η =
|〈Tψψ〉|2
2Im〈Tψψ〉

, (3)

where 〈Tψψ〉 = 1
2

∑

s dǫ
(

−∂f
∂ǫ

)

Ts,ψψ is the thermal- and

spin-averaged value of the T -matrix. Expressions for the
dephasing rate and the ratio between the inelastic scat-
tering cross section and the total cross section, both re-
lated to the normalized visibility η, appear in the liter-
ature42–45. We show that spin summation has a crucial
effect on ϕt and η of Kondo impurities. Up to second
order in T/TK (and B/TK), spin summation locks the
value of ϕt at π/2 independent of the actual phases that
electrons accumulate when they cross the dot. More-
over, spin summation reduces η significantly, even when
all the conductance is carried by coherent single-particle
scattering. The π/2 phase-lock, and reduction of η, can
be avoided if one measures the conductance of each spin
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separately, and extracts directly the transmission phase
of each spin, ϕts, separately. A concrete realization of
Kondo impurities in quantum dots, with access to each
spin separately, was proposed by some of the present au-
thors in Ref. 46.

The main results of this work are as follows:
It is known that in the 1CK case, at zero temperature,
the transmission phase equals the scattering phase shift
of the 1CK37, ϕt = π/2. Since all the electrons are
elastically scattered, the normalized visibility is η = 1.
However, when a magnetic field is applied, regular non-
spin-resolved measurements of the conductance miss the
magnetic field corrections. In this case, we find that the
transmission phase ϕt remains π/2 to second order in B,
even though the scattering phase shift for each spin de-
pends on the magnetic field9,10, δψ,s = αs(π/2− B/TK)
(α↑ = 1 and α↓ = −1). In order to reveal the magnetic
field dependence of the phase shift, one needs to per-
form a spin-resolved measurement, namely, to measure
the conductance of each spin separately.

In the non-Fermi liquid fixed point of the 2CK case,
we find that at zero temperature η = 1/2, that is, ex-
actly half of the conductance is carried by single-particle
transmissions42. The electrons that elastically transmit
through the 2CK impurity accumulate a ϕt = π/2 phase
when they cross the impurity. In the presence of a finite
magnetic field, the system flows under renormalization
group to a Fermi liquid fixed point, at zero temperature,
rather than the non-Fermi liquid one47. At this Fermi liq-
uid fixed point, we find that again, one needs to perform
a spin-resolved measurement. A spin-summed measure-
ment will lead, at zero temperature, to a transmission
phase ϕt = π/2 and a normalized visibility η = 1/2, de-
spite the fact that the spin-dependent scattering phase
shifts are δψ,s = αsπ/4, and despite the fact that the
conductance is carried exclusively by single-particle scat-
tering [see Eqs. (28) and (29)]. Measurement of each
spin separately, however, will lead to the desired η = 1,
and ϕt = αsπ/4.

The rest of the paper is organized as follows: in Sec. II,
we briefly review possible realizations of electronic two-
path experiments, and discuss what we learn from their
analysis. We define the two measurable quantities, ϕt
and η, and discuss their physical meaning. In Sec. III, we
develop a scattering approach to the transport through
an impurity, similar to the Landauer formalism33–36 for
the non-interacting case. We consider a many-body scat-
tering matrix to include both elastic single-particle scat-
tering and inelastic single-particle to multi-particle scat-
tering. We rederive the conductance through the impu-
rity and give the mathematical expressions for ϕt and η.
In Sec. IV, we focus on Kondo impurities, and give the re-
sults for ϕt and η for several Kondo fixed points. We also
briefly discuss the influence of possible external dephas-
ing on the normalized visibility. Finally, we summarize
our results and conclusions in Sec. V. In Appendix A, we
give a detailed derivation of the multi-particle scattering
approach for the conductance, transmission phase, and

normalized visibility. In Appendix B, we give more de-
tails about a possible two-path setup that can be tuned
to fulfill the theoretical assumptions we have made in our
analysis.

II. TWO-PATH EXPERIMENTS,
TRANSMISSION PHASE, VISIBILITY, AND

NORMALIZED VISIBILITY

In this section, we discuss two-path setups and define
the transmission phase ϕt and the normalized visibility η.
We emphasize that the normalized visibility, η, is distinct
from the more common definition of the visibility.

The prototype of two-path experiments is the double-
slit experiment. In a double-slit experiment particles are
launched toward the double slit, where they split into
partial waves which interfere with each other. In the
electronic version of the double-slit experiment, schemat-
ically drawn in Fig. 1, a coherent electron beam is emit-
ted from a source lead toward a drain lead, via a beam
splitter that allows electron flow along two different paths
that encircle a magnetic flux φ. The source-to-drain con-
ductance is given by

Gsd =
e

h

∑

s

ˆ

dǫ

(

−∂f
∂ǫ

)

Ts(ǫ), (4)

where Ts(ǫ) is the probability for an incoming electron
with energy ǫ and spin s to be transmitted through the
double slit, and f(ǫ) is the Fermi-Dirac distribution func-
tion. If all the electrons that pass through the double slit
do so elastically and coherently, the probability Ts(ǫ) is
given by33

Ts = |td,s|2 + |tref,s|2 + 2 |td,stref,s| cos
(

eφ

~c
+ θs

)

, (5)

where td,s and tref,s are the transmission amplitudes of
the two slits. The transmission amplitudes are complex
quantities with a phase difference, eφ

~c+θs, between them.
The phase difference contains a contribution θs deter-
mined by the details of the transmission through the
double-slit setup, and a magnetic-flux-dependent part eφ

~c
coming from the AB effect.

Equation (5) is valid only if all the electrons are co-
herently transferred through the double slit48. If some of
the electrons are transferred incoherently through one of
the slits, then, since these electrons do not interfere, the
flux-dependent term of Ts is reduced. If we embed into
one of the paths a quantum dot (as in the lower path
in Fig. 1), we can examine the dot’s coherence proper-
ties by measuring the conductance. In such a device, the
phase that electrons accumulate as they cross the dot is
encoded in the relative phase between the two paths θs.

In experiments, the measured source to drain conduc-
tance is typically cast in the form

Gsd = G0 +Gφ cos

(

eφ

~c
+ ϕt

)

. (6)
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G0 is the part of the conductance which is independent
of the magnetic flux, and is related to the independent
conductances of the two paths, and Gφ is the amplitude
of the flux-dependent part of the conductance. In the
general case, ϕt is different from θs, but if td,s, tref,s, and
θs are independent of spin and energy, then ϕt = θ↑ = θ↓.
In standard two-path experiments, the ratio Gφ/G0, is
called "visibility", and it measures the strength of the
flux-dependent conductance oscillation compared to the
average conductance.

The ratio Gφ/G0 can be reduced by several mech-
anisms. Trivially, a mismatch between the trans-
mission amplitudes, |td| 6= |tref|, decreases the ratio
|tdtref|/(|td|2 + |tref|2), and therefore reduces Gφ/G0. In
addition to the trivial transmission amplitude mismatch,
four other mechanisms noted earlier can reduce Gφ/G0:
thermal averaging, spin averaging, inelastic scattering,
and externally-induced dephasing.

There is a conceptual difference between transmission
amplitude mismatch of the two paths, and the other
three mechanisms for Gφ/G0 reduction (we assume for
the moment that there is no external dephasing). Unlike
the transmission amplitude mismatch, these other mech-
anisms cannot be probed by simple single-path conduc-
tance measurements of the system. To isolate the trans-
mission mismatch from elastic versus inelastic scattering
and energy or spin dependent phase, we decompose the
conductance (6) into the form of Eq. (1):

Gd +Gref + 2
√
η
√

GdGref cos

(

eφ

~c
+ ϕt

)

.

Gd and Gref are the independent conductances through
the two paths, which can be measured directly by closing
off one and then the other path. Equation (1) defines
a new quantity, the normalized visibility η. If all the
electrons transmit coherently through the two paths, and
accumulate the same phase, then η = 1, independent of
possible transmission amplitudes mismatch.

We want to make a comment about the feasibility of
interference measurements in two-path experiments: In
real experiments, there is a typical coherence length, lcoh,
along which the propagating electrons preserve their co-
herence. This length depends on the details of the re-
alization of the two-path setup, and we assume that
it is much larger than the lengths of the two paths
lref , ld ≪ lcoh. However, this assumption is not enough:
Electrons with different energies propagate along the two
paths, accumulating an energy-dependent phase differ-
ence θs = ǫ(lref − ld)/vF , where vF is the Fermi veloc-
ity. As a result, the thermal averaging introduces a new
lengthscale, the thermal length49 lT = vF /πKBT :
ˆ

dǫ

(

−∂f
∂ǫ

)

2 |td,stref,s| cos
[

eφ

~c
+ θs(ǫ)

]

= 2 |td,stref,s| cos
[

eφ

~c

]

lref − ld
lT

1

sinh[(lref − ld)/lT ]
. (7)

Hence we also require that the difference in length be-
tween the two paths is much shorter than the thermal

Source Drain
φ

Source Drain
φ

(a) Closed AB ring (b) Open AB ring

Figure 2: (a) Closed AB ring: electrons that are emitted from
the source tunnel to the drain through the ring either clock-
wise or counter-clockwise. The two interfering paths encircle
a penetrating flux, φ. Time reversal symmetry constrains the
conductance: G(φ) = G(−φ). (b) Open AB ring: electrons
that propagate along the ring may leak out to side leads that
are attached to the ring. The restriction G(φ) = (−φ) ceases
to be valid.

length50 |lref − ld| ≪ lT . In this case, the difference
in length introduces a second-order correction to the
amplitude of the oscillations: lref−ld

lT
1

sinh[(lref−ld)/lT ] ≈

1− 1
6

(

lref−ld
lT

)2

∼ 1− T 2.

Open Vs. Closed Aharonov-Bohm ring

Although we will not need or discuss all its details, it
is useful to have in mind a concrete physical system that
realizes a two paths experiment, the AB ring. In an AB
ring setup with closed geometry, as schematically drawn
in Fig. 2(a), electrons tunnel between two leads through
a conducting ring which encircles a magnetic flux. Elec-
trons can propagate through each of the two arms of the
ring, and as the two possible ways interfere, the conduc-
tance depends on the magnetic flux. Yet, there is a ma-
jor difference between the closed AB ring setup and the
double-slit experiment. In a naive electronic double-slit
experiment picture, the phase of the interference depends
continuously on the flux-tuned relative phase between
the two paths. In the closed AB ring, however, Onsager
relations impose the restriction G(φ) = G(−φ), which
yields35,51 ϕt = ±π. This phase rigidity has been mea-
sured52, and although it is an interesting phenomenon
by itself, it prevents a direct measurement of the phase
difference between the two arms of the ring.

We can overcome this by using an open-AB-ring setup,
as schematically depicted in Fig. 2(b). In such an experi-
mental setup, that was used by Schuster et al.53 and later
on by others38,54–56, electrons that propagate along the
ring can leak out of the ring into side leads. The loss of
electrons during the propagation through the ring relaxes
the two-terminal Onsager restriction36 G(φ) = G(−φ).
Although the open geometry solves the phase rigidity
problem, the intuitive double-slit picture is not assured.
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In a double-slit setup, the transmissions through the two
slits are independent of each other, and particles traverse
the two slits only once. Therefore, we require that in the
open AB ring setup, the propagation of particles along
each path is independent of the details of the other path,
and that there are no multiple traversals of the ring. We
rely on the same features when defining the procedure
for measuring η. Examples of models for open AB rings
with detailed analysis of the conditions required for the
realization of a double-slit setup appear in Ref. 57 and
in the appendix of Ref. 58.

Another difference between the AB ring and the ideal
double-slit experiment is the effect that the penetrat-
ing magnetic flux has on the propagation along the two
paths. In the ideal double-slit experiment, magnetic flux
tunes only the relative phase of the paths. In contrast, in
a real AB ring with an embedded dot, the Kondo temper-
ature of the dot, and the conductance through the dot,
may depend on the magnetic flux. These effects of the
magnetic flux on AB rings, were studied before and ap-
pear in the literature59–65. But these effects can be made
small, particularly for open AB rings63. From now on, we
thus assume an open geometry that realizes a double-slit
experiment.

III. SINGLE-PARTICLE TRANSMISSION
PROPERTIES AND THE T -MATRIX

In this section, we present a more general discussion
on the relation between scattering of electrons off the
impurity and the conductance of the system. We relate
the three measurable quantities, Gd, ϕt, and η, that were
defined in Eq. (1), to the scattering matrix and the T -
matrix of the ψ-particles. In this section we mostly give
the results of this discussion, whereas the full derivation
appears in Appendix A. We derive the mathematical
expressions for ϕt and η, and show that if one measures
only the total conductance of the two spins together, then
at T ≪ TK the phase ϕt is always equal to π/2, and it
has no perturbative corrections up to order O(T/TK)2

for the Fermi liquid fixed points and O(T/TK)
2

2+k for
the non-Fermi liquid fixed points of the k-channel Kondo
systems.

We consider a two-path setup, and we zoom in on the
path that contains the impurity. We make a distinction
between the external leads (the source and the drain),
and the internal leads through which the electrons prop-
agate toward the impurity. We refer to the latter as left
and right leads (see, for example, Fig. 3 in Appendix B).
Electrons from the source can be transmitted into the
left lead, then they propagate toward the impurity. Af-
ter the electrons are scattered off the impurity they can
propagate along the right lead and then be transmitted
out into the drain. A specific model that describes this
situation is proposed and presented in Appendix B.

While the source and the drain are coupled very weakly
to the internal leads (because of the losses needed to

ensure each electron traverses the ring only once), the
electrons in the internal leads can, in principle, interact
very strongly with the impurity. Hence, in general, the
left and the right leads are described by complex many-
body states. A general state in the two leads can be
characterized by two numbers, nL and nR, measures of
charge carried in each lead. There are, of course, many
possible states with charges enL and enR, since states
with the same charges in the two leads can differ by
multiple particle-hole excitations66. We use the nota-
tion |nL, nR, i〉 for these states, where the index i labels
the possible states with charges enL and enR in the two
leads.

The scattering matrix, S, connects incoming and out-
going states in the leads

|n′
L, n

′
R, j〉out = Sn

′
L,n

′
R,j

nL,nR,i
|nL, nR, i〉in . (8)

Charge conservation imposes n′
L + n′

R = nL + nR = m,
so S is a block-diagonal matrix, as sectors with differ-
ent integer value m, are not mixed. Since the source
and the drain are coupled very weakly to the internal
leads, in the limit of zero source-drain bias voltage at
low temperature, we assume that only one particle at a
time is launched from the external leads toward the im-
purity. Hence, we focus only on the block m = 1 of the
S-matrix. When a single electron is sent from the source,
through the left lead, into the impurity, there are three
possible options:

• The electron is reflected back to the left lead,

• The electron is transmitted to the right lead,

• A complex many-body state is produced, where a
total charge ne is transmitted to the right lead and
a charge (1 − n)e is reflected to the left lead (n =
0,±1,±2...) .

We want to distinguish between the elastic single-
particle scattering processes and the scattering processes
that involve many-body states. We therefore use the fol-
lowing notation: we denote by |L〉 the incoming or out-
going single-electron states in the left lead, and similarly
|R〉 in the right lead. In the notation |nL, nR, i〉,

|L〉 = |1, 0, 0〉 , |R〉 = |0, 1, 0〉 , (9)

where we arbitrarily choose i = 0 for the single-particle
states with total charge one. The many-body states (also
with total charge one) are denoted by |χin〉, where

|χin〉 = |1− n, n, i〉 . (10)

We use the following notation for the S-matrix elements
that connect incoming single-particle states with outgo-
ing single-particle states:

S1,0,0
1,0,0 = r , S1,0,0

0,1,0 = t , S0,1,0
0,1,0 = r′ , S0,1,0

1,0,0 = t′ . (11)
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The matrix elements that connect single-particle states
with many-body states are:

S1−n,n,i
1,0,0 = BniL , S1−n,n,i

0,1,0 = BniR , (12)

S1,0,0
1−n,n,i =

(

AniL
)∗

, S0,1,0
1−n,n,i =

(

AniR
)∗

. (13)

Schematically, the nL + nR = 1 block of the S-matrix is





|L〉out
|R〉out
|χ〉out



 =





r t′ AL
†

t r′ AR
†

BL BR C









|L〉in
|R〉in
|χ〉in



 , (14)

where the matrix C denotes the matrix elements of S
that connect incoming many-body states with outgoing
many-body states. Here we don’t include spin, but gen-
eralization of what follows to spinful electrons is straight-
forward.

Consider now the average current at the right lead.
The current is carried either by transmitted charge (from
the left), or by reflected charge

I =
e

h

ˆ

dǫ



fl(ǫ)



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2





+fr(ǫ)



|r′|2 +
∑

n,i

n
∣

∣BniR
∣

∣

2 − 1







 .

Using the unitarity of the large many-body S-matrix we
can write the conductance through the impurity as

G =
e2

h

ˆ

dǫ

(

−∂f
∂ǫ

)



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2



 . (15)

The coherent part of the conductance is obtained directly
from Eq. (15)

Gcoh =
e2

h

ˆ

dǫ

(

−∂f
∂ǫ

)

|t|2 . (16)

The contribution of the incoherent processes, where the
single particles are scattered into many-body states, is

Gincoh =
e2

h

ˆ

dǫ

(

−∂f
∂ǫ

)

∑

n,i

n
∣

∣BniL
∣

∣

2
. (17)

Suppose now, that there is a unitary transforma-
tion that mixes the two leads and block-diagonals the
nL + nR = 1 block of the S-matrix. Physically, it
means that there is a linear combination of the two leads,
ξ = − sin(α)L+ cos(α)R , which is decoupled both from
the impurity and from the orthogonal combination of the
leads, ψ = cos(α)L+sin(α)R. This is the case, for exam-
ple, in the Anderson model for a single-level quantum dot
that is coupled to two leads. This simplification breaks
down in many-level quantum dots67, so in this paper we
assume for simplicity a single-level quantum dot.

The single-ψ-particle matrix element of the S-matrix
in the new basis is

Sψψ = 1 +
t

cos(α) sin(α)
.

Moreover, the fact that ξ is a free decoupled field imposes
the following relation

∑

n,i

n
∣

∣BniL
∣

∣

2
= cos2(α) sin2(α)(1 − |Sψψ|2) . (18)

Using the definition S = 1+ iT for the T -matrix, we get
the known result39–41 for the conductance through the
impurity

Gd =
e2

h

sin2(2α)

4

ˆ

dǫ

(

−∂f
∂ǫ

)

2Im {Tψψ} . (19)

The ratio of the coherent part to the total conductance
is

Gcoh/Gd =

´

dǫ
(

−∂f
∂ǫ

)

|Tψψ|2
´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}
. (20)

A. Normalized visibility

There is no way to measure directly the contribution of
the single-particle processes to the conductance. Namely,
there is no direct measurement of Gcoh/Gd . However,
a two-path experiment gives access to the transmission
amplitude, t. If in addition to the impurity, the two
leads are connected via an independent free reference
arm, then the flux-dependent part of the conductance

is Gflux =
´

dǫ
(

−∂f
∂ǫ

)

2Re
{

trefte
i eφ
~c

}

. Since |tref | can

be extracted from the conductance of the reference arm
when the other arm closed off, t is accessible from the
flux-dependent conductance.

While Gcoh is proportional to the thermally-averaged
value of the transmission squared [see Eq. (16)], Gflux is
proportional to the thermally-averaged value of the trans-

mission,
´

dǫ
(

−∂f
∂ǫ

)

t(ǫ). The normalized visibility that

we have defined in Eq. (1) is therefore slightly different
from Gcoh/Gd

η =

∣

∣

∣

´

dǫ
(

−∂f
∂ǫ

)

Tψψ
∣

∣

∣

2

´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}
. (21)

Although Gcoh/Gd is closely related to the measurable
quantity η, they are identical only at zero temperature,
or where Tψψ is independent of the energy.

B. Transmission phase

The phases of t and Tψψ are related to the phase shift
of the scattering theory of the ψ-particles. If we write
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Sψψ = |Sψψ |e2iδψ , then

arg(Tψψ) = arctan

(

1− |Sψψ | cos(2δψ)
|Sψψ | sin(2δψ)

)

. (22)

The phase arg(Tψψ) yields the value δψ for |Sψψ | → 1
and π/2 in the limit |Sψψ| → 0. The transmission phase
is the phase of the thermally averaged T -matrix

ϕt = arg

{
ˆ

dǫ

(

−∂f
∂ǫ

)

Tψψ(ǫ)
}

. (23)

C. The π/2 phase-lock of the transmission through
Kondo impurities at T ≪ TK

The flux-dependent part of the conductance, Gflux, de-
pends on the average value of Tψψ . Until now, the aver-
aging was over different incoming energies (thermal av-
eraging). When we add the spin degree of freedom, we
average Tψψ also over spin. This is because in Gflux, we
sum over the two spins

Gflux = −
∑

s

ˆ

dǫ
∂f

∂ǫ
2Re

{

treftse
i eφ
~c

}

(24)

=−
∑

s

ˆ

dǫ
∂f

∂ǫ
2Re

{

i cos(α) sin(α)trefTs,ψψei
eφ

~c

}

.

We have assumed that tref is independent of the spin. If
the system is spin-symmetric, T↑,ψψ = T↓,ψψ ≡ Tψψ can
be extracted from Gflux. The normalized visibility in this
case is

η =

∣

∣

∣

´

dǫ
(

−∂f
∂ǫ

)

Tψψ
∣

∣

∣

2

´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}
, (25)

and the transmission phase is

ϕt = arg

{
ˆ

dǫ

(

−∂f
∂ǫ

)

Tψψ(ǫ)
}

. (26)

In the absence of spin-symmetry, Gflux does not nec-
essarily give us access to Ts,ψψ. To see this, consider
the simple case where all the particles are scattered into
single particles, namely, |Sψψ| = 1 for both spins. This
situation describes, for example, the Fermi-liquid fixed
points of 1CK or 2CK with an applied magnetic field. In
this case, Ts,ψψ = i(1 − e2iδψs) = 2 sin(δψs)e

iδψs . In the
Kondo case, the system has the following particle-hole
symmetry [see, for example, the Hamiltonian in Eq.(B5)]

ψks → ψ†
−k,−s , (27)

that enforces9,68 δψ↑(ǫ) = −δψ↓(−ǫ) . The transmission
phase at zero temperature is

ϕt = arg
[

sin(δψ↑)(e
iδψ↑ − e−iδψ↑)

]

=
π

2
, (28)

and the normalized visibility at zero temperature

η =

∣

∣sin(δψ↑)(e
iδψ↑ − e−iδψ↑)

∣

∣

2

2Im {sin(δψ↑)(eiδψ↑ − e−iδψ↑)} = sin2(δψ↑) . (29)

We see that the transmission phase is locked at π/2 ,
independent of the phases of Ts,ψψ . We also see that
the normalized visibility can be smaller than one, even
though all the scattering processes are single-particle
to single-particle scattering. Interestingly, information
about the phases of Ts,ψψ (the phase shifts of the scat-
tering theory), is now encoded in η .

There are two ways to extract Tψψ despite the π/2
phase-lock of Kondo impurities: either to use the nor-
malized visibility to extract the phase shift, or to mea-
sure the transmission of each spin separately. A concrete
way to realize Kondo impurities in quantum dots, with
access to each spin separately was proposed by some of
the present authors in Ref. 46.

Note that if the Kondo impurity is realized with a
quantum dot, the particle-hole symmetry (27) is exact
only if the dot is tuned by the gate voltage to the middle
of the Coulomb valley69,70. Weakly breaking the particle-
hole symmetry adds a spin-independent contribution to
the phase shift, δψs → δ0 + δψs (this is true both for
Fermi liquid cases and the non-Fermi liquid case of the
2CK70). For δ0 ≪ δψs it leads to small corrections of
Eqs. (28) and (29):

ϕt =
π

2
+ [1− cot2(δψ↑)]δ0 +O

(

δ0
δψ↑

)3

, (30)

η = sin2(δψ↑) + cos(2δψ↑) cot
2(δψ↑)δ

2
0 +O

(

δ0
δψ↑

)4

.

IV. RESULTS

In this section, we present the results of the transmis-
sion phase ϕt, and normalized visibility η of Kondo impu-
rities [both were defined in Eq. (1)]. We focus on the 1CK
impurity and the 2CK impurity, since there are concrete
realizations of such impurities with quantum dots, and
only quote the results for the general k-channel Kondo.
In the 2CK case, we consider both its non-Fermi liquid
fixed point, and its Fermi liquid fixed points, reached
by turning on a finite magnetic field or a finite channel
anisotropy.

A. Single channel Kondo

In the 1CK case, the Ts,ψψ matrix element, up to sec-
ond order in 1/TK , is11

Ts,ψψ (ǫ) = i

[

2 + i
2ǫ

TK
− 3

(

ǫ

TK

)2

−
(

πT

TK

)2
]

. (31)
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Since
´

ǫdǫ
(

−∂f
∂ǫ

)

= 0, then
´

dǫ
(

−∂f
∂ǫ

)

Ts,ψψ(ǫ) is

purely imaginary, therefore the transmission phase is

ϕt =
π

2
+O (T/TK)

3
. (32)

The transmission phase matches the scattering phase
shift of the 1CK (up to T/TK corrections) when potential
scattering is neglected. The normalized visibility

η = 1−
(

πT

TK

)2

+O (T/TK)
3
. (33)

Two mechanisms reduce the nonzero-temperature nor-
malized visibility, elastic scattering with energy-
dependent phase shift, δψ(ǫ) = π/2 + ǫ/TK , and the ap-
pearance of inelastic scattering. Both are allowed by the
dominant irrelevant operator near the 1CK fixed point11.

1. Finite magnetic field

At zero magnetic field, the T -matrix is independent of
spin (i.e., T↑,ψψ = T↓,ψψ), because of the symmetry be-
tween the two spins. Therefore, the transmission phase
and the normalized visibility of the spin-summed conduc-
tance, are the same as the transmission phase and the
normalized visibility of each spin separately. However,
when a magnetic field is applied, the T -matrix becomes
spin-dependent. Hence, the transmission phase and the
normalized visibility of each spin are, in general, different
from each other and from the measured (spin-summed)
quantities.

Consider, for example, the zero temperature case,
where, as long as B ≪ TK , the system is described by
a Fermi liquid theory, so68 Ts,ψψ = i(1 − e2iδψs). As
we discussed in section III, the particle hole symmetry

ψks → ψ†
−k,−s, enforces δψ↑(ǫ) = −δψ↓(−ǫ). In this case,

δψs(0) =

(

π

2
− αs

B

TK

)

, (34)

where α↑ = 1, and α↓ = −1. Notice that since δψs is
half of the phase of Sψψ, it is defined up to ±π. As
we measure the conductance of the two spins together,
the total transmission phase ϕt = π/2 independent of B
[see Eq. (28)], and the normalized visibility is less than
one, η = sin2(π2 − B

TK
) ≈ 1 − ( BTK )2 [see Eq. (29)], even

though all the scattering processes are single-particle to
single-particle scattering.

A possible way to overcome this π/2 phase-lock of the
transmission phase, is to measure the conductance of a
distinct spin46. The distinct spin transmission phase at
zero temperature would simply be δψs, and there is a 2B

TK
difference between the spin up and spin down phases.
The normalized visibility of each distinct spin would be
η = 1, as we expect for a Fermi liquid fixed point.

B. Two channel Kondo

In the 2CK case, two disconnected channels interact
with the impurity. We consider a case where we can
measure the transport in one of the channels, and there
is no charge transfer between the different channels (this
was the case, for example, in the experimental setup of
Ref. 31). Notice that in this case, the index i in the states
|nL, nR, i〉 [see, for example, equation (8)], labels states
with different particle-hole excitations in the leads and
also states with different excitations in the other channel.

If the two channels are equally coupled to the impurity,
then the system flows to a non-Fermi liquid fixed point.
In this case, up to first order in 1/

√
TK , the matrix ele-

ment Ts,ψψ is11

Ts,ψψ (ǫ) = i
(

1− 3λ
√
πTI(ǫ)

)

, (35)

where

I(ǫ) =

ˆ 1

0

du

(

u−
iǫ

2πT F21(u)

√

1− u

u
− 4

π

1
√
u(1 − u)

3
2

)

.

(36)
λ ∼ 1/

√
TK is the strength of the leading irrelevant op-

erator near the 2CK fixed point, and F21(u) is the hyper-

geometric function F21(u) ≡ 1
2π

´ 2π

o
dθ

(u+1−2
√
u cos θ)

3
2

.

The thermally averaged value of Ts,ψψ is

ˆ

dǫ

(

−∂f
∂ǫ

)

Ts,ψψ(ǫ) = i
(

1 + 4λ
√
πT
)

. (37)

Since
´

dǫ
(

−∂f
∂ǫ

)

Ts,ψψ(ǫ) is purely imaginary, the trans-

mission phase

ϕt =
π

2
+O (T/TK) . (38)

The normalized visibility is

η =
1

2

(

1 + 4λ
√
πT
)

+O (T/TK) . (39)

These results are not surprising, since at zero tempera-
ture, there are no single ψ-particle to single ψ-particle
scattering processes at the non-Fermi liquid fixed point.
Thus, Sψψ = 0 for both spins, and hence ϕt = π/2 [see
Eq. (22)]. Since in this case Tψψ = i, we find a normalized
visibility η = 1/2, indicating that half of the conductance
is carried by elastic single-particle scattering42,44.

The sign of λ depends on the initial strength of the
Kondo coupling. λ is positive for strong coupling, and
negative for weak coupling11. The normalized visibility
can, in principle, be enhanced by nonzero temperature,
unlike the usual case where the temperature reduces in-
terference effects. The enhancement of the normalized
visibility is due to the fact that the nonzero tempera-
ture allows single ψ-particles scattering off the impurity
(sψψ 6= 0).
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1. Finite magnetic field and finite channel anisotropy

The non-Fermi liquid fixed point is unstable, since fi-
nite magnetic field and finite channel anisotropy turn on
relevant perturbations near the non-Fermi liquid fixed
point47. In the presence of such perturbations, the sys-
tem flows under renormalization group to a Fermi liquid
fixed point, at zero temperature, rather than the non-
Fermi liquid one. In the case of channel anisotropy, the
channel which is coupled more strongly to the dot flows
to the 1CK-like fixed point, and the other channel flows
to a free-electrons-like fixed point. Under a finite mag-
netic field, the system flows to a Fermi liquid fixed point
which is different from the 1CK fixed point.

In this subsection we study the 2CK case under these
two possible perturbations. At zero temperature, Ts,ψψ
is given by71,72

Ts,ψψ(ǫ) = i



1−
−(ν∆

√
TK) + iαs(

cBBz√
TK

)
√

(ν∆
√
TK)2 + ( cBBz√

TK
)2

G(ǫ/T ∗)



 ,

(40)
where ∆ is the difference between the coupling strengths
of the two channels, and cB is a dimensionless number
of order one. T ∗ ∼ TK(ν∆)2 + (cBB)2/TK is an energy
scale that characterizes the flow away from the non-Fermi
liquid fixed point. G(x) = 2

πK(ix), where K(x) is the
complete elliptic integral of the first kind. α↑ = 1, α↓ =

−1, and we have assumed ~B = Bz. At zero temperature,
the averaged value of Tψψ is

1

2

∑

s

Ts,ψψ = i



1− −(ν∆
√
TK)

√

(ν∆
√
TK)2 + ( cBBz√

TK
)2



 . (41)

Thus, for ∆ = 0, 〈Tψψ〉 = i. Hence, the transmission
phase is ϕt = π/2 and the normalized visibility is η = 1/2
even for B 6= 0, where all the electrons are elastically
scattered with a phase δψ,s = αsπ/4. A spin-resolved
measurement, however, would lead to ϕt = αsπ/4 and
η = 1, since for ∆ = 0

ˆ

dǫ

(

−∂f
∂ǫ

)

Ts,ψψ = i (1− iαs) . (42)

In Table I, we summarize the results for the zero tem-
perature normalized visibility and transmission phase for
the various relevant perturbations, where we define

cos(γ) ≡ ν|∆|
√
TK

√

(ν∆
√
TK)2 + ( cBBz√

TK
)2
, (43)

sin(γ) ≡ cBBz/
√
TK

√

(ν∆
√
TK)2 + ( cBBz√

TK
)2
. (44)

Channel anisotropy. Recall that we are measuring the
conductance through one of the channels. At zero mag-
netic field, if ∆ > 0, the ψ-particles form together with

the impurity a singlet, while the electrons in the other
channel are simply free. Thus, η and ϕt are the same
as in the 1CK case. On the other hand, if ∆ < 0, the
electrons in the other channel form a singlet with the
impurity, and the ψ-particles are free. Therefore at zero
temperature the conductance through the impurity, the
dot, is zero. In this case there is no interference, and
hence, η = 0 and ϕt is not defined. Although this is a
Fermi liquid, η < 1 near this fixed point since most of
the charge is reflected. To explain it we now discuss the
nonzero-temperature case.

At nonzero temperature, the ∆ < 0 case should be
treated more delicately. Up to second order in 1/T ∗,
Ts,ψψ is72

Ts,ψψ(ǫ) =
ǫ

4T ∗ + i
9

64

( ǫ

T ∗

)2

+ i
7

64

(

πT

T ∗

)2

. (45)

Most of the charge is reflected and only a small amount
of charge can be transmitted, either elastically or inelas-
tically. This is similar to the 1CK case, where at nonzero
temperature most of the charge is transmitted, and only
a small part is reflected either elastically or inelastically.
Up to second order in 1/T ∗, the portion of elastic trans-
mission through the impurity out of all scattering events
of incoming particles with energy ǫ is

|Ts,ψψ(ǫ)|2
2Im {Ts,ψψ(ǫ)}

=
2/9

1 + 7
9

(

πT
ǫ

)2 . (46)

In the ǫ ≫ T limit, 2/9 of the charge is transmitted
elastically. The phase that the particles accumulate in
this limit is proportional to ǫ, ϕt(ǫ) ≈ 9ǫ

16T∗ . The ther-
mal averaging, however, has a crucial effect in this limit.

The thermally-averaged T -matrix ,〈Tψψ〉 = i 5
32

(

πT
T∗

)2
, is

purely imaginary and proportional to T 2, and therefore

η(T ) = 5

(

πT

8T ∗

)2

, ϕt = π/2 . (47)

Finite magnetic field. At finite magnetic field, we see
that in order to access the phase shift of the ψ-particles,
δψs, one needs to measure each spin separately. Notice
that at ∆ → 0 (γ → π/2), the spin-averaged normalized
visibility and the transmission phase are the same as in
the non-Fermi liquid fixed point (B = 0,∆ = 0): η = 1/2
and ϕt = π/2. In order to distinguish the Fermi-liquid
fixed points from the non-Fermi liquid fixed point, one
can measure the temperature dependence of the conduc-
tance through the impurity. Non trivial

√
T -dependence

indicates a non-Fermi liquid fixed point. Alternatively,
as we already mentioned, spin dependent measurements
of ηs and ϕts give different results for the Fermi liquid
and the non-Fermi liquid fixed points.
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Table I: Zero temperature normalized visibility and transmis-
sion phase for various relevant perturbations.

ηs ϕts η ϕt

B = 0,∆ = 0 1/2 π/2 1/2 π/2

B = 0,∆ > 0 1 π/2 1 π/2

B = 0,∆ < 0 0 - 0 -

B 6= 0,∆ = 0 1 αsπ/4 1/2 π/2

B 6= 0,∆ > 0 1 αs(π/2− γ/2) cos2(γ/2) π/2

B 6= 0,∆ < 0 1 αsγ/2 sin2(γ/2) π/2

2. Generalization to k-channels

We have focused on the 1CK and the 2CK impurities,
since there are concrete realizations of these impurities
with quantum dots. Yet, it is worthwhile to study the
more general k-channel Kondo case. In the Fermi liquid
fixed points at zero temperature, all the ψ-particles are
scattered into ψ-particles, namely, |Sψψ | = 1. In the non-
Fermi liquid 2CK fixed point, none of the ψ-particles
are scattered into ψ-particles, namely, |Sψψ | = 0. In
the more general k-channel Kondo case, however, where
k > 1 channels screen the impurity, a finite part of the
ψ-particles are elastically scattered off the impurity. At
zero temperature, the single ψ-particle element of the S-
matrix is11

SkCK
ψψ =

cos
(

2π
2+k

)

cos
(

π
2+k

) . (48)

The conductance, up to O (T/TK)
4

2+k , is11

Gd =
e2

h
sin2(2α)



1−
cos
(

2π
2+k

)

cos
(

π
2+k

) + ck

(

T

TK

)
2

2+k



 ,

(49)
where the factor cK can be calculated numerically11. The
normalized visibility is

η =
1

2



1−
cos
(

2π
2+k

)

cos
(

π
2+k

) + ck

(

T

TK

)
2

2+k



+O (T/TK)
4

2+k ,

(50)
and since SkCK

ψψ is real, the transmission phase is

ϕt =
π

2
+O (T/TK)

4
2+k . (51)

C. External dephasing

In Sec. 2, we defined the normalized visibility η, which
is the amplitude of the AB oscillations, normalized in a
certain way. In Sec. 3, we showed that η has a physical
meaning, and that it is related to the proportion of the
total conductance carried by single-particle scattering. In

this subsection we want to comment about the feasibility
of η-measurements.

So far, we have discussed three mechanisms that reduce
the normalized visibility: the possibility of non-coherent
charge transfer through the dot into many-body states,
thermal averaging over a transmission with energy-
dependent phase, and averaging over spin-dependent
transmission phase. AB oscillations in a real-life exper-
imental setup can also be suppressed by other mecha-
nisms that are not related to the physical properties of
the examined impurity. A real experimental two-path
setup is usually coupled to a complicated environment.
For example, in an open AB ring setup the shapes of the
two paths, the quantum dot(s), the tunnel barriers, and
many other components of the setup are all defined by
applying voltages to nearby nano-patterned electrodes.
Therefore, each component of the system is coupled to
an environment (metal electrodes, semiconducting leads)
with associated noise and degrees of freedom.

An electron that propagates through the two paths
leaves a trace in the environment; equivalently, a propa-
gating electron that interacts with the environment, ac-
cumulates a random phase73, ϕ. As a result, the ampli-
tude of the AB oscillations is multiplied by the averaged
value 〈eiϕ〉. The normalized visibility in the presence of
the environment is therefore36

√
η = 〈eiϕ〉

∣

∣

∣

´

dǫ
(

−∂f
∂ǫ

)

Tψψ
∣

∣

∣

√

´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}

≈
(

1− 1

2
〈δϕ2〉

)

∣

∣

∣

´

dǫ
(

−∂f
∂ǫ

)

Tψψ
∣

∣

∣

√

´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}
. (52)

The details of the coupling to the environment depend
on the details of a specific experimental setup. Yet, we
can roughly estimate the external dephasing by assum-
ing that the phase-randomness originates mostly from
the thermal fluctuations of the environment. At nonzero
temperature T , the electrodes in the environment suffer
from Nyquist noise, and we can estimate 〈δϕ2〉 ∼ T .

Hence, dephasing by the environment can reduce the
normalized visibility linearly in the temperature. In the
Fermi liquid fixed points, η has T 2 corrections without
external dephasing. This means that at low temperatures
the dominant suppression of η would be due to external
dephasing. In the non-Fermi liquid fixed point of the
2CK, η has a

√
T dependence in the absence of external

dephasing. Thus, at low temperatures the change in η
(enhancement for λ > 0 and reduction for λ < 0), is ex-
pected to be stronger than its suppression due to external
dephasing.

The relation between the system and the environment
is outside the scope of this work. In particular, we do not
get into specific models for the environment. We want to
note that there are models that treat rigorously the effect
of a specific environment on the interference in AB rings



11

(for example, a quantum-point-contact that is coupled to
an embedded quantum dot74,75; or a fluctuating magnetic
flux76).

In the 2CK non-Fermi liquid case, a noisy environment
can, in principle, turn on relevant operators. Thus, a
noisy environment with strong effect on the system would
make the observation of the non-Fermi liquid behavior
difficult. Hence, if a non-Fermi liquid behavior is indeed
observed in an experimental system, it indicates a rela-
tively weak external dephasing.

V. CONCLUSIONS AND DISCUSSION

In this work we have focused on information that can
be obtained from two-path experiments. Typically, in
two-path experiments, the measurable quantity is the
transmission phase ϕt. We showed that the combina-
tion of two measurements, the two path conductance to-
gether with the conductance of one of the paths (either
of the paths), gives us additional physical information
about the nature of coherence in the transport. These
two measurements allow us to normalize the amplitude
of the flux-dependent conductance, with respect to the
independent conductances of the two paths [Eq. (1)]. We
showed that the normalized amplitude η is related to the
fraction of scattering processes that involve only single
particles.

We have related ϕt and η to the single-particle matrix
element of the S-matrix. If there is a linear combination
of the two leads (denoted by ξ) which is decoupled both
from the dot, and from the orthogonal linear combination
(ψ), then, working in the ψ − ξ basis we showed that ϕt
and η can be used to study Sψψ . In the simple case of
Fermi liquids at zero temperature, where Sψψ = e2iδψ ,
ϕt turns out to be identical to δψ, and η = 1.

We also showed that in the absence of spin-symmetry,
both ϕt and η are affected by the summation over spin
in a standard conductance measurement. At zero tem-
perature, we showed that the phase ϕt is locked at π/2
independent of δψ [see Eq. (28)], and that η is suppressed
to below one [see Eq. (29)]. A proper measurement in
this case would involve independent measurement of the
transport of each spin.

In the various Fermi liquid fixed points of the Kondo
impurities, we have showed that the transmission phase
equals the scattering phase shift ϕts = δψs. The normal-
ized visibility at zero temperature is η = 1 , and nonzero
temperature reduces it with a correction ∼ (T/TK)

2
.

The small reduction of η is due to two different phys-
ical effects of the temperature. First, the transmission
phase is energy-dependent. When we thermally average
over the temperature, ϕt remains at its zero-temperature
value (to this order of correction), but η is reduced. Sec-
ond, the nonzero temperature allows incoherent scatter-
ing processes (the leading irrelevant operator near the
fixed point allows the scattering of single-particle states
to many-body states). Hence, a small part of the con-

ductance is incoherent and therefore η is reduced.
In the non-Fermi liquid fixed point of the 2CK, we find

that although there are no single ψ-particle to single ψ-
particle scattering processes, a part of the conductance
is still coherent. The transmission phase is ϕt = π/2 de-
spite the fact that δψ is not defined. The normalized visi-
bility, at zero temperature, is η = 1/2 indicating the fact
that exactly half of the conductance is carried by elastic
single-particle scattering events42. At nonzero tempera-
ture, η can either be diminished, or be enhanced with a
∼
√

T/TK behavior. The enhancement is possible since
the leading irrelevant operator near the fixed point allows
single ψ-particle to single ψ-particle scattering.

In real experiments, the propagating electrons are sub-
jected to an external dephasing by the environment. We
expect a reduction of the normalized visibility due to
this external dephasing. Assuming mostly thermal fluc-
tuations in the environment (Nyquist noise), we roughly
estimate a linear temperature dependence of the external
dephasing. Therefore, near the Fermi liquid fixed points
one might not be able to see the predicted ∼ T 2 reduc-
tion of η. Near the non-Fermi liquid 2CK fixed point,
however, the ∼

√
T dependence is expected to be para-

metrically stronger than the external dephasing. Thus
we expect that measuring this effect would be possible in
the presence of external dephasing.
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Appendix A: Detailed derivation of the connection
between the transmission and the T -matrix

In this appendix, we present in detail the derivation of
the relations between the transmission properties (from
the left lead through the impurity to the right lead) and
the single-particle matrix elements of the T -matrix.

We want to write a scattering matrix that connects
incoming states and outgoing states in the leads. In gen-
eral, these states can be complex many-body states that
involve the two leads. A general state in the two leads
can be characterized by two numbers, nL and nR, accord-
ing to the charge carried in the two leads. There are, of
course, many possible states with charges enL and enR,
since states with the same charges in the two leads can
differ by multiple particle-hole excitations. We use the
notation |nL, nR, i〉 for these states, where the index i
labels the possible states with charges enL and enR.

The scattering matrix, S, connects incoming and out-
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going states

|n′
L, n

′
R, j〉out = Sn

′
L,n

′
R,j

nL,nR,i
|nL, nR, i〉in . (A1)

Charge conservation imposes n′
L+n

′
R = nL+nR, hence, S

is a block-diagonal matrix. We work in the zero-bias limit
at low temperature, and therefore only single electrons
can be sent from the source and the drain. Hence, we
focus only on the block nL + nR = 1 of the S-matrix.

There are two types of states in the subspace of states
with nL+nR = 1, single electron states, and many-body
states. We can make this distinction since the two leads
are free. We denote by |L〉in and |L〉out the incoming
and outgoing single-electron states in the left lead, and
similarly |R〉in and |R〉out in the right lead. We denote
the other states, which are many-body states of the form
|1 − n, n, i〉, by |χin〉 (n = 0,±1,±2...) . Notice that in
the cases n = 0, 1, the states |~χ0,1〉 span only the multi-
particle states. The single electron states of the form
|1, 0〉 and |0, 1〉 are denoted by |L〉 and |R〉 .

Schematically, The nL + nR = 1 block of Eq. (A1) is







|L〉out
|R〉out
|χ〉out






=







r t′ AL
†

t r′ AR
†

BL BR C













|L〉in
|R〉in
|χ〉in






, (A2)

where the exact definitions for all the terms in (A2) ap-
pear in Sec. III [see Eqs. (9)-(13)]. Here we don’t include
spin, and generalization of what follows to spinful elec-
trons is straightforward.

Since the S-matrix is unitary and block diagonal, its
nL + nR = 1 block is also unitary. This leads to the
following relations

|r|2 + |t|2 +
∑

n,i

∣

∣BniL
∣

∣

2
= 1 , (A3)

|r′|2 + |t′|2 +
∑

n,i

∣

∣BniR
∣

∣

2
= 1 , (A4)

|r|2 + |t′|2 +
∑

n,i

∣

∣AniL
∣

∣

2
= 1 , (A5)

|r′|2 + |t|2 +
∑

n,i

∣

∣AniR
∣

∣

2
= 1 . (A6)

Consider now the average current at the right lead. As
mentioned before, at low temperature and bias voltage
we can assume that only single electrons are sent toward

the impurity. The average current is

I =
e

h

ˆ

dǫ



fl(ǫ)



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2





+fr(ǫ)



|r′|2 +
∑

n,i

n
∣

∣BniR
∣

∣

2 − 1









=
e

h

ˆ

dǫ



fl(ǫ)



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2





−fr(ǫ)



|t′|2 +
∑

n,i

(1 − n)
∣

∣BniR
∣

∣

2







 . (A7)

At equilibrium, the current is zero, therefore

|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2
= |t′|2 +

∑

n,i

(1− n)
∣

∣BniR
∣

∣

2
, (A8)

and the current becomes

I =
e

h

ˆ

dǫ [fl(ǫ)− fr(ǫ)]



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2



 . (A9)

Thus, the conductance is

Gd =
e2

h

ˆ

dǫ

(

−∂f
∂ǫ

)



|t|2 +
∑

n,i

n
∣

∣BniL
∣

∣

2



 . (A10)

The proportion of the total conductance carried by co-
herent single-particle scattering is

Gcoh/Gd =

´

dǫ
(

−∂f
∂ǫ

)

|t|2
´

dǫ
(

−∂f
∂ǫ

)(

|t|2 +∑n,i n
∣

∣BniL
∣

∣

2
) . (A11)

Suppose now, that there is a linear combination of the
two leads, ξ = − sin(α)L+ cos(α)R , which is decoupled
both from the impurity and from the orthogonal com-
bination of the leads, ψ = cos(α)L + sin(α)R . This is
the case, for example, in the Anderson model for a single
level quantum dot that is coupled to two leads. The fact
that ξ is a free decoupled field simplifies the above ex-
pressions as it imposes the following restrictions on the
S-matrix in the ψ − ξ basis: Sξx = Sxξ = 0 (x = ψ, ~χn),
and Sξξ = 1. In particular, the restriction Sψξ = Sξψ = 0
requires t′ = t which, together with Eq. (A8), yields the
relation

∑

n,i

n
∣

∣BniL
∣

∣

2
=
∑

n,i

(1 − n)
∣

∣BniR
∣

∣

2
. (A12)

Moreover, we can relate BniL and BniR . Since (omitting
the in and out subscripts)

BniL = 〈χin|L〉 = cos(α)〈χin|ψ〉 − sin(α)〈χin|ξ〉, (A13)

BniR = 〈χin|R〉 = sin(α)〈χin|ψ〉+ cos(α)〈χin|ξ〉, (A14)
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and as 〈χin|ξ〉 = 0 we get

BniL = cos(α)〈χin|ψ〉 , (A15)

BniR = sin(α)〈χin|ψ〉 . (A16)

We obtain the relation

BniR = tan(α)BniL . (A17)

Plugging this relation into Eq. (A12) gives

(1 + tan2(α))
∑

n,i

n
∣

∣BniL
∣

∣

2
= tan2(α)

∑

n,i

∣

∣BniL
∣

∣

2
. (A18)

Thus, we get the important equalities
∑

n,i

n
∣

∣BniL
∣

∣

2
= sin2(α)

∑

n,i

∣

∣BniL
∣

∣

2
, (A19)

∑

n,i

n
∣

∣BniR
∣

∣

2
= sin2(α)

∑

n,i

∣

∣BniR
∣

∣

2
. (A20)

Together with Eqs. (A3) and (A4), the sum rules (A19)
and (A20), tell us that the incoherent part of the con-
ductance, which is carried by single-particle to many-
particles scattering processes, can also be determined by
the coherent single-particle part of the S-matrix.

Notice also that
∑

n,i〈ψ|χin〉〈χin|ψ〉 =
∑

ni |〈ψ|χin〉|2 is
the sum of probabilities to find outgoing states if the
incoming state is |ψ〉. Since we sum over all possible
outgoing states besides |ψ〉 and |ξ〉, and as 〈ξ|ψ〉 = 0 we
find that
∑

n,i

〈ψ|χin〉〈χin|ψ〉 = 1−|out〈ψ|ψ〉in|2 = 1−|Sψψ|2, (A21)

so
∑

n,i

∣

∣BniL
∣

∣

2
= cos2(α)(1 − |Sψψ |2) , (A22)

∑

n,i

∣

∣BniR
∣

∣

2
= sin2(α)(1 − |Sψψ |2) . (A23)

The conductance (A10) can be written as

Gd = −e
2

h

ˆ

dǫ
∂f

∂ǫ

[

|t|2 + sin2(α) cos2(α)(1 − |Sψψ |2)
]

,

(A24)
and the contribution of the single-particle processes to
the conductance, out of the total conductance is

Gcoh/Gd =

´

dǫ∂f∂ǫ |t|
2

´

dǫ∂f∂ǫ
(

|t|2 + sin2(α) cos2(α)(1 − |Sψψ |2)
) .

(A25)
The fact that there is a linear combination of L and R

which is decoupled both from the impurity and from the
orthogonal linear combination imposes restrictions on the
values of r, t, r′, t′ (since Sψξ = Sξψ = 0 and Sξξ = 1).
By applying the unitary transformation on the S-matrix
one finds that

Sψψ = 1 +
t

cos(α) sin(α)
. (A26)

φSource Drain

Reference arm

Left lead Right lead

Dot

tL tR

Losses
Losses

Losses Losses

tref
s

tL
s

tref
d

tR
d

Internal
leads

Figure 3: Schematic model of a quantum dot embedded into
an open AB ring. The four transmission coefficients between
the two paths and the external leads (trefs , trefd ,tLs ,tRd ), are very
small. To the lowest order in the external transmission coef-
ficients the propagations along the arms are independent of
each other. Because of the losses, time reversal symmetry is
broken. We encode the losses in the transmission coefficients.

Plugging (A26) into (A24) and (A25) gives

Gd = −e
2

h

sin2(2α)

4

ˆ

dǫ
∂f

∂ǫ

(

|Sψψ − 1|2 +
[

1− |Sψψ |2
]

)

,

(A27)

Gcoh/Gd =

´

dǫ∂f∂ǫ |Sψψ − 1|2
´

dǫ∂f∂ǫ

(

|Sψψ − 1|2 + [1− |Sψψ |2]
) . (A28)

At this point we can already see two important fea-
tures: First, Gcoh/Gd depends only on Sψψ and in partic-
ular does not depend directly on α. Second, if |Sψψ | = 1
(but Sψψ 6= 1) then Gcoh/Gd = 1, and if Sψψ = 0 then
Gcoh/Gd = 1/2. In other words, for a zero temperature
Fermi liquid theory η = 1, and for a theory where ψ has
no single-particle to single-particle scattering processes
(like in the 2CK case at zero temperature) η = 1/2.

Using the definition S = 1 + iT for the T -matrix, we
can bring (A27) and (A28) into the form

Gd =
e2

h

sin2(2α)

4

ˆ

dǫ

(

−∂f
∂ǫ

)

2Im {Tψψ} , (A29)

Gcoh/Gd =

´

dǫ
(

−∂f
∂ǫ

)

|Tψψ |2
´

dǫ
(

−∂f
∂ǫ

)

2Im {Tψψ}
. (A30)

Appendix B: Model for a quantum dot impurity
embedded into an open AB ring

In this appendix, we present a model for a possible
setup of a quantum dot that is embedded into an open
AB ring. Setups of this kind, can be used to study the
transmission through 1CK and 2CK impurities.

Consider the open AB ring setup that is depicted in
Fig. 3. The system contains two external leads (source
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and drain) and two internal paths. The external leads
are coupled to the two paths by four transmission coef-
ficients (trefs , trefd , tLs , tRd ) which are assumed to be very
small. The two possible paths are either through the
quantum dot (the lower arm in Fig. 3) or through the
reference arm (the upper arm in Fig. 3). When an elec-
tron is propagating along the lower arm, it has a finite
probability to leak outside the system. However, once it
gets close enough to the dot we assume that it can only
scattered (forward or backward) off the dot. We refer to
the area near the dot from the left (right) as left (right)
lead (not to be confused with the external leads, source
and drain). The Hamiltonian of the system is

H = Hexternal +Href +Hsystem +Ht , (B1)

where each of the three first elements on the right hand
side of (B1) describes one part of the system. Hexternal

describes the external leads

Hexternal =
∑

r=S,D

∑

k,s

ǫkc
†
rkscrks , (B2)

where crks are the annihilation operators of electrons
with spin s in external lead r. Href describes the free elec-
trons in the reference arm. The lower arm is described
by the Hamiltonian

Hsystem =
∑

i=L,R

∑

k,s

ǫkc
†
iksciks +Hdot

+
∑

i=L,R

∑

ks

(

tic
†
iksds + h.c.

)

, (B3)

where crks are the annihilation operators of electrons
with spin s in the internal lead i, and ds annihilates an
electron with spin s in the dot. Hdot describes the quan-
tum dot itself and any other system that might interact
with it but do not interact directly with the other part
of the setup (e.g. a capacitively coupled gate electrode,
other dots etc.). The different parts of the setup are con-
nected via Ht

Ht =
∑

ks

∑

r

trefr c†rkscref,ks

+
∑

ks

tLs c
†
SkscLks +

∑

ks

tRd c
†
DkscRks + h.c. .(B4)

We don’t get into the details of how the setup is coupled
to other side leads.

To the lowest order in the external transmission coeffi-
cients, Ht, the two paths are independent of each other.
Therefore, using the definitions of ϕt and η [see Eq. (1)],
the conductance can be written in the form

Gsd = Gd +Gref + 2
√
η
√

GdGref cos

(

eφ

~c
+ ϕt

)

,

where Gref is the conductance through the reference arm,
and Gd is the conductance through the dot. There is a

linear combination of the internal leads, ξ = − sin(α)cL+
cos(α)cR, where α = arctan(tR/tL), which is decoupled
both from the dot and from the orthogonal combination
of the leads, ψ = cos(α)cL + sin(α)cR . Following the
discussion in section III the transmission through the dot
is proportional to the T -matrix of the ψ-particles, Ts,ψψ.

So far, we haven’t specified what is the Hamiltonian of
the dot, Hdot . In other words, we haven’t specified other
systems that interact with the dot (and do not interact
directly with the ring). In the following two subsections,
we discuss two specific cases: A 1CK case, where the
dot is attached to a gate electrode and tuned to form
a 1CK impurity, and a 2CK case, where another large
dot is coupled to the small dot with appropriate gate
electrodes to form a 2CK impurity29.

1. Single-channel Kondo

The dot is capacitively coupled to a gate electrode. If
a gate voltage is applied, then at low enough energies,
by tuning the gate voltage and the tunneling barriers
between the dot and the ring (tL,R), one can bring the
Hamiltonian (B3) to the form of Kondo Hamiltonian69

Hsystem =
∑

k,s

ǫkψ
†
ksψks +

∑

k,s

ǫkξ
†
ksξks

+ J
∑

k,s

∑

k′,s′

ψ†
ks~σss′ψk′s′ · ~S , (B5)

where ξ = − sin(α)cL + cos(α)cR, and ψ = cos(α)cL +
sin(α)cR. J is the Kondo interaction strength, ~σ are the

three Pauli matrices, and ~S is the total spin of the dot.
Up to second order in 1/TK the Ts,ψψ-matrix is11

Ts,ψψ (ǫ) = i

[

2 + i
2ǫ

TK
− 3

(

ǫ

TK

)2

−
(

πT

TK

)2
]

. (B6)

2. Two-channel Kondo

We can tune the part of the system that is described
by Hdot to form a 2CK impurity (e.g., by adding another
relatively large quantum dot, and couple it to the small
dot29). The Hamiltonian (B3) becomes29,70

Hsystem =
∑

k,s

ǫkψ
†
ksψks +

∑

k,s

ǫkξ
†
ksξks +

∑

k,s

ǫkD
†
ksDks

+
∑

k,s

∑

k′,s′

(

Jψψ
†
ks~σss′ψk′s′ + JDD

†
ks~σss′Dk′s′

)

· ~S ,

(B7)

whereDks are the annihilation operators of the large dot,
and JD (Jψ) is the strength of the interaction between the
spin of the electrons in the large dot (in the ψ lead) and
the total spin of the small dot. By tuning the parameters
properly, we can bring the system to the symmetric point
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Jψ ≈ JD, where it displays a non Fermi liquid behavior29.
In this case, up to order 1/

√
TK , the Ts,ψψ-matrix is11

Ts,ψψ (ǫ) = i
(

1− 3λ
√
πTI(ǫ)

)

,

where I(ǫ) was defined in Eq. (36).
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