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Two remarkable features emerge from the exact Wilsonian procedure for integrating out the high-
energy scale in the Hubbard model. At low energies, the number of excitations that couple minimally
to the electromagnetic gauge is less than the conserved charge, thereby implying a breakdown of
Fermi liquid theory. In addition, two charge e excitations emerge in the lower band, the standard
projected electron and a composite entity (comprised of a hole and a charge 2e bosonic field) which
give rise to poles and zeros of the single-particle Green function, respectively. The poles generate
spectral weight along an arc centered at (π/2, π/2) while the zeros kill the spectral intensity on the
back-side of the arc. The result is the Fermi arc structure intrinsic to cuprate phenomenology. The
presence of composite excitations also produces a broad incoherent pseudogap feature at the (π, 0)
region of the Brillouin zone, thereby providing a mechanism for the nodal/anti-nodal dichotomy
seen in the cuprates.

I. INTRODUCTION

As revealed by extensive angle-resolved photoemission
(ARPES) studies1–7, lightly doped copper-oxide super-
conductors (cuprates) in the pseudogap regime possess a
band of excitations that only cross the chemical potential
once. Such a single crossing generates a set of coherent
or pole-like excitations that ultimately form a truncated
Fermi region, termed a Fermi arc, as opposed to the tradi-
tional Fermi surface generated by a double crossing. The
coherent excitations, centered around (0, 0) → (π, π),
traverse the zone diagonal and terminate in the vicinity
of (π, 0) or (0, π), thereby giving rise to a nodal/anti-
nodal dichotomy8–12, the former being ungapped while
the latter is gapped. While some ARPES experiments13

performed on Bi2Sr2−xLaxCuO6+δ (La-Bi2201) revealed
closed hole pockets, and hence consistency with the re-
sults from quantum oscillation experiments in high mag-
netic fields14–18, this interpretation has been called into
question6. King, et al.

6 observed that the closed pock-
ets seen earlier13 are entirely structural in origin as they
originate from overlapping superstructure replicas of the
main and shadow bands. Consequently, the preponder-
ance of evidence from ARPES is that the coherent exci-
tations form a disconnected region in momentum space
consistent with a single crossing of the chemical poten-
tial.
Theoretically, two questions arise. 1) What suppresses

the spectral weight on the back-side of the arc? 2) What
is the origin of the incoherent excitations or gap at the
zone boundary? A natural candidate to explain the for-
mer is that two kinds of excitations populate a doped
Mott insulator, one of which has no overlap with the
electron. Such an excitation will appear in the single-
electron Green function as a zero rather than a pole and
hence will carry no spectral weight. In this vein, some
have proposed neutral composite excitations19 to explain
the origin of Fermi arcs. Alternatively, Fermi arcs have
been seen in numerics20–22 on the 2D Hubbard model
and have been modeled phenomenologically23 (hereafter

YRZ). However, a key assumption of the phenomenolog-
ical account is that the zero-line is fixed at the diamond-
shaped Fermi surface of the non-interacting system. That
the diamond-shaped Fermi surface of the non-interacting
system constitutes the zero-line of the single-particle
Green function is a rigorous mathematical statement24

only if the underlying Hamiltonian is particle-hole sym-
metric. In fact, from the precise condition24–26 for the
vanishing of the real part of the Green function, main-
taining that the zero-line is doping independent requires
unphysical assumptions regarding the spectral function.
Certainly such a conservation of the zero-line is not
borne out by numerics on the Hubbard model27,28 nor
by analytical arguments24. In addition, models involving
Cooper pairs, fluctuating or otherwise, have been con-
structed to either yield arcs5 or hole pockets29,30. Our
discussion here, however, will focus entirely on arcs as
this seems to what the ARPES experiments are about.
While the physical origin of arcs might not be clear,

the mathematics is. Any Green function of the form

Gtoy(ω,k) =
Z

ω − ǫk + |∆(k)|2

ω−εk

(1.1)

will do. The similarity with the BCS Green function is
only perfunctory as there is no anomalous component.
Aside from having poles, Eq. (1.1) has zeros whenever
εk = 0 assuming of course the chemical potential cor-
responds to ω = 0. While the two dispersing electronic
bands, ǫk and εk in Eq. (1.1) are not hard to come by,
the parameter ∆(k) is. It requires some sort of order,
fluctuating or otherwise, or a new bosonic degrees of
freedom. While YRZ proposed Eq. (1.1) phenomenolog-
ically, their intuition was based on weak-coupling RPA
diagramatics31 on 2-leg ladder systems. In the context
of an algebraic charge liquid (ACL)32, Qi and Sachdev29

also obtained Eq. (1.1). Thus far, the only system shown
to have the properties of the ACL is one with radically
different parameters than the cuprates33.
Our point here is that ∆(k) arises fundamentally from

a new degree of freedom associated with dynamical spec-
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tral weight transfer. Ideally, it would be advantageous to
derive Eq. (1.1) directly from the strong-coupling param-
eter space of the basic model for a doped Mott insulator,
for example the Hubbard model. Such a derivation has
not presented in the literature. Hence, it is this problem
that we address. Since zeros24,25 arise from a cancellation
of the spectral weight in the upper and lower Hubbard
bands (hereafter UHB and LHB), an accurate description
of the upper band is required in a derivation of Eq. (1.1).
Hence, an attempt to obtain Eq. (1.1) from a model that
projects out the UHB, for example the t − J model, is
initially a non-starter as this model does not have zeros
of the type required for Eq. (1.1). Nonetheless, the infor-
mation regarding the UHB should be correctly encoded
into a theory of the lower band if the UHB is integrated
out (rather than projected out) exactly ala Wilson34. In
this paper, we show how the method we have recently
developed35–37 for carrying out the Wilsonian program
for the Hubbard model can be used to derive Eq. (1.1).
We show explicitly that two types of excitations emerge,
projected electrons (yielding poles in the propagator) and
a new bound state that gives rise to zeros. The bound
state is not made out of the elemental excitations and
hence is orthogonal to an electron (hence the zero) . It
represents a charge e excitation that originates from the
non-rigidity of the Hubbard bands, in other words, the
well documented dynamical spectral weight transfer38–40,
the key fingerprint of the breakdown of the band concept
in Mott systems. Since the mathematics of Fermi arcs
requires two kinds of excitations, one with poles and the
other with zeros, we refer to a physical model that con-
tains both, such as the one presented here, as the stan-
dard model. More exotic models relying on some type
order would fall outside this framework.

II. CHARGE 2e BOSON THEORY

A. Preliminaries

Underlying our toy Green function is a two-pole struc-
ture of the form,

Gtoy(ω,k) = Z

(
cos2 θ

ω − ω+
+

sin2 θ

ω − ω−

)
. (2.1)

Here cos2 θ = (ω+− ε(k))/(ω−−ω+) and ω± = 1
2 (ǫ(k)+

ε(k))±
√
(ǫ(k)− ε(k))2 + 4|∆(k)|2. Zeros arise from the

interference between the poles at ω− and ω+. Any model
that admits zeros must have at least this two-pole struc-
ture. There are two limits of the Hubbard model in which
the zero surface can be calculated exactly. In the atomic
limit, the zero surface of the exact single-particle Green
function

GR(ω) =
1 + x

ω − µ+ U
2

+
1− x

ω − µ− U
2

, (2.2)

is independent of momentum given by ω = µ and x = 0.
When the hopping is non-zero, t 6= 0, the only limit in

which the zero surface can be calculated exactly is at
half-filling and particle-hole symmetry. In this limit, the
zero surface24 for a nearest-neighbour band structure is
the magnetic Brillouin zone. Since Fermi arcs are absent
from both the atomic limit and the half-filled system with
hopping, it follows necessarily that Fermi arcs (if they are
present at all in the Hubbard model) arise entirely from
the dynamical part of the spectral weight.
Dynamical spectral weight transfer represents a con-

crete example of more being totally different. As is evi-
dent from Eq. (2.2), the weight of the lower band in the
atomic limit is 1 + x. This spectral weight has a natu-
ral interpretation in terms of electron states. There are
2x electron addition and 1 − x electron removal states.
Hence, in the atomic limit, there is a one-to-one corre-
spondence with the spectral intensity and the number of
electron states in the lower band. When the hopping is
turned on, the spectral intensity increases in the lower
band to 1 + x+ α, where

α =
2t

U

1

N

∑

ij,σ

〈f †
iσfjσ〉+O((t/U)2) (2.3)

and the fiσ’s are a rotation of the original fermionic oper-
ators in the Hubbard model such that it is block diagonal.
The energy of each block is nU , n the number of dou-
ble occupancies in each block. α is necessarily positive
because any hopping process that creates doubly occu-
pancy decreases the available spectral weight in the upper
band. Consequently, counting electrons, fractionalized or
otherwise, cannot exhaust the total number of degrees of
freedom in the lower band. A new degree of freedom
must be present which is distinct and hence orthogonal
to electron quasiparticles. This degree of freedom will
appear as a zero in the spectral function in the lower
band. It is precisely the nature of the states that arise
from the mixing with the upper band that we elucidate
here.
There have been attempts to isolate the role of dynam-

ical spectral weight transfer in the lower band within
slaved-particle constructions. For example, Wen and
Lee41 found that an SU(2) gauge theory of the t-J model
requires explicitly a bosonic doublet, a component of
which represents double occupancy. A mixing term be-
tween the bosons and the fermions was needed to obtain
the correct spectral weight below the chemical potential
in the lower band. Because of gauge invariance, the mix-
ing term can actually be rewritten as a binding between a
doublon and a holon. Doublon-holon bound states have
a long history in the Mott problem42–44 as they were first
argued by Mott to cause the Mott the gap. More recently,
Imada45 and co-workers45 also used the slaved-fermion
formalism and have advocated that a neutral composite
particle, which is caused by dynamical spectral weight
transfer, generates Fermi arcs. Within any of these gauge
theories, there is no known way of treating the gauge fluc-
tuations as the theory is strongly coupled. Nonetheless,
the problems inherent in the gauge theory formulations
can be circumvented because what is required is an exact
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integration of the U− scale physics. This can be accom-
plished without resorting to a formalism that generates
a gauge theory. As we will now show, what results is a
theory with new degrees of freedom which mediate the
formation of doublon-holon bound states, the source of
the zeros in the spectral function.

B. Exact Results: The conserved charge and the

low energy mode

Dynamical spectral weight transfer has two profound
consequences. First, we show exactly that the conserved
charge (1−x) is not exhausted by counting the degrees of
freedom minimally coupled to the electromagnetic gauge.
The remainder are carried by an incoherent background.
Second, the dynamically transferred degrees of freedom
give rise to zeros in the lower band. In fact, the physics
we find here is analogous to the finite U charge pro-
cesses that contribute to the spectral function measured
by ARPES in heavy-fermions46.

We first start with the procedure to integrate out the
UHB. Previously, we demonstrated35–37 that a theory of
the lower Hubbard band (hole doping) can be obtained
by introducing a new fermionic field Di

35,36 which rep-
resents the excitations in the upper band. This field has
mass U and hence should be integrated out to construct
the exact low-energy theory. As in the derivation of all
collective phenomena which dates back to the classic pa-
per of Bohm and Pines47, a constraint must be intro-
duced so that when solved, the model in the extended
space is equivalent to the starting UV-complete theory.
The new fermionic degree of freedom enters the action
in a quadratic fashion and hence the standard fermionic
path integral techniques can be applied to integrate the
high-energy scale of the UHB. Since the lower and upper
bands are not rigid in the sense that the spectral weights
of the two bands are coupled, integrating out the upper
band will lead to new degrees of freedom in the lower
band. In Euclidean signature, the Hubbard action in the
extended space is

SUV
h =

∫ β

0

dτ

∫
d2θ

{
θ̄θ

∑

i,σ

(1− niσ̄)c
∗
iσ∂τciσ +

∑

i

D∗
i ∂τDi + U

∑

j

D∗
jDj

− t
∑

i,j,σ

gij

[
θ̄θ(1 − niσ̄)(1− njσ̄)c

∗
iσcjσ +D∗

i c
∗
jσciσDj + (D∗

j θciσVσcjσ̄ + c.c.)
]
+ sθ̄

∑

j

ϕ∗
j (Dj − θcj↑cj↓) + c.c.

}
,

(2.4)

where the matrix gij selects the relevant neighbors, Vσ =
±1(σ =↑, ↓), the constraint is given by δ(Di − θci↑ci↓),
θ is a Grassmann, s is a constant with units of energy
so that ϕi is dimensionless and ciσ is an electron anni-
hilation operator for site i with spin σ. Because the δ-
function constraint appears exponentiated in the action,
an auxiliary field with charge 2e, ϕi enters the action
as a Lagrange multiplier. As a consequence, the field
ϕ is not made out of the elemental excitations (thereby
distinguishing it from other charge 2e scenarios involv-
ing pairs of electrons) but rather arises because the UHB
and LHB are not rigid bands. In the action, the first
two terms represent the dynamics in the lower and up-
per Hubbard bands, respectively, the third term the mass
of the D field, the fourth term the hopping in the lower
band with matrix element t, the next two the dynamical
mixing between the upper and lower bands and the last
term the constraint. The constant s has units of energy
and is O(t)48. It is straightforward to check that solving
the constraint by integrating out the auxiliary field, ϕi,
followed by an integration over Di exactly reduces SUV

h
to the action for the standard Hubbard model. This is
the UV limit of our theory. The advantage of the refor-
mulation above is that it cleanly associates the physics

of the upper band with a fermionic field Di which enters
the action in a quadratic fashion. To obtain the IR limit,
one simply has to perform the Gaussian integration over
the massive field, Di. The result is the low-energy or IR
action, SIR

h =
∫
dτLIR

h , with the associated Lagrangian,

LIR
h = (1− niσ̄)c

∗
iσ∂τ ciσ − tgij(1− niσ̄)c

∗
iσcjσ(1− njσ̄)

− (sϕi − tbi)
∗ (

M−1
)
ij
(sϕj − tbj)

− (sϕ∗
i ci↑ci↓ + c.c.)−

1

β
tr lnM, (2.5)

where a matrix element of M is given by Mij = (∂τ +

U)δij − tgijc
†
jσciσ and bi =

∑
j gijcjσVσciσ̄. Hereafter,

repeated indices are implicitly summed unless otherwise
stated. It is important to note that no approximations
have been made as of yet.
In both actions, SUV

h and SIR
h , global U(1) symmetry

guarantees the existence of a conserved charge, which
turns out to be

QUV
h = (1− niσ̄)c

∗
iσciσ + 2D∗

iDi, (2.6)

QIR
h = (1− niσ̄)c

∗
iσciσ

+ 2 (sϕi − tbi)
∗ (

M−1
)
ik

(
M−1

)
kj

(sϕj − tbj) .

(2.7)
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It is a natural consequence that the conserved charge
〈QUV

h 〉 is consistent with the number of electrons in the

original Hubbard model since the operator D†
iDi counts

the number of doubly occupied sites. From the Hellman-
Feynmann theorem, it is straightforward to check how

the number of double occupancies, n
UV/IR
docc , is related

to Di. Since n
UV/IR
docc = β−1∂ lnZ

UV/IR
h /∂U with Zh =∫

D[· · · ]e−Sh , one can easily observe the second terms
in Eq. (2.6) and (2.7) are identical to nUV

docc and nIR
docc,

respectively. As a result, the conserved charge 〈QIR
h 〉 is

identified with the number of electrons, 1 − x, with x
the number of holes. This is one of the indications that
the low-energy action, SIR

h , retains the structure of the
Hubbard model even after the integration of the massive
modes.
Another advantage of the low energy theory is that the

non-Fermi-liquid nature of the low-energy excitations is
immediately manifest. To illustrate this, one can add a
minimally coupled source term36

L′UV
h = J∗

iσ

[
θ̄θ(1− niσ̄)ciσ + θ̄c∗iσ̄VσDi

]
+ c.c. (2.8)

so that when the constraint is solved, the bare electron
operator is generated36. What we would like to know is
what is the transformed fermion at low energies. Inte-
grating out the Di fields, results in a source contribution
to the IR Lagrangian,

L′IR
h = J∗

iσψiσ + c.c.− J∗
iσc

∗
iσ̄

(
M−1

)
ij
cjσ̄Jjσ (2.9)

with a new collective field, ψiσ given by

ψ∗
iσ = (1− niσ̄)c

∗
iσ + tb∗j

(
M−1

)
ji
Vσciσ̄

− sϕ∗
j

(
M−1

)
ji
Vσciσ̄ . (2.10)

Note ψiσ is derived not contrived. It is Eq. (9) in the
Ref. 35. We obtained it by integrating the UV− com-
plete Lagrangian in the presence of the source term that
generates the correct UV current with respect to the mas-
sive field Di. ψiσ is the propagating degree of freedom
in the IR. It contains not only an electron-like quasipar-
ticle affected by nearby spin fluctuations, but also a hole
(with the opposite spin) that is dressed with a doubly-
charged bosonic mode. Note, we cannot give ψiσ a simple
interpretation in terms of bosons or fermions. At best,
ψiσ corresponds to the physical field that is minimally
coupled to an external gauge field. That is, these are the
excitations that couple to light. Hence, it is the field that
is probed by an ARPES experiment, for example. While
ψiσ was derived earlier, what we did not show explicitly
is that it does not stand in a one-to-one correspondence
with the bare electrons. This can proven exactly by fo-
cusing on the positive-definite quantity,

ψ∗
iσψiσ = (1− niσ̄)c

∗
iσciσ

+ (tb− sϕ)
∗
j

(
M−1

)
ji
ciσ̄c

∗
iσ̄

(
M−1

)
ij
(tb− sϕ)j

= QIR
h

− (tb− sϕ)∗j
(
M−1

)
ji
(2 + c∗iσ̄ciσ̄)

(
M−1

)
ij
(tb− sϕ)j ,

(2.11)

which is essentially the conserved charge less the num-
ber of doubly occupied sites. Since the second term in
the last line is positive definite, the number of low-energy
collective modes which are minimally coupled to the elec-
tromagnetic gauge field is less than 〈QIR

h 〉 = 1 − x. The
natural resolution of this conumdrum is that the num-
ber operator only counts those excitations that have a
particle-like interpretation. That is, the number opera-
tor only counts the coherent part of the spectrum. All
of the stuff mediated by mixing with the upper band is
entirely incoherent and hence while it can contribute to
the current, it is not enumerated by counting the number
of particles. The remainder of the charge count is carried
by the last term in Eq. (2.9).
This discrepancy is not a surprise when one considers

that the total spectral weight of the lower band exceeds
1 + x38,40 by a dynamical correction, α > 0, that de-
pends on the hopping integral, t. Since there are only
1+x electron states in the lower band, and only charge e
excitations contribute to the spectral function, there has
to be some new charge mode to make up the difference.
What ψiσ lays plain is that there are charge e states that
contribute to the current that are completely incoherent.
It is a composite excitation of ϕ† and a hole ciσ̄. In terms
of the UV variables, this degree of freedom represents the
binding of a doublon and a holon. The new composite
excitation, ϕ∗M−1Vσcσ̄ has internal structure and hence
is orthogonal to the projected electron. Since there is no
Hilbert space for ϕ, interpreting ϕ†ciσ̄ in terms of a parti-
cle is not possible. It is this additional degree of freedom
that creates the Fermi arc structure–that is, the zeros of
of the Green function. Hence, hidden in ψiσ is an inco-
herent contribution to the single-particle Green function.
What this discussion makes clear is that ϕ should not be
considered to be an independent degree of freedom but
rather one that is strongly coupled to the fermions.
What we have shown thus far is that there is a dy-

namical contribution to the charge degrees of freedom
that are coupled to the source term that generates the
current. Such entities are the physical degrees of freedom
that create holes in the lower band. Consequently, when
one such excitation is removed from the lower band, the
change in the spectral weight should also depend on t.
Hence, the doping level should receive a dynamical con-
tribution. To this end, we defined49 x′ = x + α and
hence the weight in the UHB is 1− x′ and the occupied
and empty parts of the lower band are 1 − x′ and 2x′,
respectively.

C. Green function and the approximations

Thus far, all of our statements are exact. Our calcula-
tion of the Green function is not, however. To lend cre-
dence to our treatment, we state our assumptions clearly
and up front. The complexity arises in treating the ϕ
degree of freedom. Our treatment is in the spirit of the
results obtained in the previous section, namely that ϕ
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leads to the creation of a new charge e excitation that
is orthogonal to a projected electron on account of its
internal structure.
Having determined the generating functional,

L′
h[{J

∗
iσ, Jiσ}], we proceed to calculate the Green

function. In the functional formalism, it is given by

Gψ(ri − rj , τ)

= −
δ2

δJiσδJ∗
jσ

lnZIR
h [{J∗

iσ, Jiσ}]

∣∣∣∣∣
J∗=J=0

= −
〈
Tτψi(τ)ψ

†
j (0)

〉
+
〈
δ(τ)c†iσ̄

(
M−1

)
ij
cjσ̄

〉
, (2.12)

where Tτ represents time ordering and 〈· · ·〉 stands for the
average over all possible paths. Since the second term is
independent of time, this term contributes to the inco-
herent part of the Green function. To understand the
first term which contains both coherent as well as inco-
herent responses, it is sufficient to focus on the correlator
between the ψiσ’s. Since ψiσ contains a composite excita-

tion which has a prefactor of t/U , 〈Tτψiσ(τ)ψ
†
jσ(0)〉 can,

in principle, be expanded in power of t/U . The presence
of the projection operator, (1 − niσ̄), however, does not
necessarily guarantee that it gives a dominant contribu-
tion compared to the composite entities.
For the purpose of numerical evaluation, we make an

approximation to the projection operators, following the
idea developed by Zhang, et al.

50 However, the crucial
difference is that we make the substitution the bare hole
concentration by the effective hole doping level (x→ x′),
since the physical entities coupled to the external gauge
field are not the bare electrons but are rather dynamically
generated. Hence our first approximation is

(A-1) (1− niσ̄)c
∗
iσcjσ(1− njσ̄) → gtc

∗
iσcjσ,

where gt = 2x′/(1 + x′). Interestingly, in the strong cou-
pling limit, (U/t≫ 1), a mean-field approach to Kotliar-
Ruckenstein’s slave boson construction51 led to the same
renormalization factor for the charged fermion but with
x′ replaced with x. Likewise,

(A-2) (1− niσ̄)c
†
iσ(∂τ + · · · )ciσ → gpc

†
iσ(∂τ + · · · )ciσ.

where gp = (1 − x′)/(1 − x). The multiplicative factors
are chosen here for internal consistency with the two as-
sumptions.
Since the action SIR

h has all relevant degrees of freedom
for the low-energy sector, including the spin singlet fluc-
tuations (bi) and mixing between the separate Hubbard
bands (ϕ), it is reasonable to expand the action in powers
of t/U . To leading order, the matrix elements (M−1)ij is
U−1δij . From the fact that the collective boson ϕi only
has dynamics through its coupling to the fermions, we
assume the dynamics of the boson to be frozen. Opera-
tionally this assumption breaks down at O(t/U)2 where
the explicit dynamics of ϕ appears as can be seen from

an expansion of the M matrix, s2

U2ϕ
∗(∂τ − U + · · · )ϕ.

In fact, this even at O(t/U)2, the propagator for ϕ lays

plain that it has a pole only in the high-energy sector.
This justifies the assumption that

(A-3) Bosonic field, ϕ, has no dynamics in the LHB.

In other words, it alone is highly massive and is not likely
to propagate in the low-energy sector. Finally, although
local spin ordering might non-negligible, we will assume it
to be at most ancillary to the strong interaction physics
arising from the coupled boson-fermion terms. This is
a key assumption and certainly not traditional as most
treatments of the LHB focus on the spin physics. How-
ever, as our emphasis here is on isolating the source of
zeros in the LHB, demonstrating that the action pos-
sesses such modes in the absence of the spin-spin scatter-
ing term would suffice to show that such an interaction is
indeed ancillary to the essential charge physics. As will
become evident, our treatment does in fact show this to
be the case. Under these considerations, the effective low
energy action turns into

SIR
h =

∫ β

0

dτ

{
c∗kσ

[
gp(∂τ − µ)δij − gtǫk

]
ckσ

−
1

U2
(sϕ− tb)

∗
q (U + 2µ) (sϕ− tb)q

− (sϕ∗
qcq−k↑ck↓ + c.c.)

}
, (2.13)

where µ denotes the chemical potential, k and q are the
momenta, and ǫk = tgije

ik·(rj−ri). This action has a
BCS-like coupling and hence will have a Green function
of the form of Eq. (1.1). That the Green function must
be of the form of Eq. (1.1) is not dependent on the as-
sumptions delineated earlier. It relies solely on the fact
that the spectral weight in the lower band exceeds 1 + x
and hence a new charge e state distinct from the pro-
jected electrons must be present. Such an excitation can
only be a composite.
Consequently, for a given amplitude of ϕq, the

Fourier transformation of the two point correlator G =

−〈Tτψi(τ)ψ
†
j (0)〉 becomes

G(iωn,k) =
g̃t

iωn − µ− g̃tǫk − Σ±(iωn,k)
+

t

U
(· · · ),

(2.14a)

Σ±(iωn,k) =
s2k,qϕqϕ

∗
q

iωn − µ± g̃tǫq−k

, (2.14b)

where ωn = (2n + 1)π/β for n ∈ Z, g̃t = gt/gp, and
sk,q = 1 − (ǫk + ǫq−k)/U . The ± subscript on the self
energy arises from the two choices which are possible
to treat the dynamics of the charge 2e boson. If ϕi is
treated as an independent degree of freedom that can
condense, then it can be absorbed as a redefinition of
the interaction strength, s → sϕ. This will correspond
to a simple condensation of ϕ in a non-zero momentum
particle-particle channel, hence the + sign in front of the



6

g̃tǫq−k factor in the denominator of the self energy. As
will be clear, this is not the interpretation of ϕ that is
ultimately consistent with the theory outlined here. Al-
ternatively, ϕ∗

i ciσ̄ could be viewed as a new composite
charge e excitation that results from dynamical spectral
weight transfer. With such bound modes, the interaction
term, ϕ∗c↑c↓, can be interpreted as a particle-hole scat-
tering process. To implement this interpretation in the
Green function, we note that since ϕ∗c↑c↓ now describes
the scattering of an electron cσ off a composite parti-
cle ϕ∗Vσcσ̄/|ϕ|, the denominator in the one-loop self en-
ergy will resemble that of a particle-hole scattering event,
thereby leading to a − sign in front of the g̃tǫq−k term
in the denominator of the self energy. In additon, the
ellipse in Eq. (2.14a) represents the terms that originate
from the mixing between the composite excitations and
the projected electron, which are at least suppressed by
the factor t/U . The number g̃t results from the rescal-

ing g
1/2
p ciσ → ciσ. Since g̃t = gt/gp ≃ 2x′, the t/U

corrections in Eq. (2.14a) are comparable to the leading
term only for x′ < t/2U ∼ 0.05. For example, at half-
filling, the Green function only has the t/U term and the
spectral weight is governed entirely by the mixing be-
tween the projected and composite excitations as shown
previously48. In the current treatment, we will explore
entirely the contribution from the leading term which is
of the form of Eq. (1.1).

D. Free-energy Minimum approach to 2e boson

Evaluating the Green function is equivalent to a
random-matrix problem. In the most general case, the
field ϕi must be integrated over with a separate value
on each site. However, such a multi-variable integration
is not tractable in any dimension. From the observa-
tion that the collective boson is not canonical, that is, it
does not have its own kinetics, it was previously conjec-
tured that the spatially homogeneous configuration was
the most prominent candidate for the ground state35,48.
Even though such an approach was successful in captur-
ing some experimental48 findings, it still leaves an open
question whether the homogeneous solution minimizes
the free energy. To this end, we explore some inhomoge-
neous solutions for ϕi to see where the free-energy is a
minimum. In particular, we explore a staggered configu-
ration, ϕi = eiq·ri |ϕ0|. It should be noted that a particu-
lar choice of the configuration of ϕ does not correspond to
spontaneous symmetry breaking, since the bosonic mode
is in lack of inherent dynamics.
In Fig. 1, we directly compute the free energy dif-

ference between a configuration with a spatial texture
and the homogeneous state, ∆F = F (ϕ0e

iq·r) − F (ϕ0),
where q, determines the spatial dependence of ϕi. Ex-
cept for small values of ϕ0 in which the homogeneous
solution minimizes the free energy, the distinct minimum
occurs at (π, π) when the magnitude of the bosonic field,
ϕ0, approaches unity. This is significant because the
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FIG. 1. (Color online) Free energy minimization and prob-
ability distribution of charge 2e boson. (a) Plotted here is
the ∆F = F (ϕ0e

iq·r)− F (ϕ0) as a function of momentum q.
ϕ0 is the magnitude of the charge 2e boson. As is evident,
the free energy is strongly dependent on momentum. As ϕ0

increases, the minimum of the free energy shifts to (π, π).
This corresponds to a sign change for the bosonic excitation
around a plaquette. (b) Shown here is the probability distri-
bution for ϕ0 evaluated from the IR action by the relation,

P (|ϕ|) = 1/ZIR

h

∫
D[{c, c∗}]e−S

IR

h . The maximum occurs at
ϕ0 ≈ 1.2 where the corresponding momentum that minimizes
the free energy is q = (π, π).

probability distribution of ϕ0 computed from P (|ϕ|) =

1/ZIR
h

∫
D[{c, c∗}]e−SIR

h , has a distinct maximum pre-
cisely at the value of ϕ where the (π, π) solution min-
imizes the free energy. This state of affairs obtains be-
cause a quick inspection of the action reveals that for a
staggered configuration of ϕ, the ϕ†b term actually van-
ishes. This results in a lowering of the energy relative to
the homogeneous solution.

That the (π, π) configuration of ϕi minimizes the free
energy is highly significant because the evaluation any
integral over ϕi will be dominated by the staggered so-
lution. What about the single-particle Green function?
In our previous treatment of this problem in which we
assumed that the mixing with the UHB was mediated
by a homogeneous boson, ϕ0 for all sites, we obtained
a completely gapped structure at the chemical potential
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for the spectral function. Given that q = (π, π) is the
blobal minimum, our expression for the Green function
simplifies to

G(iωn,k) =

∫
d|ϕ||ϕ|P (ϕ)G(iωn,k)|ϕq=δq,π |ϕ|.

(2.15)

The probability distribution function P (ϕ) is shown in
Fig. 1b. For completeness, we present in Fig. 2 the band
dispersion corresponding to the maximum in the spec-
tral function obtained from Eq. (2.14a) for three different
cases: 1) homogeneous solution, 2) staggered (π, π) phase
of ϕi in the particle-particle channel, Σ+ and 3) stag-
gered solution in particle-hole channel, Σ−. For the ho-
mogeneous phase, we find a hard gap, Fig. 2(a), because
no momentum states cross the chemical potential. How-
ever, as shown earlier, the homogeneous solution does
not correspond to a minimum in the free energy. Con-
sider the staggered solutions shown in panels Fig. 2(b)
and Fig. 2(c). Fig. 2(b) shows that even a staggered
solution in the particle-particle channel, a gap does not
occur at the (π, 0) region of the Brillouin zone. There
is also a crossing along the zone diagonal. This indi-
cates that a simple condensation of ϕ in a non-zero mo-
mentum particle-particle channel cannot give rise to the
nodal/anti-nodal dichotomy. There is in fact a clear rea-
son why ϕ cannot be treated as an independent degree of
freedom that can condense. There is a one-to-one corre-
spondence between Eq. (2.10) and its analogue (Eq. (19)
of Ref.39) in the standard perturbative treatment of the
Hubbard model. In essence, the charge 2e boson replaces
a string of operators that account for the mixing of double
occupancy into the lower band. This is why this approach
is simpler. As it would be completely incorrect to re-
place that string of operators with an average value, it is
equally wrong to treat ϕ as a variable that can condense.
In fact, it is well known40 that such mean-field trunca-
tions fail to describe dynamical spectral weight transfer
in the Hubbard model.
Consider the third dispersion, Fig. 2(c) in which ϕ is

the mediator of a composite charge e state. This corre-
sponds to a self-energy given by Σ−. The break in the
dispersion just above the chemical potential is not fol-
lowed by a re-entrant crossing at a higher momentum.
Such a re-entrant crossing would give rise to a closed
Fermi surface. It is the presence of the additional propa-
gating degree of freedom which thwarts this re-entrance.
In addition, there is no crossing at (π, 0), but a broad
incoherent feature indicative of the pseudogap. Since the
break-up of the bound state results in a band crossing
near the (π, 0) region, the root cause of the pseudogap is
the bound state formed between the bosonic field, ϕ and
a hole as we have advocated previously48. Consequently,
the pseudogap problem is one of confinement. The corre-
sponding Fermi surfaces are shown in Fig. 3. The arc-like
structure is evident. The line of zeros is given by the di-
vergence of the self-energy and hence it is doublon-holon
binding that is responsible for killing the intensity on the
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FIG. 2. (Color online) The low energy band dispersion along
high symmetry directions for (a) a homogeneous configura-
tion, ϕi = ϕ0, (b) a staggered configuration (ϕi = |ϕ0|e

ıπ·ri)
evaluated by Eq. (2.14a), and (c) a staggered one evaluated by
Eq. (2.14a). Here, we take the broadening factor η = 0.025t
for a typical value U/t = 10, t′/t = −0.3, t′′/t = 0.1, and
the bare hole doping level as x = 0.12. In the evaluation, the
parameters, α = x′ − x are taken from the numerical esti-
mates of the number of double occupancies from Liebsch and
Tong52.

back side of the arc. The Fermi surfaces evolve smoothly
for the doping levels shown from x = 0.05 to x = 0.18.
Note also the broad feature at the zone boundary. While
it is tempting to interpret the broad peak near the antin-
odal region as an electron pocket, the lack of coherent
excitations makes this view untenable.

III. FINAL REMARKS

The key point this work demonstrates is that two types
of charge carriers go into forming Fermi arcs. The pro-
jected electrons are present in any low-energy reduction
of the Hubbard model and create the spectral weight on
the high-intensity side of the arc. The zeros correspond
to composite excitations which are present as a result of
dynamical spectral weight transfer and hence are present
only if the UHB is retained or treated appropriately.
Such composite excitations enter the self-energy through
the particle-hole channel, as the relevant scattering pro-
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FIG. 3. (Color online) The spectral function of the low energy
theory for each hole doping level, (a) x = 0.05, (b) x = 0.08,
(c) x = 0.12, and (d) x = 0.18. In the present figures, an
incoherent background is removed and the intensities of the
spectral function are normalized for the first quadrant of the
full Brillouin zone.

cess is that of a fermion from the composite excitation.
Both of these features leading to an effective two-fluid
model48,53 are present within a Wilsonian reduction of
the high-energy scale in the Hubbard model. The treat-
ment we have derived here should be valid as long as the
UHB provides a relevant perturbation to the physics of
the LHB. Hence, it cannot describe the crossover to the
Fermi liquid regime in which ϕ is unbound. Experimen-
tally, a decoupling of the UHB from the LHB appears to

take place around x ≈ 0.2554. Accompanying the col-
lapse is a transition from a small Fermi surface scaling
with x to a large one with effective area 1−x. The precise
nature of this transition will be the subject of a future
study. However, a prediction of this work is that the in
the pseudogap regime, the volume of the Fermi arc re-
gion should be given by x′ rather than x. This follows
from the fact that the number of particle-like excitations
that minimally couple to the electromagnetic gauge is less
than 1−x′ < 1−x. Hence, the hole Fermi surface should
be given by x′. High precision ARPES measurements can
be employed to verify this result.

Since our scheme of two type of charge carriers, one
giving rise to zeros and the other to poles, seems quite
general, it is tempting to rewrite the IR theory in terms
of the composite and projected excitations. This would
require integrating in an additional field for the compos-
ite, fiσ degree of freedom. The composite fermion is not
canonical, however, and treating it as such would destroy
the key feature leading to a suppression of the spectral
on the back-side of the arc. Thus far, we have found no
consistent way of doing this. Hence, an open problem re-
mains precisely how the new composite excitation should
be treated. But that it is present in any standard model
of Fermi arcs is not in doubt.
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