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The edge of spin unpolarized or spin polarized ν = 2/3 fractional quantum Hall states is predicted
by the effective theory to support a backward moving neutral mode in addition to a forward moving
charge mode. We study this issue from a microscopic perspective where these states are identified
with effective filling factor of 2 of composite fermions, but with an effective magnetic field that is
antiparallel to the external field. A simple counting from the composite fermion description suggests
that there might be two backward moving edge modes, but explicit calculations show that one of
these is projected out of the low energy sector, while the remaining mode provides a good microscopic
account of the actual counter propagating edge mode. The forward moving modes are identified as
“Schur modes,” obtained by multiplying the ground state wave function by the symmetric Schur
polynomials. The edge of the 2/3 spin unpolarized state provides a particularly striking realization
of “spin charge separation” in a one dimensional Tomonaga Luttinger liquids, with the spin and
charge modes moving in opposite directions.

PACS numbers:

I. INTRODUCTION

Two-dimensional electron systems have been the plat-
form for many interesting phenomena. In particular, the
integer [1] and fractional [2] quantum Hall effects occur
when a two-dimensional electron system (2DES) is placed
in a magnetic field. Integer quantum Hall (IQH) states
occur when an integer number of Landau levels are com-
pletely filled with electrons. For a partially filled Landau
level (LL), interactions between electrons can produce
incompressible states at certain fillings and lead to frac-
tional quantum Hall (FQH) states. These are character-
ized by the formation of composite fermions [3], where a
composite fermion (CF) is the bound state of an electron
and an even number of vortices. A strongly interacting
state of electrons in a magnetic field B is described by
a weakly interacting state of composite fermions in an
effective magnetic field B∗, whose direction can be either
parallel or antiparallel to B. The composite fermions
form Landau-like levels (called Λ levels) in the field B∗,
in analogy to the LLs of non-interacting electrons. The
FQH states of electrons are described as IQH states
of composite fermions, which correspond to situations
where composite fermions occupy an integer number of
Λ levels. This results in FQH effect at the prominently
observed fractions

ν =
n

2pn± 1
(1)

where +(−) indicate that the direction of the effective
magnetic field is parallel (antiparallel) to the real mag-
netic field.

Since FQH states occur in the presence of a large mag-
netic field, one might at first expect that the spin degree
of freedom is frozen. However, in the most widely stud-
ied GaAs system, the g-factor is very small, and unpo-
larized or partially polarized quantum Hall states have
been found to occur. The CF theory predicts the pos-

sible spin polarizations at various fractions in terms of
composite fermions filling both up and down spin Λ lev-
els (ΛLs) [4,5]. The spin polarization is determined by
a competition between the CF cyclotron energy and the
Zeeman energy EZ = gµBB; at very small Zeeman ener-
gies the state with smallest spin polarization is obtained,
and transitions into larger spin polarizations occur as the
Zeeman energy is increased. This physics has been found
to be in good qualitative and semi-quantitative agree-
ment with experiments [6]. In particular, both the 2/5
and the 2/3 FQH states map into filling factor 2 of com-
posite fermions (with effective magnetic field antiparallel
to the applied field for 2/3); the spin unpolarized state
maps into the state in which 0↑ and 0↓ ΛLs are occu-
pied, and the fully polarized state is described as the one
in which 0↑ and 1↑ ΛLs are occupied.

Our concern in this paper is with the physics of the
edge excitations of the FQH states. The FQH states are
gapped in the bulk but there are gapless excitations re-
siding at the boundary [7], which provide a realization of
a nontrivial one dimensional Tomonaga-Luttinger liquid
[8,9]. Several theoretical approaches have been used to
study the edge states, especially the Chern-Simons the-
ory [8,10]. In general, the FQH state at n/(2pn+1) has n
edge modes, one corresponding to each ΛL. A surprising
prediction of the edge theory has been the presence of
backward moving neutral modes for the FQH states at
n/(2pn−1) for which the effective magnetic field for com-
posite fermions is antiparallel to the real magnetic field
[8,11,12]. Evidence of such counter-propagating edge
modes has been seen in a recent experiment [13].

We will consider the FQH state at 2/3, which is the
simplest state where backward moving modes are theo-
retically predicted. The bulk physics of both the spin un-
polarized and spin polarized FQH states at 2/3 is closely
related to that of the spin unpolarized and spin polarized
IQH states at 2, as has been demonstrated by Wu, Dev
and Jain [4]. In this paper, we study the edge states of
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ν = 2/3 using a combination of the parton method, exact
diagonalization, and the microscopic CF theory to test
predictions of the effective field theory, and also to gain
further insight into the physics of the backward moving
edge modes.

The presence of up-stream modes can be motivated
in different ways. For fully spin polarized states, the
presence of such modes appears naturally for the FQH
states at

ν = 1− n

2pn+ 1
, (2)

which are particle hole symmetric to the principal states.
Consider the fully spin polarized 2/3 FQH state for ex-
ample, which can be viewed as the 1/3 state of holes in
the background of one filled Landau level. In this picture
the 2/3 state is surrounded by a ν = 1 state at the bound-
ary, which in turn is surrounded by vacuum [14,15]. The
edge between 1 and vacuum supports a forward moving
mode, whereas the edge between 2/3 and 1 supports a
backward moving mode. The physics suggested by the
CF theory has similarity to the picture described above.
At filling factor 2 we have two edges, one separating 2 and
1, and the other between 1 and 0 (i.e. vacuum). Upon
antiparallel flux attachment, filling factors 2, 1 and 0 turn
into 2/3, 1, and 0, thus again producing a ν = 1 region
separating the 2/3 state and the vacuum. One can there-
fore expect a counter-propagating mode by the reasoning
given above.

An analogous picture is not available for the spin sin-
glet 2/3 state, however. This state cannot be viewed as
the hole partner of any principal state, because particle
hole symmetry in the presence of spin relates ν to 2− ν.
The picture for the edge of the spin unpolarized 2/3 state
is qualitatively different. The edge of the spin unpolar-
ized state at 2 goes directly from 2 to 0, implying a 2/3-0
edge for the spin unpolarized 2/3 state. Because of the
absence of ν = 1 at the boundary, it is not obvious why
there should be an up-stream edge mode.

Nonetheless, an effective K matrix description of Wen
[8] indicates a backward moving edge mode for both spin
unpolarized and spin polarized states. The K matrix can
be obtained in the CF basis straightforwardly by noting
that the 2×2 K matrix for filling factor 2 is Kjk = −δjk
for antiparallel field. Composite fermionization of elec-
trons by attachment of two vortices amounts to adding
2 to each each element of K, giving

K2/3 =

(
1 2
2 1

)
(3)

for both the spin unpolarized and spin polarized 2/3
states. This matrix has one positive and one negative
eigenvalue, implying one down-stream and one up-stream
edge mode. As explained in Ref. [16], this structure of
K2/3 possesses a hidden SU(2) symmetry, with an SU(2)
algebra generated by the neutral modes. For contrast,

the K matrix of the 2/5 state in the CF basis is given by

K2/5 =

(
3 2
2 3

)
, (4)

obtained by adding 2 to each element of δjk; both eigen-
values of this matrix are positive, hence no backward
moving modes (neglecting edge reconstruction).

Yet another way to intuitively understand why there
should be backward moving modes in the n/(2n−1) FQH
state is to note that composite fermions experience a neg-
ative effective field. Because switching the direction of
the magnetic field reverses the direction of the E × B
drift, we can expect composite fermions at the edge mov-
ing in the backward direction. More explicitly, consider
the wave function in Eq. (9) below, written in the sym-
metric gauge. The edge modes at n/(2n− 1) derive from
the edge modes of Φn. The state Φn has n independent
edge modes, and the energy of a single excitation at each
edge increases with its angular momentum (relative to
the ground state). However, because of the complex con-
jugation of Φn, an increase in the angular momentum
in Φn translates into a decrease in the angular momen-
tum at n/(2n − 1), thus producing a mode moving in
the opposite direction. While this seems to give a rather
nice picture for the origin of backward moving modes, it
suggests that there are as many backward moving modes
at n/(2n − 1) as there are forward moving modes at n,
which is inconsistent with the effective K matrix descrip-
tion that produces a single backward moving edge mode.

Our aim in this work is to gain a microscopic under-
standing of the edge excitations of the negative flux CF
states by considering the example of 2/3, and to bring
consistency between the different approaches. We show,
by an explicit construction of the wave functions, that
only the neutral combination of the upstream edge modes
survives at low energies, which is also in good agreement
with exact diagonalization studies. In addition, we iden-
tify the forward moving modes with the so called “Schur”
modes, which are obtained by multiplying the ground
state wave function by the symmetric Schur polynomi-
als; these are analogous to the edge modes at filling factor
one. We study both polarized and unpolarized states at
2/3, and, for comparison, also show results of the ν = 2/5
state, which is also described as ν = 2 filled ΛLs but with
parallel flux attachment.

The edge states of ν = 2/3 have also been studied by
exact diagonalization. Johnson and MacDonald [14] and
Hu et al. [15] model the spin polarized 2/3 state as 1/3
of holes inside a ν = 1 droplet. Moore and Haldane [17]
have studied the spin singlet 2/3 state by exact diag-
onalization to demonstrate the presence of a backward
moving mode. The validity of the CF theory for electron
droplets in the disk geometry, which can contain com-
plex edges, has been studied extensively in a number of
previous articles [18].

We note that the edge of the spin singlet 2/3 state
provides a striking realization of spin charge separation,
with pure spin and pure charge modes moving in opposite
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directions. This should in principle be observable. These
modes have been labeled “spinons” and “chargeons” by
Balatsky and Stone [19].

The paper is organized as follows. We introduce the
CF wave functions and present the parton construction
based on them in section II. Our model and numerical
methods are briefly explained in section III. The energy
spectra of spin-unpolarized ν = 2 and 2/5 states are stud-
ied in section IV. The energy spectra of spin-unpolarized
and polarized ν = 2/3 state are analyzed in section V
and VI, respectively. We conclude in section VII.

II. COMPOSITE FERMION AND PARTON
CONSTRUCTION

In order to study the edge properties of a FQH state,
we choose the disk geometry where the nth LL single
particle states in the symmetric gauge are given by

ηn,m(z) =
(−1)n√

2π

√
n!

2m(m+ n)!
e−|z|

2/4zmLmn

(
|z|2

2

)
,

(5)
where Lmn (x) is the associated Laguerre polynomial, n
andm denote the LL index and angular momentum index
respectively, z = x − iy is the complex representation
of electron coordinates, and all lengths are measured in
units of the magnetic length l. The lowest Landau level
(LLL) states (n = 0) are of special importance and they
are

η0,m(z) =
zme−|z|

2/4

√
2π2mm!

(6)

The wave function of the completely filled LLL is

Φ1({zi}) =
∏
i<j

(zi − zj). (7)

where we have omitted, for notational ease, the ubiqui-
tous Gaussian factor and also the normalization coeffi-
cient.

In the CF theory, the system of strongly correlated
electrons at filling factor given by Eq. (1) is mapped into
a system of weakly interacting composite fermions at fill-
ing factor ν∗ = n. The wave function of this state is
constructed as [3]

Ψgs
n

2n+1
= PLLL [Φ1Φ1Φn] (8)

and

Ψgs
n

2n−1
= PLLL [Φ1Φ1Φ∗n] (9)

where Φn is a wave function at filling factor ν∗ = n. The
first (second) of the above equation refers to situation
when the effective magnetic field is parallel (antiparallel)
to the external magnetic field. The spin degree of free-
dom is incorporated by assigning spins to the composite

fermions [4,5]. To form an incompressible state, the com-
posite fermions of each spin species independently occupy
an integer number n↑ and n↓ of Λ levels, with n = n↑+n↓.
Φn in the above equations is replaced by Φn↑,n↓ , where
n↑ spin-up ΛLs and n↓ spin-down ΛLs are filled:

Ψgs
n

2n+1
= PLLL

[
Φ1Φ1Φn↑,n↓

]
, Ψgs

n
2n−1

= PLLL

[
Φ1Φ1Φ∗n↑,n↓

]
(10)

In particular, for the spin-polarized ν = 2/3 and 2/5
ground states considered below, the composite fermions
are polarized and occupy the lowest two spin-up ΛLs,
whereas for the spin-unpolarized ν = 2/3 and 2/5 ground
states, both spin-up and spin-down composite fermions
occupy one ΛL.

One can expect that the above wave functions also
give a correspondence between the edge states at ν =
n/(2n ± 1) and ν∗ = n. In the disk geometry, the to-
tal angular momentum plays the role of the momentum.
At ν∗ = n there are n edge modes, one corresponding
to each LL, moving in the forward direction. They pro-
duce n forward moving CF edge modes at n/(2n + 1),
one for each ΛL, which is consistent with the description
of the edge by other methods. However, for antiparallel
flux attachment, they produce n backward moving modes,
because of the negative effective magnetic field for com-
posite fermions, as indicated by the complex conjugation
of Φn in Eq. (9). This simple view is in disagreement
with the edge behavior from other methods.

A more systematic description of the edge was devel-
oped by Wen [20] using the parton model of the FQHE
(Jain [21]). In this model one imagines breaking each
electron into an odd number of fictitious fermions, called
partons, and describes an incompressible state as one in
which each parton occupies an IQH state (which could
be either parallel or antiparallel magnetic field). For the
states of Eqs. (8) and (9), we have three partons, indi-
vidually occupying states with filling factor 1, 1, and n
(the last being in negative magnetic field for Eq. (9)).
Constraints on the charge and filling factors of various
partons can be derived straightforwardly [21]. If the par-
tons are treated as independent, we have n edge modes of
the partons at filling n (one from each LL), and one edge
mode for each parton at filling one. However, the par-
tons are obviously not independent degrees of freedom
and must be identified in the calculation. Wen showed
[20] that imposing a constraint that annihilates all rel-
ative density oscillations produces an edge description
that is consistent with the effective field theory descrip-
tion. This method can be straightforwardly applied to
n/(2n− 1) states.

We first briefly review the hydrodynamic approach for
the edge physics [8] of quantum Hall systems, which will
be used below in the parton construction. Consider a Hall
droplet with filling factor ν. The electric field generated
by the confining potential generates a current with speed
v = E/B along the edge,

j = ν
e2

h
B̂×E (11)
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FIG. 1: (Color online) Schematics of the parton construction for the edge modes at 2/5 and 2/3. When spin is included, the
symbol Φ2 is to be replaced by Φ2,0 for the spin polarized states and by Φ1,1 for the spin unpolarized states. The dispersions
of various edge modes of the partons, and also of the edge modes of 2/5 and 2/3 after projection into the physical space. The
two colors represent charge (blue) and neutral (green) modes. E and k are the energy and wave vector.

where B̂ is the direction of the magnetic field. The edge
wave can be described by the one dimensional density
ρ(x) = nh(x) where h(x) is the displacement of the edge,
x is the coordinate along the edge, and n is the bulk elec-
tron density. The propagation of edge waves is described
by

∂tρ± v∂xρ = 0 (12)

where the + (−) sign applies when the magnetic field in
the positive (negative) z direction.

The Hamiltonian of the edge wave is given by

H =

∫
dx

1

2
ehρE =

∫
dx π

v

ν
ρ2 (13)

In momentum space the wave equation and the Hamilto-
nian can be rewritten as

ρ̇(k) = ±ivkρ(k) H = 2π
v

ν

∑
k>0

ρ(k)ρ(−k) (14)

where ρ(k) =
∫
dx 1√

L
eikxρ(x), and L is the length

of the edge. Comparing with the standard Hamilto-
nian equation, ρk|k>0 may be identified as the “coordi-
nates” and their corresponding canonical “momenta” are
p(k) = ±i2πρ(−k)/νk. This theory is quantized by im-
posing the canonical commutation relation between ρ(k)
and p(k), [ρ(k), p(k′)] = iδkk′ , which leads to the so-called
U(1) Kac-Moody algebra

[ρ(k), ρ(k′)] = ± ν

2π
kδk+k′ k, k′ = integer× 2π

L
(15)

In what follows, there will be several partons occupying
one LL each; in that case, their density operators ρλ’s,
with λ labeling different partons, obey the commutation
relation:

[ρλ(k), ρµ(k′)] = ± k

2π
δλµδk+k′ . (16)

A. Spin-polarized states

For fully spin polarized states, the ground state wave
functions of 2/5 and 2/3 are given by Eq. (8) and (9),
where Φn is Φ2, the wave function of two filled spin-
up ΛLs. There are three types of partons which carry
charges 2e/5, 2e/5 and e/5 for the 2/5 state, and 2e/3,
2e/3 and −e/3 for the 2/3 state [21]. Following Wen
[20], we introduce density operators ρ1, ρ2, ρ3 and ρ4

where ρ1,2 describe the edges of the two Φ1 state and
ρ3,4 describe the edges of the two filled LLs in Φ2 or
Φ∗2. The commutators of ρ1 and ρ2 are given by Eq. (16)
with positive sign, and those of ρ3 and ρ4 with positive
(negative) sign for the 2/5 (2/3) state. To get a physi-
cal state of electrons from a state of partons, one must
project away the unphysical degrees of freedom intro-
duced through the fictitious partons. For this purpose,
we use the fact [20] that the density fluctuations associ-
ated with ρ̃C = C1ρ1 +C2ρ2 +C3(ρ3 +ρ4) are unphysical

for any Cα satisfying
∑3
α=1 Cα = 0 and a physical oper-

ator must therefore commute with ρ̃C

[Ô, ρ̃C ] = 0 (17)

Before projecting to the physical Hilbert space, the edge
excitations contain four branches described by the ρµ’s.
One can check that the following edge density operators
commute with ρ̃C

j0 =

√
2

5

(
ρ0 +

1

2
(ρ3 + ρ4)

)
j1 =

√
1

2
(ρ3 − ρ4) (18)

for the 2/5 state and

j0 =

√
2

3

(
ρ0 −

1

2
(ρ3 + ρ4)

)
j1 =

√
1

2
(ρ3 − ρ4) (19)
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for the 2/3 state, where ρ0 = ρ1 + ρ2. The physical edge
excitations thus have two branches described by j0 and
j1. This conclusion is consistent with the predictions
of Chern-Simons theory [8] and numerical calculations
[22]. We note that only j0 couples to the external elec-
tric potential through j0A0. The commutation relations
between the jµ’s are

[jµ(k), jλ(k′)] = ± k

2π
δµλδk+k′ (20)

for µ, λ = 0 and 1. The sign ± is − only for the j1 op-
erator of the spin-polarized 2/3 state, which describes a
neutral backward moving edge mode. The parton con-
struction is schematically shown in Fig. 1 for 2/3 and
2/5.

B. Spin-singlet states

The CF ground state wave functions for spin-
unpolarized ν = 2/5 and 2/3 states are given by Eq. (10),
where the Φn↑,n↓ is Φ1,1, the wave function of two filled
LLs with spin-up and one spin-down. The parton con-
struction for these states is analogous, again with four
density operators defined as above. There are three types
of partons for the unpolarized ν = 2/5 and 2/3 states,
which carry charges 2e/5, 2e/5 and e/5 and 2e/3, 2e/3
and −e/3 in these two cases. Four operators ρ1, ρ2, ρ3

and ρ4 are introduced to describe the edges of the par-
ton states, where ρ1,2 describe the edges of the two Φ1

state and ρc,s describe the edges of Φ1,1 or Φ∗1,1, where ρ3

and ρ4 denote the density operators for spin-up and spin-
down electrons of the ν = 2 unpolarized state. Following
the same arguments as those used in the spin-polarized
case, these operators satisfy the U(1) Kac-Moody alge-
bra Eq. (16). It is convenient to combine these operators
in a form that reflects the symmetry of the system under
rotation in the spin space. Following Moore and Hal-
dane [17], we introduce operators ρs = (ρ3− ρ4)/

√
2 and

ρc = (ρ3 +ρ4)/
√

2 which commute with S2 and Sz. They
describe the spin and charge edge modes and their com-
mutators are given by Eq. (16). The density fluctuation

operator is ρ̃C = C1ρ1 +C2ρ2 +
√

2C3ρc. The commuta-
tors of ρ1,2 are given by Eq. (16) with positive sign. The
commutators of ρc,s are given by Eq. (16) with positive
(negative) sign for the 2/5 (2/3) state. A physical oper-
ator must commute with ρ̃C as shown in Eq. (17). The
following two sets of edge density operators are physical,

jc =

√
2

5

(
ρ0 +

ρc√
2

)
js = ρs (21)

for the 2/5 state and

jc =

√
2

3

(
ρ0 −

ρc√
2

)
js = ρs (22)

for the 2/3 state where ρ0 = ρ1 + ρ2. We note that
only jc couples to the external electric potential through

jcA0. The commutation relations between jµ’s are given
by Eq. (20) where the sign is − only for the js operator of
the spin-unpolarized 2/3 state, which describes a neutral
spin mode moving in the backward direction. The parton
constructions for spin singlet states are also schematically
shown in Fig. 1.

III. MODEL AND NUMERICAL METHODS

To test these ideas we have performed extensive nu-
merical studies in various systems. In this section, we
briefly explain our model and methods.

A. Exact Diagonalization

A semi-realisitc confinement potential [23] in the disk
geometry can be modeled by a uniformly distributed pos-
itive charge background on a disk separated from the
electron disk by a distance d. The Hamiltonian of such
a system is

H = EK + Vee + Veb + Vbb + EZ

=
∑
j

1

2mb

(
pj +

e

c
Aj

)2

+
∑
j<k

e2

ε|rj − rk|

−ρ0

∑
j

∫
ΩN

d2r
e2

ε
√
|rj − r|2 + d2

+ρ2
0

∫
ΩN

∫
ΩN

d2rd2r′
e2

ε|r′ − r|
+ gµBBSz (23)

Here mb is the band mass of the electrons, pj and rj are
the momentum and position operators of the jth elec-
tron, respectively. The quantity Aj is the vector poten-
tial of the magnetic field at rj , ρ0 = ν/2πl2 is the positive
charge density spread over the background disk of radius
RN , and ε is the dielectric constant of the system. Sz
is the total spin in the z-direction. The Vbb term is a
constant and does not affect the result, so we will drop
it in what follows. It has been found that changing the
distance d can cause edge reconstruction [23], but the uni-
versal properties of edge states should not depend sensi-
tively on the detailed nature of the confinement potential,
so we also use a parabolic confinement potential give by
U(r) = αr2 to simplify some calculations. Confining to
the LLL and neglecting LL mixing, the Hamiltonian in
the second quantized representation is given by

H =
1

2

∑
r,s,t,u

〈r, s|Vee|t, u〉a†ra†satau

+
∑
m

〈m|Veb|m〉a†mam. (24)
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The two body electron-electron interaction coefficients
and electron-background interaction coefficients are

〈r, s|Vee|t, u〉 =

∫
d2r1d

2r2η
∗
r (r1)η∗s (r2)

e2

εr12
ηt(r1)ηu(r2);

(25)

〈m|Veb|m〉 = −ρ0

∫
d2r1

∫
ΩN

d2r2
|ηm(r1)|2√
r2
12 + d2

(26)

The structure of edge excitations of the ν = 2/3 spin-
unpolarized state is not very apparent for the pure
Coulomb interaction, and following Ref. [17] we consider
a screened Coulomb interaction for which the edge exci-
tations can be more readily identified. The two body ma-
trix elements for screened Coulomb potential can be ob-
tained by inserting a factor exp(−r2/4(κl)2) in Eq. (25),
where κl is the screening length. The effect of parabolic
confinement potential is very simple: it introduce an
additive term βM (β = ~(

√
(eB/mbc)2 + 8α/m −

eB/mbc)/2) to the total energy of a state in the absence
of confinement, where M is the total angular momentum
of the state. We shall shift the zero of the energy by
changing this term to β(M −M0) where M0 is the an-
gular momentum of the ground state. The value of the
confinement strength β is chosen such that the state at
M0 becomes the ground state.

The Zeeman term gµBBSz commutes with other terms
in the Hamiltonian and thus can be considered sepa-
rately. When this term is set to zero, the Hamiltonian
commutes with the orbital and spin angular momentum
operators, so the total orbital and spin angular momen-
tum M and S2 are both good quantum numbers. We
shall diagonalize in subspaces with fixed M and Sz = 0.
The spin eigenvalue of a state can be calculated using

Ŝ2 = Ŝ−Ŝ+ + Ŝ2
z + Ŝz (27)

The effect of the Zeeman term can be incorporated
straightforwardly at the end of the calculation.

B. Lowest Landau Level Projection

In general, the wave function of composite fermions
occupying n Λ levels, prior to LLL projection, is written
as

Ψ({z}) = Det


φ1(z1) · · · φ1(zN )
φ2(z1) · · · φ2(zN )

... · · ·
...

φN (z1) · · · φN (zN )


N∏
i<j

(zi − zj)2

(28)
where φi’s are single particle states of the lowest n LLs.
This must be projected into the lowest LL to determine
the low energy behavior.

There are two ways of performing the LLL projec-
tion. In the first one, first used by Dev and Jain [4,24],

the LLL projection is achieved by replacing the anti-
holomophic coordinates z̄ in the Slater determinant with
2∂/∂z. The evaluation of the projected wave function
essentially amounts to expanding the unprojected wave
function fully and then projecting each term into the
LLL. The projection cannot be evaluated for a large num-
ber of electrons, because it requires keeping track of all
basis states (Slater determinants) whose number grows
exponentially with N .

One can simplify the book-keeping by using Jack poly-
nomials, which allows an efficient expansion of the Jas-
trow factor. We explain this briefly here. It has been
shown that Jastrow factor belongs to a special class of
polynomials, namely the Jacks [25]. The Schur function
Eq. (41) that will be used later is also a Jack. Since
the single particle states in the LLL are indexed with
angular momentum, a non-interacting N -particle state
can be labeled by a partition λ = [λ1, · · · , λN ] in which
the occupied single particle states are listed or a oc-
cupation configuration n(λ) = nm(λ), m = 0, 1, 2, · · ·,
where m labels the single particle states and nm(λ) is
the number of particles in the orbital m. The wave
function corresponding to a partition is a monomial for
bosons and a determinant for fermions. An interact-
ing many body state is a superposition of many non-
interacting basis states indexed by λ’s with coefficients
cλ. A squeezing operation for partitions is defined as fol-
lows: for a pair of particles in the orbitals m1 and m2,
with m1 < m2 − 1, the elementary squeezing operation
consists of the two particles shifted to different momen-
tum orbitals as nm1,2

→ nm1,2
−1, nm1,2±1 → nm1,2±1+1.

This means that both particles in the m1, m2 orbitals
are shifted inwards. A partition λ is said to dominate µ
(λ > µ) if µ can be generated by squeezing λ. A bosonic
Jack can be expanded in terms of symmetric monomials

Jαλ =
∑
κ≤λ

cλκ(α)Mκ, (29)

where κ runs over all partitions squeezed from the root
partition λ and Mκ is a monomial [25]. The root parti-

tion of the Jastrow factor of N electrons,
∏N
i<j(zi− zj)2,

is [2N, 2N − 2, · · · , 0] and α = −2. There is a recusive
relation [26] for the expansion coefficients cλκ(α)

cλκ(α) =
2/α

ρλ(α)− ρκ(α)

∑
κ<µ≤λ

((li + t)− (lj − t)) cµκ(α),

(30)
The sum in Eq. (30) extends over all partitions µ strictly
dominating κ but being dominated or equal to λ. The
ρ’s are defined as:

ρλ(α) =
∑
i

λi

(
λi − 1− 2

α
(i− 1)

)
. (31)

Once the expansion is obtained, one can act the deriva-
tive on each monomial and sort the results to Slater de-
terminants, i.e., Fock states of fermions. This method
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∆M Sz = 0 Sz = ±1 Sz = ±2
0 1 0 0
1 2 1 0
2 5 2 0
3 10 5 0
4 20 10 1
5 36 20 2

TABLE I: Number of all edge modes for various values of ∆M
and Sz.

∆M Sz = 0 Sz = ±1 Sz = ±2
0 1 0 0
1 1 1 0
2 2 1 0
3 3 2 0
4 5 3 1
5 7 5 2

TABLE II: Number of pure spin edge modes for various values
of ∆M and Sz.

simplifies the calculation, but the computational time
still grows exponentially and cannot be used for large
systems; this projection is typically not possible beyond
10 particles.

The second method is the Jain-Kamilla projection [27].
In this method we absorb the Jastrow factor into the
Slater determinant to write

Ψ({z}) = Det


φ1(z1)J1 · · · φ1(zN )JN
φ2(z1)J1 · · · φ2(zN )JN

... · · ·
...

φN (z1)J1 · · · φN (zN )JN

 (32)

where Ji =
∏′
k(zi − zk) and the summation runs over

all indices k 6= i. Instead of applying PLLL to the whole
expression, one apply it to each matrix element individ-
ually and then evaluate the determinant. This method
does not require decomposition of the wave function in
the Slater determinant basis, and thus can be applied to
very large systems for both parallel and antiparallel flux
attachments [27,28].

The two methods for projection do not produce iden-
tical wave functions. However, explicit calculations have
shown that they are very close for fully spin polarized
states. The spin unpolarized states are somewhat more
sensitive to which projection is used, and we have found
that the states obtained from the Dev-Jain projection
are closer to the exact Coulomb states. In our calcula-
tions below, the Jain-Kamilla projection has been used
for the spin-polarized states, and Dev-Jain projection for
the spin-unpolarized states.

∆M Sz = 0
1 1
2 2
3 3
4 5
5 7

TABLE III: Number of pure charge edge modes for several
∆M . They all have Sz = 0.

∆M S
0 0
1 1
2 0,1
3 0,1,1
4 0,0,1,1,2
5 0,0,1,1,1,2,2

TABLE IV: Number of pure spin edge modes for given ∆M
and S.

IV. EDGE MODES OF SPIN-UNPOLARIZED
ν = 2 AND ν = 2/5 STATE

Both the spin-unpolarized 2/3 and 2/5 states are
closely related to the spin-unpolarized ν = 2 state. The
edge modes at ν = 2 consist of one pure charge branch
and one pure spin branch. Their counting can be ob-
tained straightforwardly [17]; the number of edge excita-
tions in the subspaces with fixed Sz values are shown in
Table I for some values of ∆M . Note that a Sz = ±A
state appears only if ∆M ≥ A2. Among these states,
some are pure spin states, some are pure charge states,
and some mixed. Tables II and III show the num-
ber of pure spin and pure charge modes. Since the
states form SU(2) multiplets, the number of state in the
S2 = A(A + 1) sector can be obtained by subtracting
the number of state in the Sz = A + 1 sector from that
of the Sz = A sector; some instances are summarized in
Table IV. We expect identical counting for 2/5.

Fig. 2 shows the spectra for ν = 2 and ν = 2/5 states
with the Zeeman energy set to zero. The coefficient β
due to the parabolic confinement potential is chosen to
be 0.6 and 0.06 for the ν = 2 and 2/5 state, respectively,
so as to make the compact state the ground state. The
energy eigenstates are also S2 eigenstates., and we use
different colors to represent different S2 eigenvalues, and
also shift the energy levels in the horizontal direction for
clarity. The ground states are marked by green arrows.
We see in both spectra low energy states (enclosed by
green boxes), which we identify as pure spin edge states;
these are well separated from other states. This count-
ing matches that of the pure spin mode as shown in Ta-
ble IV. We introduce the following operators to describe
the edge modes of the ν = 2 spin-unpolarized state (the
superscripts “c” and “s” refer to “pure charge” and “pure
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FIG. 2: (Color online) Pure spin excitations at ν = 2 and
2/5. Energy spectra of the edge excitations of the unpolarized
ν = 2 (panel (a)) and 2/5 (panel (b)) states with 6 particles.
The ground states have M = 6 and M = 36, respectively.
The pure spin modes are enclosed by green boxes, and the
black dots in the lower panel show the energies of CF wave
functions. The full spectrum at ν = 2 consists of pure spin,
pure charge (Fig. 3), and mixed excitations. At ν = 2/5,
the spectrum also includes excitations in the interior of the
system where composite fermions are excited across ΛLs. In
this and the subsequent figures, eigenstates with different spin
quantum number are shown in different colors, with the color
coding indicated on the figures, and also horizontally shifted
for clarity.

spin” respectively):

C†,cm =
∑
n

a†↑m+na↑n + a†↓m+na↓n (33)

C†,sm,0 =
∑
n

a†↑m+na↑n − a
†
↓m+na↓n (34)

C†,sm,+1 =
∑
n

a†↑m+na↓n (35)

C†,sm,−1 =
∑
n

a†↓m+na↑n (36)

FIG. 3: (Color online) Pure charge excitations at ν = 2 and
2/5. Energy spectra of the unpolarized ν = 2 (panel (a)) and
2/5 (panel (b)) states with 6 particles. The ground states
have M = 6 and M = 36, respectively. The pure charge exci-
tations of ν = 2 are enclosed by grey boxes. The pure charge
excitations at ν = 2/5 are harder to identify for small systems
because they lie in the continuum of the bulk excitations.

where aσm is the annihilation operator for an electron
with spin σ and angular momentum m. They have the
following commutation relations with the spin operators
S− and S+: [

S+, C†,sm,0

]
= C†,sm,1 (37)

[
S−, C†,sm,1

]
= C†,sm,0 (38)

[
S−, C†,sm,0

]
= C†,sm,−1 (39)

and all other commutators vanish. The states obtained
by acting these operators on the ground state are in gen-
eral not eigenstates of the Coulomb Hamiltonian. How-
ever, the two appear to be adiabatically connected. We
can construct a model Hamiltonian Hc =

∑
m C

†,c
m Cc

m
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for which the pure spin excitations appear as zero modes.

These zero mode states can be obtained by acting C†,sm,0
operators on the ground state, and are adiabatically con-
nected to the spin edge modes in the ν = 2 spectrum
with Coulomb interaction.

Due to the strongly interacting nature of the state at
ν = 2/5, it is not possible to construct similar operators
explicitly, but the trial wave functions for the the ground
state and also excitations of the unpolarized ν = 2/5
state can be obtained by composite fermionizing the cor-
responding states at ν = 2. The edge excitations of un-
polarized 2/5 state can be obtained via

Ψ∆M
2/5 = PLLL

[
Φ2

1Φ∆M
1,1

]
(40)

where Φ∆M
1,1 is an edge state of the unpolarized ν = 2

state with angular momentum ∆M relative to its ground
state. The pure spin modes of the unpolarized ν = 2/5
state can be obtained from the ν = 2 pure spin modes
in this way, and we show the energies of such CF state
using black dots in panel (b) of Fig. 2. The lowest LL
projection has been performed by the method in Ref. [27].

How about the pure charge modes moving in the for-
ward direction? We construct these modes by multiply-
ing the ground state wave functions with Schur functions,
which are symmetric polynomials defined as

SλB ({z}) =
DetλF ({z})∏N
i<j(zi − zj)

(41)

where λB = [λ1, λ2, · · · , λN ] is a bosonic partition and
DetλF ({z}) is a Slater determinant with fermionic in-
dex λF = [λ1 +N − 1, λ2 +N − 2, · · · , λN ]. Multiplica-
tion by this function increases the angular momentum

by ∆M =
∑N
i λ

B
i . The number of independent Schur

functions at ∆M is equal to the number of partitions
of integer ∆M , which is consistent with the pure charge
mode counting in Table III. In Fig. 3, we show the com-
parison of Schur modes with exact states for unpolarized
ν = 2 and 2/5 states. At ν = 2 the Schur modes and ex-
act states match very well. While all states shown in the
ν = 2 spectrum are edge excitations (as excitations to
higher LLs are suppressed), the exact ν = 2/5 spectrum
in Fig. 3 also contains bulk excitations. The pure charge
modes are not clearly separated from the bulk states (in
contrast to the pure spin modes discussed above), indi-
cating a larger velocity for the pure charge mode. This is
a finite size effect, however, and we expect that for large
N a well defined edge branch will appear.

V. EDGE MODES OF SPIN-UNPOLARIZED
ν = 2/3 STATE

We next come to the edge excitations of 2/3, where we
expect counter propagating modes. In panel (a) of Fig. 4,
we show the spectra of spin-unpolarized ν = 2/3 with 8
particles for negative and positive ∆M . The coefficient

FIG. 4: (Color online) Energy spectrum of the edge excita-
tions of the unpolarized ν = 2/3 state. The ground state,
marked by a green arrow, occurs at total angular momentum
M = 44. In panel (a), backward moving pure spin modes
are enclosed by green boxes and forward moving pure charge
modes are enclosed by grey boxes. In panel (b), the dots show
the energoes of the Schur states, and the nearby numbers show
their overlaps with the exact states. For comparison, the pure
spin and pure charge edge excitations from exact diagonaliza-
tion spectrum of panel (a) are also shown in panel (b).

β is 0.015 here. The ground state is marked by the green
arrow. As explained before, we use a screened Coulomb
interaction with screening length κl = l here. For neg-
ative ∆M , some states, marked by the green boxes in
panel (a) of Fig. 4, are well separated from others. The
counting of these states suggests that they are pure spin
modes. It is not possible to construct explicit operators
that would create the edge excitations of the unpolarized
ν = 2/3 state, but trial wave functions can be obtained
in CF theory using

Ψ−∆M
2/3 = PLLL

[
Φ2

1(Φ∆M
1,1 )∗

]
(42)

We note both the forward moving edge modes of the un-
polarized ν = 2 state are converted to backward mov-
ing modes of the ν = 2/3 state according to this trans-
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FIG. 5: (Color online) Density profiles of excited states iden-
tified as edge (panel (a)) and bulk (panel (b)) excitations of
unpolarized ν = 2/3 state for N = 8 at ∆M=1 (M = 45). For
comparison, the density profile of the ground state at M = 44
is also shown.

formation; because of the complex conjugation the fac-
tor (Φ∆M

1,1 )∗ contributes a negative angular momentum.
Thus it appears that there would be two backward mov-
ing branches. However, we find that some CF states
are annihilated by the LLL projection (evaluated by the
method of Ref. [24], and among the surviving ones, many
are pushed to higher energies. The counting of the re-
maining low energy states matches with that predicted
by the bosonized theory of the edge within the parton de-
scription. The black dots and nearby numbers in panel
(b) of Fig. 4 show the energies of the CF trial states and
their overlaps with the exact states enclosed by green
boxes in panel (a). These results demonstrate that the
CF theory captures the qualitative behavior, and while
the agreement is quantitatively not as good as it is for the
n/(2n+ 1) states, it clearly gives a semiquantitative ac-
count of the backward moving edge. The CF states with
high energies (typically higher than the range of Fig. 4)
are not shown.

For positive ∆M , it is theoretically predicted that
there are pure charge (i.e. S = 0) excitations. In numer-

ical calculations, we cannot identify any states well sep-
arated from the others at positive ∆M ’s and the states
with lowest energies do not have S = 0. This is to be ex-
pected, however, as the charge modes have higher veloc-
ity and therefore rapidly merge into the bulk excitations.
By analogy to the discussion of the pure charge modes
of the unpolarized ν = 2 and 2/5 states, we expect that
the pure charge modes of the 2/3 state are also Schur
modes. In panel (a) of Fig. 4, the states enclosed by
grey boxes are identified as pure charge modes. The red
dots and nearby numbers in panel (b) show the energies
of the Schur modes and their overlaps with these exact
states. We have also calculated the energy spectrum of
6 particles. The energy differences between these Schur
states and the lowest energy state decreases as the sys-
tem size increases, which shows that the Schur modes will
become the lowest energy states in the thermodynamic
limit. To further support our identification of the edge
and bulk excitations, we plot the density profiles of some
states at ∆M = 1 in Fig. 5; the state shown in panel
(a) only exhibits density variations in the vicinity of the
edge, whereas those in panel (b) deviate also in the bulk.
Similar behavior is confirmed at ∆M = 2.

VI. EDGE MODES OF SPIN-POLARIZED
ν = 2/3 STATE

CF wave functions of the edge excitations of the spin
polarized ν = 2/3 state are constructed from the edge
excitations of the spin-polarized ν = 2 state via the map-
ping

Ψ−∆M
2/3 = PLLL

[
Φ2

1(Φ∆M
2 )∗

]
(43)

where (−) ∆M is the angular momentum measured rela-
tive to their respective ground states. More details about
the construction of such wave functions can be found
in Ref. [29]. We denote the state with N1 composite
fermions in the lowest and N2 composite fermions in the
second ΛL by [N1, N2]. Note that in order to have two in-
dependent CF edge branches, we should choose the num-
ber of composite fermions in the second ΛLs to be suffi-
ciently smaller than that in the lowest Λ level, so as to
eliminate transitions of composite fermions from the 2nd

ΛL to the 1st ΛL (which would happen only at a large
∆M). This also corresponds to the experimental situa-
tion where for a typical confinement potential we expect
that the lowest Λ level would extend farther than the sec-
ond. (Note that the spin polarized 2/3 is different from
the spin unpolarized 2/3 in this respect.) We show the
energy spectrum of spin-polarized 2/3 state with 10 par-
ticles in panel (a) of Fig. 6. The coefficient β is chosen to
be 0.075 here. The ground state [7, 3] occurs at angular
momentum M = 69; it is shown by the left inset of Fig. 6.
The backward moving edge states are enclosed by green
boxes. By construction, all the forward-moving ν∗ = 2
edge states are transformed to backward-moving ν = 2/3
edge states, and one may expect two backward moving



11

FIG. 6: (Color online) Energy spectrum of the edge excita-
tions of the spin polarized ν = 2/3 state. The ground state
occurs at total angular momentum M = 69. In panel (a),
the backward moving neutral modes are enclosed by green
boxes and the forward moving charge modes by grey boxes.
The two insets show the CF configurations at M = 69 and
73. In panel (b), the dots and nearby numbers show the en-
ergies of CF and Schur states and their overlap with exact
states (i.e. boxed states in panel (a)). The relatively poor
comparison for M = 71 is attributed to the fact that the low
energy modes here can also be viewed as the backward moving
modes emanating from the ground state at M = 73, and the
two description compete; this will not be an issue for larger
systems.

modes. We find that, similarly to the spin-unpolarized
ν = 2/3 state, some of the CF states are projected out
and some are pushed to high energies (typically outside
the range of Fig. 6, leaving only a few at low energies,
which match very well with exact states. A comparison
with the exact states is shown in panel (b) of Fig. 6,
where black dots show the energies of the CF states and
the numbers are the overlaps.

It is again natural to associate the forward moving
mode with positive ∆M with Schur excitations. We
again encounter the finite size difficulty of the absence
of a clear gap in some cases. The red dots and nearby

numbers in panel (b) of Fig. 6 show the energies of Schur
modes and their overlaps with exact states. As we in-
crease the angular momentum from 69 to 73, we get an-
other CF configuration [6, 4], which can also serve as a
finite size representation of the 2/3 state. That sets a
finite size limitation on the angular momentum ∆M one
can study in the forward or backward direction. For ex-
ample, the state at angular momenta smaller than 73
may also be viewed as backward moving edge states em-
anating from M = 73. This complicates the counting of
the edge modes for finite size systems, and is also the
likely cause of the mismatch between the exact spectra
and the expectation from the effective theory.

VII. CONCLUDING REMARKS

We have studied the edge states of spin unpolarized
and polarized ν = 2/3 states within the framework of the
CF theory, both using parton construction and the mi-
croscopic CF wave functions. The parton construction of
composite fermions produces one forward moving charge
mode and one backward moving neutral mode for both
spin unpolarized and polarized 2/3 states, which agrees
with the predictions of Chern-Simons effective field the-
ory. Backward moving modes also appear naturally from
the observation that at 2/3 composite fermions experi-
ence negative magnetic field, and thus move at the edge in
a direction opposite to that of electrons. A naive count-
ing would suggest two backward moving edge modes, one
from each Λ level, but we have shown, by explicit con-
struction of the CF wave functions, that one mode is pro-
jected out of the low energy sector and the remaining ex-
citations are good approximations of the exact states for
both spin unpolarized and spin polarized 2/3 state. The
forward moving modes are Schur modes; they are harder
to identify in the exact spectra of small systems because,
due to the larger velocity of these modes, they quickly
enter into the continuum of bulk excitations across Λ
levels. Nonetheless, a careful examination of the density
profiles has allowed us to identify the forward moving
edge states and to compare them with Schur modes. We
have thus shown that the description from the micro-
scopic approach is consistent with the Chern-Simons or
the parton approach, albeit only after a nontrivial reduc-
tion of the edge excitations upon projection into the low
energy space. Annihilation of mean field CF states upon
projection has been found in previous numerical studies
in other contexts as well [24,30], but no understanding
exists of the general mathematical structure underlying
such annihilations.

Before closing, we note that a number of effects have
been left out in our study. While we have only focused
on state counting in this paper, the effective description
in terms of bosons also makes predictions for the spectral
function, i.e., matrix elements relating ground to excited
states through the electron creation operator [31], which
we have not investigated. We have also not considered
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subtle questions regarding the antisymmetry of the elec-
tron operator in the projected edge state space [32], or
the role of ΛL mixing. Similarly, the possibility of edge
reconstruction [23,31,34] has not been incorporated into
our calculations, which, if it occurs, will fundamentally
alter the nature of the edge. The effects of finite thick-

ness, LL mixing and disorder have also been neglected.
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28 G. Möller and S. H. Simon, Phys. Rev. B 72, 045344

(2005); S. C. Davenport and S. H. Simon, Phys. Rev. B
85, 245303 (2012).

29 G.-S. Jeon, C.-C. Chang and J. K. Jain, Eur. J. Phys. B
55, 271 (2007).

30 X.-G. Wu and J. K. Jain, Phys. Rev. B 51, 1752 (1995).
31 J. J. Palacios and A. H. MacDonald, Phys. Rev. Lett. 76,
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