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We construct a 2D quantum spin model that realizes an Ising paramagnet with gapless edge
modes protected by Ising symmetry. This model provides an example of a “symmetry-protected
topological phase.” We describe a simple physical construction that distinguishes this system from
a conventional paramagnet: we couple the system to a Z2 gauge field and then show that the π-flux
excitations have different braiding statistics from that of a usual paramagnet. In addition, we show
that these braiding statistics directly imply the existence of protected edge modes. Finally, we
analyze a particular microscopic model for the edge and derive a field theoretic description of the
low energy excitations. We believe that the braiding statistics approach outlined in this paper can
be generalized to a large class of symmetry-protected topological phases.

I. INTRODUCTION

We now know that there are two distinct types of time
reversal invariant band insulators: topological insulators
and conventional insulators.1–6 The two families of insu-
lators are distinguished by the fact that topological insu-
lators have protected gapless boundary modes while triv-
ial insulators do not. It is important to remember that
time reversal and charge conservation symmetry play a
crucial role in this physics: if either of these symme-
tries are broken (either explicitly or spontaneously), the
boundary modes can be gapped out and the sharp dis-
tinction between topological insulators and conventional
insulators disappears.

This observation motivates a generalization of topo-
logical insulators called “symmetry-protected topologi-
cal (SPT) phases”7–15. To define this concept, consider a
general quantum many-body system. The system may be
built out of fermions or bosons/spins, and can live in any
spatial dimension. We will say that such a system belongs
to a nontrivial SPT phase if it satisfies four properties.
The first property is that the system has a finite energy
gap to excitations in the bulk. The second property is
that the Hamiltonian is invariant under some set of inter-
nal (on-site) symmetries, and none of these symmetries
are broken spontaneously. The third property is that the
ground state belongs to a distinct quantum phase from a
“trivial state” with the same symmetry. That is, one can-
not continuously connect the ground state with a “trivial
state” without breaking one of the symmetries or closing
the energy gap. Here, by a “trivial state”, we mean a
product state (in the boson/spin case) or an atomic in-
sulator (in the fermion case). The final property of an
SPT phase is that the ground state can be continuously
connected with a trivial state without closing the energy
gap if one or more of the symmetries are broken during
the process. We note that nontrivial SPT phases typi-
cally exhibit robust gapless boundary modes analogous
to that of topological insulators, though we will not in-
clude this property in the formal definition.

Symmetry-protected topological phases have a long
history in the one dimensional (1D) case. Most fa-
mously, the Haldane phase of the S = 1 Heisenberg
antiferromagnet16 is known to belong to this class7,12,13.
More recently, a complete classification of 1D SPT
phases was obtained for both boson/spin systems8,9,14

and fermion systems.9,15

Much less is known about higher dimensional SPT
phases. In the case of fermion systems, our understand-
ing is largely limited to non-interacting models such as
topological insulators or superconductors. For these sys-
tems, an (almost) complete classification of SPT phases
was obtained by Ref. 17 and 18. In some cases, it is
known that this classification scheme is not affected by
interactions (e.g. the Z2 classification of topological in-
sulators in two19 and three20,21 dimensions). In general,
however, this need not be the case22 and consequently
our understanding of interacting fermionic SPT phases
in higher dimensions is incomplete.

The boson case has received even less attention, and
will be our focus here. In this case, a major advance
was made by the recent paper, Ref. 11. In that paper,
the authors proposed a general classification scheme for
bosonic SPT phases in general spatial dimension. Also,
the authors constructed concrete microscopic models re-
alizing each of these phases. This work established that
the boson case is tractable even for interacting systems.

Nevertheless, a number of questions remain open. One
problem is that we have not identified any physical
properties that distinguish different SPT phases in the
bulk. The boundary physics is also poorly understood:
while Ref. 10 showed that the 2D SPT states have
symmetry-protected gapless boundary modes, the prob-
lem for higher dimensions remains open.

In this work, we address these (and other) questions in
the context of a simple example. Specifically, we consider
the case of 2D spin systems with a Z2 Ising-like symme-
try. According to Refs. 10 and 11, there is exactly one
nontrivial SPT phase with this symmetry. This phase
can be thought of as a new kind of Ising paramagnet.
Here, we construct an exactly soluble spin model that re-
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alizes this phase. We then derive three main results. Our
first result is a simple argument that this model belongs
to a distinct phase from a conventional Ising paramag-
net. We derive this result by coupling the model to a Z2

gauge field. After following this procedure, we find that
the resulting gauged spin model supports quasiparticle
excitations with different braiding statistics from that of
a conventional (gauged) paramagnet. More specifically,
we find that in a conventional paramagnet, the π-flux
excitations have bosonic or fermionic statistics, while in
the new paramagnet they have semionic statistics. It
then follows immediately that the two paramagnets can-
not be continuously connected without breaking the Z2

symmetry or closing the energy gap. Closely related to
this observation, we show that the two spin models are
“dual” to two previously studied lattice models – each of
which realizes a different type of Z2 gauge theory. This
duality establishes a connection between SPT phases and
previous work23 on the classification of topological gauge
theories.

Our second result is a proof that the new paramagnet
has gapless edge modes protected by Ising symmetry. In-
terestingly, our argument reveals that the protected edge
states are deeply connected to the braiding statistics of
the π-fluxes. This approach to proving edge state protec-
tion is somewhat different from the original argument of
Ref. 10 and may be more amenable to higher dimensional
generalizations. In the final part of the paper, we ana-
lyze the protected edge modes at a more concrete level,
focusing on a particular microscopic model of the edge.
We derive a field theoretic description of the low energy
modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases,
braiding statistics can be used to uniquely characterize
the bulk and to derive the existence of protected bound-
ary modes. We discuss these potential generalizations in
the conclusion.

This paper is organized as follows. In section II, we
describe spin models that realize both the conventional
and the new kind of Ising paramagnet. In section III we
show that the two spin models can be distinguished by
the braiding statistics of the π-flux excitations. In section
IV we show that the two spin models are dual to two
previously studied lattice models. In section V, we show
that the π-flux braiding statistics are directly connected
to the existence of protected edge modes. Finally, in
section VI we analyze a particular microscopic model for
the edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice (Fig. 1a):

H0 = −
∑
p

σxp (1)

(a) (b)

p p

q q’

FIG. 1. The Hamiltonians H0, H1 (1-2) for the two spin
models. (a) The Hamiltonian H0 is a sum of single spin terms,
σxp . (b) The Hamiltonian H1 is a sum of seven spin terms

Bp = −σxp
∏
〈pqq′〉 i

1−σzqσ
z
q′

2 where the product runs over the

six triangles 〈pqq′〉 containing p.

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two prop-
erties. First, the Hamiltonian is invariant under the
Ising symmetry S =

∏
p σ

x
p . Second, the ground state

|Ψ0〉 ≡ |σxp = 1〉 is gapped and unique – implying that
the symmetry is not broken spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this
new type of paramagnet was first constructed in Ref. 10.
Here we describe another model which is more conve-
nient for our purposes. The model we consider is a spin-
1/2 system on the triangular lattice. The Hamiltonian is
given by (Fig. 1b):

H1 = −
∑
p

Bp , Bp = −σxp
∏
〈pqq′〉

i
1−σzqσ

z
q′

2 (2)

where the product runs over the six triangles 〈pqq′〉 con-
taining the site p. We note that this Hamiltonian is Her-
mitian despite the factors of i. To see this, notice that the
product includes a factor of i for each pair of neighboring
spins q, q′ that have opposite values of σz. In particular,
since the number of such pairs is necessarily even, the
product always reduces to a factor of ±1. It is then clear

that H†1 = H1. (For readers who are curious as to how
this model was constructed, see section IV).

First we show that H1 describes a paramagnetic phase
– that is, the Ising symmetry is not spontaneously bro-
ken. To establish this fact, we solve H1 explicitly. The
key point is that

[Bp, Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result,
we can simultaneously diagonalize {Bp}. We will label
the simultaneous eigenstates by |{bp}〉 where bp = ±1
denotes the eigenvalues of Bp. It is not hard to show that
there is a unique state for each choice of {bp}, assuming a
periodic geometry (i.e. a torus). In other words, the {bp}
are a complete set of quantum numbers. We therefore
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FIG. 2. A schematic plot of the ground states Ψ0 and Ψ1

for the two paramagnets H0, H1. (a) In terms of domain
wall configurations, the ground state Ψ0 is a equal weight
superposition of all configurations. (b) The ground state Ψ1

is also a superposition of all domain wall configurations, but
each configuration enters with a sign (−1)Ndw where Ndw is
the total number of domain walls.

have the full energy spectrum: each state |bp〉 is an energy
eigenstate with energy

E = −
∑
p

bp (4)

In particular, the ground state |Ψ1〉 ≡ |bp = 1〉 is unique
and gapped – implying that the Ising symmetry is not
spontaneously broken.

It is illuminating to compare the ground state wave
functions of H0, H1. The ground state of H0 is the state
where σxp = 1 everywhere. Working in the σz basis, the
wave function is given by

Ψ0({αp}) = 1 (5)

for all spin configurations {αp =↑, ↓} (Fig. 2a). As for
H1, we note that the ground state is the unique state
with Bp = 1 everywhere. It is straightforward to check
that the corresponding wave function is given by

Ψ1({αp}) = (−1)Ndw (6)

where Ndw is the total number of domain walls in the
spin-configuration {αp =↑, ↓} (Fig. 2b). We can see that
the two ground states are nearly identical, differing only
by some phase factors. Nevertheless, these two states
belong to two different quantum phases, as we now show.

III. COUPLING THE SPIN MODELS TO A Z2

GAUGE FIELD

In this section, we show that H0, H1 belong to distinct
quantum phases. Our strategy is as follows. Because
H0, H1 have a Z2 symmetry, we can couple them to a
Z2 gauge field µzpq = ±1 which lives on the links 〈pq〉 of

(a) (b)

p p

q q’

FIG. 3. The Hamiltonians H̃0, H̃1 (8) for the two gauged

spin models. (a) The Hamiltonian H̃0 is a sum of two terms.
The first term is the gauge flux term µzpqµ

z
qrµ

z
rp (thick tri-

angle) where µzpq denotes the Z2 gauge field on the link
〈pq〉. The second term is the spin interaction σxpOp where
Op =

∏
〈pqr〉(1 +µzpqµ

z
qrµ

z
rp)/2 and the product runs over the

six triangles adjacent to p. (b) The Hamiltonian H̃1 includes
the same gauge flux term µzpqµ

z
qrµ

z
rp but has a more compli-

cated seven spin interaction B̃pOp (9).

the triangular lattice. We then show that the resulting
gauged spin models have quasiparticle excitations with
different braiding statistics. More specifically, we show
that the two systems differ in the statistics of the π-flux
excitations: while the π-fluxes have bosonic or fermionic
statistics in the case of H0, they have semionic statis-
tics in the case of H1. It then follows immediately that
H0, H1 cannot be continuously connected without break-
ing the Z2 symmetry or closing the energy gap.

Coupling H0, H1 to a Z2 gauge field requires several
steps.24 The first step is to apply the minimal coupling
procedure, replacing nearest neighbor spin-spin interac-
tions like σzqσ

z
q′ with σzqµ

z
qq′σ

z
q′ . Next, we multiply each

term in the resulting Hamiltonian (either σxp or Bp) by
the operator

Op =
∏
〈pqr〉

(1 + µzpqµ
z
qrµ

z
rp)/2 (7)

where the product runs over the six triangles 〈pqr〉 ad-
jacent to site p. The operator Op is a projector which
projects onto states that have vanishing flux through each
of the adjoining triangles. We include this projection op-
erator in order to ensure that our gauged Hamiltonian is
Hermitian, and also to make the minimal coupling proce-
dure unambiguous. (For more general models, we would
replace Op with an operator that projects onto states
that have vanishing flux through all the triangles in the
vicinity of the spin-spin interactions). The final step is to
add a term of the form −

∑
〈pqr〉 µ

z
pqµ

z
qrµ

z
rp to the Hamil-

tonian. This term ensures that the states with vanishing
Z2 flux have the lowest energy. The resulting models are
given by (Fig. 3):

H̃0 = −
∑
p

σxpOp −
∑
〈pqr〉

µzpqµ
z
qrµ

z
rp

H̃1 = −
∑
p

B̃pOp −
∑
〈pqr〉

µzpqµ
z
qrµ

z
rp (8)
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where

B̃p = −σxp
∏
〈pqq′〉

i
1−σzqµ

z
qq′σ

z
q′

2 (9)

Like all gauge theories, these models are defined on a
Hilbert space consisting of gauge invariant states – that
is, all states satisfying the constraint∏

q

µxpq = σxp (10)

for all sites p.24 This constraint can be thought of as a
Z2 analog of Gauss’ law, ∇ · E = 4πρ.

Importantly, all the terms in H̃0, H̃1 commute with one
another so these Hamiltonians can be solved exactly just
like the ungauged spin models H0, H1. In particular, it is
easy to verify that both models have a finite energy gap.

The next task is to construct the quasiparticle excita-
tions and show that they have different braiding statistics
in the two systems. The quickest way to derive this fact is

to note that H̃0, H̃1 can be exactly mapped onto the pre-
viously studied “toric code”25,26 and “doubled semion”26

models. These two models have been analyzed in detail
and are known to support quasiparticle excitations with
different statistics.26 A description of these models as well

as the mapping to H̃0, H̃1 is given in section IV.
Alternatively, we can directly compute the quasiparti-

cle statistics of H̃0, H̃1 and show that they are different.
The first type of excitation is a “spin-flip”, which we
will denote by e. These excitations correspond to sites

p where σxp = −1 for the case of H̃0, or B̃p = −1 for

the case of H̃1. The second type of excitation is the
“π-flux”, m. These excitations correspond to triangular
plaquettes 〈pqr〉 where µzpqµ

z
qrµ

z
rp = −1. In fact, there

are two types of π-flux excitations, which differ by the
addition of a spin-flip: mb = ma · e.

It is clear that in both systems, if we braid a spin-
flip excitation e around either of the π-flux excitations
ma,mb, the resulting statistical Berry phase is π (in some
sense this is the definition of a π-flux excitation). It is
also intuitively clear that the spin-flip excitation e is a
boson in both models. All that remains is to understand
the statistics of the π-fluxes. As we will now show, this
is where the two models differ.

To determine the π-flux statistics, we first identify op-
erators that create these excitations. Like all quasipar-
ticles with nontrivial braiding statistics, the π-fluxes can
be created using an extended string-like operator.27 If
we apply these string-like operators to the ground state,
the result is a pair of π-flux excitations – one at each

end of the string. In the case of H̃0, the following string
operator does the job:

V 0
β =

∏
〈pq〉⊥β

µxpq (11)

Here β is a path in the dual honeycomb lattice joining
the two triangular plaquettes, and the product runs over

FIG. 4. The string operator V 0
β (11) is defined for any path

β on the dual honeycomb lattice and is given by a product of
µxpq over all links 〈pq〉 crossing β (thickened lines). Applying
this operator to the ground state |Ψ0〉 creates two π-fluxes at
the endpoints of β (shaded triangles).

all links 〈pq〉 crossing β (Fig. 4). We can verify that
V 0
β creates π-flux excitations at the two endpoints of β

by noting that V 0
β anticommutes with the flux µzpqµ

z
qrµ

z
rp

through the two triangles at the ends of β. At the same
time, this operator commutes with all the other terms

in H̃0 so it does not create any additional excitations.28

Closely related to this fact, one can check that the state
V 0
β |Ψ0〉 does not depend on the choice of path β, but only

on the endpoints of β – a general feature of such string-
like operators.25–27 We will denote the π-flux excitation
created by V 0

β by ma. A similar string operator creates
the other type of π-flux, mb = ma · e.

In general, one of the most important aspects of string
operators is the commutation relations satisfied by two
intersecting strings. Let β, γ be two paths on the dual
honeycomb lattice that intersect one another. Using the
definition (11), we can see that the two corresponding
string operators commute with one another:

V 0
β V

0
γ = V 0

γ V
0
β (12)

This string algebra is important because we can use it to
find the statistics of the quasiparticle ma.25–27 One way
to see this is to consider the special case where β is a
closed path and γ is an open path, as in Fig. 5. In this
case, the two operators V 0

β and V 0
γ have different physi-

cal interpretations: while the operator V 0
γ can be thought

of describing a physical process in which two π-fluxes are
created and then moved to the endpoints of γ, the opera-
tor V 0

β does not create any excitations at all. In fact, it is

easy to check that V 0
β exactly commutes with the Hamil-

tonian H̃0 whenever β forms a closed loop. This suggests
that V 0

β should be thought of as describing a three step

process in which (1) two π-fluxes are created, (2) one of
the π-fluxes moves all the way around the closed path β,
and then (3) the two π-fluxes are annihilated. Using this
interpretation, we can see that the state V 0

β V
0
γ |Ψ〉 is the

end result of a process in which two π-fluxes are created
at the endpoints of γ, and then afterwards another π-flux
is braided around one of the endpoints and annihilated
with its partner. In contrast, the state V 0

γ V
0
β |Ψ〉 corre-

sponds to executing these two steps in the opposite order.
Comparing these two processes, we expect that they will
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= e
2ιθ

β
γ

β
γ

FIG. 5. A schematic picture of the two states V 0
β V

0
γ |Ψ0〉,

V 0
γ V

0
β |Ψ0〉. The first state (left) is obtained from a process

in which two π-fluxes are created at the endpoints of γ, and
then two more fluxes are created, braided around the path β
and then annihilated. The second state (right) corresponds
to executing these two steps in the opposite order. We expect
these two states to differ by the Berry phase e2iθ associated
with braiding one π-flux excitation around another. The same
is true for V 1

β , V
1
γ .

differ by a phase factor which is exactly the statistical
Berry phase associated with braiding one π-flux around
another. In other words, the phase difference between
these two states should be e2iθ where θ is the exchange
statistics for the particles:

V 0
β V

0
γ |Ψ0〉 = e2iθ · V 0

γ V
0
β |Ψ0〉 (13)

In light of this relation, equation (12) implies that θ = 0
or π. That is, ma is either a boson or a fermion. A similar
analysis shows that the other π-flux excitation, mb, is also
either a boson or fermion. In fact, with a bit more work
one can establish the more precise result that ma is boson
and mb is a fermion. The difference in statistics between
ma,mb comes from the fact that mb = ma ·e where e,ma

have mutual statistics π. However, we will not need this
more detailed result here. (See Refs. 26 and 27 for an
analogous calculation for the closely related “toric code”
model).

We can repeat the same analysis for H̃1. In this case,
the following string operator creates a π-flux excitation:

V 1
β =

∏
〈pq〉⊥β

µxpq ·
∏
〈pqq′〉,r

i
1−σzqµ

z
qq′σ

z
q′

2 (14)

·
∏
〈pqq′〉,l

(−1)s̃pqq′ ·
∏

〈pqq′〉∈β

(1 + µzpqµ
z
qq′µ

z
pq′)/2

Here, the first product runs over all links 〈pq〉 crossing β.
The next two products run over all triangles 〈pqq′〉 along
the path such that q, q′ are to the right of β or to the left
of β respectively (Fig. 6). The last product runs over all
triangles along β. The operator s̃pqq′ is defined by

s̃pqq′ =
1

4
(1− σzpµzpqσzq )(1 + σzpµ

z
pq′σ

z
q′) (15)

As in the previous case, one can check V 1
β anticommutes

with the flux µzpqµ
z
qrµ

z
rp through the two triangles at the

ends of β, but commutes with the Hamiltonian H̃1 every-
where else. Hence, if we apply V 1

β to the ground state, it
creates π-fluxes at the two endpoints of β. We will again
denote this π-flux excitation by ma. (For readers who
are curious, V 1

β was constructed from previously known

FIG. 6. (Color online) The string operator V 1
β (14) is defined

for any path β on the dual honeycomb lattice. It acts on
all triangles 〈pqq′〉 along the path β (thickened lines). The
action is different depending on whether q, q′ are to the left
of β (purple sites) or to the right of β (blue sites). Applying
this operator to the ground state |Ψ1〉 creates two π-fluxes at
the endpoints of β (shaded triangles).

string operators26 for the “doubled semion model” using
the exact mapping of section IV).

In this case, one can check that the string operators
satisfy a slightly different algebra: for any two paths β, γ
intersecting one another, we have

V 1
β V

1
γ = −V 1

γ V
1
β (16)

Therefore by the same reasoning as in (13), we conclude
that the statistical angle θ satisfies 2θ = π, so that θ =
±π/2. In other words, ma is a semion. A similar analysis
shows that the other π-flux excitationmb is also a semion.
With a bit more work26, one can show that ma,mb have
opposite statistics – that is θ = π/2 in one case and
θ = −π/2 in the other – but again we do not need this
more detailed result here.

We have shown that the π-fluxes have different statis-
tics in the two gauged spin models: these excitations are

bosons or fermions in the case of H̃0, and are semions

in the case of H̃1. This result provides a simple physical
distinction between the two systems. It also proves that
the two spin models H0, H1 cannot be continuously con-
nected with one another without breaking the Z2 sym-
metry or closing the energy gap. Indeed, if such a path
existed, then we could construct a corresponding path

connecting the gauged spin models H̃0, H̃1 – a contradic-
tion. We note, however, that the above argument does
not rule out the possibility of connecting H0, H1 if the
Ising symmetry is broken during the process. Indeed, in
appendix A we construct an explicit path H(s) of this
kind.

IV. DUALITY BETWEEN SPIN MODELS AND
STRING MODELS

In this section we explain the relationship between the
spin Hamiltonians H0, H1, and previously known models.
Specifically, we show that H0, H1 are related via a duality
map to two previously studied lattice models – the “toric
code” model25,26 and the “doubled semion” model.26 The
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FIG. 7. The toric code and doubled semion models Ht.c, Hd.s
(19). In both systems, the Hilbert space is equivalent to a
spin-1/2 model where the spins live on the links l of the hon-
eycomb lattice. (a) The toric code Hamiltonian Ht.c is a sum
of two terms. The first term, Qv (17) is a product of τzl over
the three links adjacent to the vertex v. The second term
involves the interaction

∏
l∈p τ

x
l which acts on the six links

adjacent to the plaquette p. (b) The doubled semion Hamil-
tonian Hd.s includes the same vertex term Qv, but contains
a more complicated plaquette term

∏
l∈p τ

x
l

∏
l∈legs of p f(τzl )

where f(x) = i(1−x)/2.

latter two models are sometimes called “string models”
and are special cases of the general class of “string-net”
models constructed in Ref. 26. This duality provides an-
other point of view on the braiding statistics analysis in
the previous section, and also suggests a natural classi-
fication scheme for general 2D bosonic SPT phases with
finite unitary symmetry groups.

We begin by defining the duality map: we note that
every spin configuration {σzp = ±1} on the triangular
lattice defines a corresponding domain wall configuration
on the honeycomb lattice. Formally, this correspondence
is given by τzl = σzpσ

z
q where l is the link separating sites

p, q and τzl = ∓1 corresponds to the presence or absence
of a domain wall. We will refer to these domain walls
as “strings.” An important point is that the dual string
degrees of freedom always form closed loops – that is,
they satisfy the condition Qv = 1 where (Fig. 7)

Qv =
∏
l∈v

τzl (17)

Using this correspondence, we can map our spin Hamil-
tonians H0, H1 (1-2) onto dual string Hamiltonians:

Hd
0 = −

∑
p

∏
l∈p

τxl


Hd

1 =
∑
p

∏
l∈p

τxl
∏

l∈legs of p

i
1−τzl

2

 (18)

These Hamiltonians are defined on a Hilbert space con-
sisting of closed string states (i.e. states satisfying Qv =
1 everywhere).

The dual Hamiltonians Hd
0 , H

d
1 are closely related to

two models studied in Ref. 26: the “toric code model”25

(or more accurately, a modified version of the toric code
model) and the “doubled semion” model. To understand
the precise relationship, recall that the latter two models
are defined on a Hilbert space consisting of all string
states on the honeycomb lattice – both open and closed.
The two Hamiltonians are (Fig. 7)

Ht.c = −
∑
v

Qv −
∑
p

∏
l∈p

τxl

Pp

Hd.s = −
∑
v

Qv +
∑
p

∏
l∈p

τxl
∏

l∈legs of p

i
1−τzl

2

Pp

(19)

Here Pp denotes the projector Pp =
∏
v∈p(1 + Qv)/2.

This operator defines a projection onto states that satisfy
the closed string constraint Qv = 1 at all vertices of the
plaquette p.

Comparing (19) and (18), we see that Hd
0 , H

d
1 can be

obtained by restricting Ht.c, Hd.s to the closed string
(Qv = 1) subspace. In other words, the spin models
H0, H1 are dual to a restricted variant of the toric code
and doubled semion models.

In fact, this duality can be extended to one that maps

the gauged spin models H̃0, H̃1 onto the unrestricted toric
code and doubled semion models (19). The extended
duality is defined by setting τzl = σzpσ

z
qµ

z
pq, τ

x
l = µxpq

where l is the link separating sites p, q. Substituting these
expressions into Ht.c, Hd.s and making use of the gauge
invariance constraint (10) it is easy to check that the

result is exactly H̃0, H̃1. We note that this duality maps
local operators onto local (gauge invariant) operators and
should therefore be thought of as an exact equivalence
between two quantum systems. Thus the gauged spin

models H̃0, H̃1 are physically identical to the toric code
and doubled semion models.

The above dualities are variants of the well-known cor-
respondence between the 2D Ising model and 2D Z2

gauge theory.24,29 To see this, note that the closed string
models Hd

0 , H
d
1 are simply Z2 gauge theory Hamiltonians,

phrased in the language of strings. The Hamiltonian Hd
0

is the conventional24,29 Z2 gauge theory Hamiltonian (in
the zero coupling limit where there is no electric energy
term

∑
l τ
z
l ), while Hd

1 is another kind23 of Z2 gauge the-
ory. From this point of view, the correspondence between
H0, H1 and Hd

0 , H
d
1 is a duality between two types of 2D

Ising paramagnets, and two types of 2D Z2 gauge theory.

We can understand the duality between H̃0, H̃1 and
Ht.c, Hd.s in a similar way. We note that the first two
models can be thought of as two types of Ising paramag-
nets coupled to (conventional) Z2 gauge theory, while the
latter two models can be thought of as two types of Z2

gauge theory coupled to a (conventional) Ising paramag-

net. Hence the duality between H̃0, H̃1 and Ht.c, Hd.s is
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a variant of the well-known self-duality of 2D Z2 gauge
theory coupled to Ising matter.24

We expect that these dualities can be generalized from
Z2 to any finite unitary symmetry group G: each SPT
phase with symmetry group G is dual to a correspond-
ing gauge theory with gauge group G. This correspon-
dence immediately suggests a classification scheme for 2D
bosonic SPT phases with finite unitary symmetry groups:
it is known that the different types of 2D gauge theo-
ries with group G (or equivalently, different string-net
models corresponding to G) are in one-to-one correspon-
dence with elements of H3(G,U(1)). (For a derivation
of this result, see Ref. 23, and also section 10.1.E.3 of
Ref. 30). Hence, the duality map suggests that different
SPT phases associated with symmetry group G can also
be classified by H3(G,U(1)). This classification scheme
is identical to the proposal of Ref. 11.

Another application of these dualities is that they give
a simple method for constructing exactly soluble mod-
els for bosonic SPT phases with finite unitary symme-
try group G. The first step is to construct the differ-
ent “string-net” models26 corresponding to the group
G. These are models with string types given by the
group elements g ∈ G, and branching rules given by
group multiplication: {g1, g2, g3} is an allowed branch-
ing if g1g2g3 = 1. In general, there will be a finite
number of different models with these branching rules
– each one corresponding to a different solution of the
self-consistency equations of Ref. 26.31 We then take the
dual of these models, and thereby construct exactly sol-
uble models for bosonic SPT phases. The models H0, H1

discussed here were constructed using this approach. In
appendix B we show that an analogous duality in a space-
time Lagrangian description can be used to construct
topological non-linear sigma models for SPT phases.

V. PROTECTED EDGE MODES AND
BRAIDING STATISTICS

The most dramatic distinction between the two types
of paramagnets is that H1 has protected gapless edge
modes, while H0 does not. In other words, if we define H1

in a geometry with a boundary, then the energy spectrum
always contains gapless excitations. These gapless exci-
tations are guaranteed to be present as long as the Ising
symmetry is not broken (explicitly or spontaneously). In
this section, we give a general argument proving this fact.
Our argument reveals that these edge modes are closely
connected to the semionic braiding statistics of the π-flux

excitations in the gauged spin model, H̃1. We note that
the existence of protected edge modes was previously es-
tablished in Ref. 10 using a different approach.

The statement we prove is as follows. We consider a
disk geometry with a Hamiltonian of the form

H = Hbulk +Hedge, Hbulk = −
∑
p

Bp (20)

β β γ

(b)(a)

ba a c b d

FIG. 8. (Color online) (a) We consider a process in which
two π-fluxes are created in the bulk, moved to the boundary
along a path β and then annihilated near points a, b. (b) We
prove that the edge is protected by considering two paths β, γ,
and their corresponding flux creation/annihilation processes.

where Bp is defined as in (2) and the sum runs over all
sites p lying strictly in the interior of the disk. We take
the edge Hamiltonian Hedge to be any Hamiltonian with
local interactions which acts on the spins on or near the
boundary of the disk. In this setup, it is clear that the
ground state |Ψ〉 of H satisfies Bp = 1 when p is far from
the edge; in fact, in order to simplify the discussion, we
will assume that Bp = 1 for all p lying strictly in the
interior of the disk. Given these assumptions, we will
show that |Ψ〉 cannot be both Ising symmetric and short-
range entangled. Here, a state is “short-range entangled”
if it can be transformed into a product state by a local
unitary transformation – a unitary operator generated
from the time evolution of a local Hamiltonian over a
finite time t.8

To understand what this result means, recall that |Ψ〉
is always Ising symmetric and short-range entangled in
the bulk (see appendix A). Thus, the implication of the
above theorem is that the edge either breaks the Ising
symmetry or is not a short-range state. In the latter
case, the edge is presumably gapless, so in this way we
see that the edge is protected.

In section V A we establish this result with an intuitive
physical argument. In section V C, we give a rigorous
mathematical proof. In section V B, we discuss general-
izations to other systems.

A. Physical argument

The argument is a proof by contradiction: we assume
that |Ψ〉 is both Ising symmetric and short-range entan-
gled and we show that these assumptions lead to a con-
tradiction. The first step is to consider a thought experi-
ment in which we create a pair of π-fluxes in the bulk and
move them along some path β to two points a, b at the
boundary (Fig. 8a). This process can be implemented
by applying an appropriate unitary operator to the state
|Ψ〉. We will denote this operator by Wβ . By construc-
tion Wβ |Ψ〉 contains two fluxes located near points a, b
on the boundary.

We next assert that the π-fluxes at the boundary can
be annihilated by local operators. In other words, there
exist local operators Ua, Ub acting near a, b such that
UaUbWβ |Ψ〉 = |Ψ〉. To see this, note that the effect of
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bringing the π-flux excitations to the edge is to create two
Ising domain walls at points a, b. Given that |Ψ〉 is Ising
symmetric and short-range entangled, these domain walls
are local excitations – that is, the two states, |Ψ〉,Wβ |Ψ〉
have identical expectation values far from a, b. It then
follows that these two states can be connected by local
operators Ua, Ub acting near these points. We emphasize
that this conclusion depends crucially on the Ising sym-
metry of |Ψ〉: if instead |Ψ〉 broke the Ising symmetry,
the domain walls at a, b would be nonlocal excitations,
and there would be no way to annihilate them with local
operators.

We now use the fact that π-fluxes can be annihilated at
the boundary to derive a contradiction. Consider a three
step process in which two π-fluxes are (1) created in the
bulk, (2) moved to the boundary along the path β, and
(3) annihilated. Let Wβ be a unitary operator describing
this process. (Formally, Wβ is given by Wβ ≡ UaUbWβ).
Consider a second path γ with the geometry shown in
Fig. 8b, and define Wγ in the same way. By construction,
we have Wβ |Ψ〉 = Wγ |Ψ〉 = |Ψ〉. Hence,

WβWγ |Ψ〉 = WγWβ |Ψ〉 = |Ψ〉 (21)

At the same time, it follows from general principles that
Wβ ,Wγ satisfy the commutation relation

WβWγ |Ψ〉 = e2iθWγWβ |Ψ〉 (22)

where θ is the exchange statistics for the π-fluxes. (This
result can be derived in the same way as Eq. (13)). To
complete the argument, we note that the π-fluxes have
semionic statistics so e2iθ = −1. Equations (21),(22) are
therefore in contradiction, implying that our assumption
must be false and the ground state |Ψ〉 cannot be both
Ising symmetric and short-range entangled.

In this analysis, we have skated over an important sub-
tlety. The issue is that we do not know whether Ua, Ub are
even or odd under the Ising symmetry. In other words,
we do not know whether the flux annihilation process
involves flipping an even or odd number of spins. To un-
derstand what this means, recall that there are actually
two types of π-flux excitations which differ from one an-
other by the addition of a spin-flip excitation e. Thus,
the Ua, Ub operators could describe the annihilation of
either one the two types of π-fluxes, depending on their
parity. Since this parity is ambiguous, the existence of
Ua, Ub only shows that at least one of the two types of
π-fluxes can be annihilated at the boundary.

This subtlety becomes important in the last part of the
argument where we derive a contradiction between equa-
tions (21),(22). In particular, since we can only guarantee
that one of the two types of π-fluxes can be annihilated
at the boundary, the proof is only valid if we show that
these equations are inconsistent for both types of fluxes.
Fortunately, this is not a problem: the two types of π-
fluxes have exchange statistics θ = ±π/2, so e2iθ = −1
in both cases.

B. Discussion and generalizations

The above argument does not use any properties of H1

except the braiding statistics of the π-fluxes. Therefore,
it actually proves a more general statement: any Z2 SPT
phase in which neither of the π-fluxes is a boson or a
fermion is guaranteed to have a protected edge mode.
Indeed, as long as e2iθ 6= 1 for both types of fluxes, the
argument goes through unchanged. On the other hand,
if either of the π-fluxes is a boson or a fermion – as in a
conventional paramagnet H0 – there is no contradiction
between equations (21), (22) and the argument breaks
down completely. From this point of view, the key reason
that H1 has a protected edge mode and H0 doesn’t, is
the difference in their π-flux braiding statistics.

It is not hard to generalize the argument to arbi-
trary bosonic SPT phases with unitary abelian symme-
try groups G. For example, consider the case of G = Z3.
Just as Z2 spin models support π-flux excitations, mod-
els with Z3 symmetry support flux excitations with flux
2π/3 and 4π/3. These 2π/3-fluxes and 4π/3-fluxes each
come in three different types – just like the two types
of π-fluxes in the Z2 case. Using the same arguments
as above, one can see that a Z3 SPT phase must have
a protected edge unless there exists a set of two fluxes –
consisting of one 2π/3-flux and one 4π/3-flux – such that
(1) the fluxes in this set are bosons or fermions and (2)
the fluxes in this set have trivial mutual statistics with re-
spect to one another. Similarly to the Z2 case, this result
can be derived by considering thought experiments where
we annihilate 2π/3 and 4π/3-fluxes at the boundary, and
making use of the string commutation algebra (22). In
fact, by using the statistical hopping algebra27 in place of
(22), we believe that this result can be strengthened even
further: one can show the existence of a protected edge
mode unless the above set of fluxes are all bosons. We ex-
pect that similar generalizations exist for the non-abelian
case although we will not discuss them here.

C. Mathematical argument

Like the physical argument sketched above, the math-
ematical argument is a proof by contradiction. We as-
sume that |Ψ〉 is both Ising symmetric and short range
entangled (i.e. it can be turned into a product state by
a local unitary transformation) and we show that these
assumptions lead to a contradiction.

To begin, let β be a path on the dual (honeycomb)
lattice that joins two points a, b on the edge. We define
an associated unitary operator Wβ by

Wβ =
∏
p,int

σxp ·
∏
〈pqq′〉,r

i
1−σzqσ

z
q′

2 ·
∏
〈pqq′〉,l

(−1)spqq′ (23)

Here, the first product runs over all sites p in the interior
of the the path β, while the last two products run over
all triangles 〈pqq′〉 along the path such that q, q′ are to
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a b

FIG. 9. (Color online) The operator Wβ (23) is defined for
any path β on the dual honeycomb lattice that joins points a, b
on the edge. In the interior of the path β (shaded region), Wβ

acts like the symmetry transformation S =
∏
p σ

x
p . The oper-

ator also acts on all triangles 〈pqq′〉 along the path β (thick-
ened lines). The action is different depending on whether q, q′

are to the left of β (purple sites) or to the right of β (blue
sites).

the right of β or to the left of β respectively (Fig. 9).
The operator spqq′ is defined by

spqq′ =
1

4
(1− σzpσzq )(1 + σzpσ

z
q′) (24)

As an aside, we note that the operator Wβ is closely
related to the string operator V 1

β (14). Indeed the two

operators are identical except for the fact that V 1
β is writ-

ten in terms of the formalism of the gauged spin model,
while Wβ is written in terms of the original “ungauged”
spin model. This similarity suggests a simple physical
interpretation for Wβ : this operator describes a process
in which two π-fluxes are created in the bulk and then
moved along the path β to points a, b at the boundary.
Much of what follows can be understood using this phys-
ical picture, as discussed in section V A.

Returning to the main argument, we note that the uni-
tary operator Wβ has several important properties:

1. Wβ transforms local operators into local operators.

That is, W−1β OWβ is local if and only if O is local.

2. Let O be a local operator which acts on spins within
some convex region R not containing either of the
endpoints of β. Then O has the same expectation
value in the two states |Ψ〉 and |Ψ′〉 = Wβ |Ψ〉.

Property 1 follows from the fact that Wβ can be de-
composed into a product of two sets of commuting local
unitary operators. As for property 2, there are three
cases to consider: the region of support R may be con-
tained entirely in the exterior of β, it may be contained
entirely in the interior, or it may overlap the path β it-
self. In the first case, Wβ commutes with O, immediately
implying the desired equality 〈Ψ′|O|Ψ′〉 = 〈Ψ|O|Ψ〉. In
the second case, W−1β OWβ = S−1OS, since Wβ acts like

S in the interior of β. Then, since |Ψ〉 is invariant under
S (by the Ising symmetry assumption), we again have
〈Ψ′|O|Ψ′〉 = 〈Ψ|O|Ψ〉. The only case where the expec-
tation value of O could be different in the two states is

if R overlaps the path β. However, one can check that
Wβ |Ψ〉 = Wβ′ |Ψ〉 for any two paths β, β′ with the same
endpoints.32 This means that we can freely deform β so
that it avoids R. Therefore the expectation values must
coincide in this case as well.

We now use properties 1-2 to prove a key result: there
exist local operators Ua, Ub acting near a, b (or more ac-
curately, exponentially localized operators) such that

UaUbWβ |Ψ〉 = |Ψ〉 (25)

The first step is to observe that Wβ |Ψ〉 has short-range
correlations (i.e., for any well separated local operators
O1, O2, we have 〈O1O2〉 = 〈O1〉〈O2〉 up to corrections
which are exponentially small in the distance between
O1, O2). To see this, note that |Ψ〉 has short-range corre-
lations since33 it can be transformed into a product state
by a local unitary transformation (by the short-range en-
tanglement assumption). It then follows that Wβ |Ψ〉 also
has short range correlations since Wβ transforms local
operators into local operators (property 1).

Next we recall that |Ψ〉,Wβ |Ψ〉 share the same local
expectation values away from the endpoints a, b (prop-
erty 2). Putting these facts together, we can immedi-
ately deduce the existence of the desired Ua, Ub. To see
this, consider the analogous question for the conventional
paramagnet |Ψ0〉 = |σx = 1〉: suppose that some short-
range correlated state |Ψ′0〉 has the same local expecta-
tion values as |Ψ0〉 except near two points a, b. In this
case, the state |Ψ′0〉 must have σx = 1 far from a, b, so
it is clear that we can find local operators Ua, Ub acting
near a, b such that UaUb|Ψ′0〉 = |Ψ0〉. Having established
this property for |Ψ0〉, it follows that the same property
must also hold for |Ψ〉 since |Ψ〉, |Ψ0〉 are equivalent up
to a local unitary transformation (by the short-range en-
tanglement assumption).

A key question is to understand understand how Ua, Ub
transform under the Ising symmetry S. In appendix C,
we show that Ua, Ub can always be chosen so that they
are either both even or both odd under S. Furthermore,
this even or odd parity must be the same for all pairs of
endpoints a, b. In other words, either all the Ux operators
are even under S, or all of them are odd under S.

We now use (25) to derive a contradiction. To this
end, we consider a second path γ that connects two other
points c, d on the edge. We choose β, γ so that they inter-
sect each other, and so that their endpoints are well sepa-
rated (see Fig. 8b). As above, we have UcUdWγ |Ψ〉 = |Ψ〉
for some local operators Uc, Ud acting near c, d. Now, de-
fine

Wβ = UaUbWβ , Wγ = UcUdWγ (26)

By construction, Wβ |Ψ〉 = |Ψ〉 and Wγ |Ψ〉 = |Ψ〉. Hence,

WβWγ |Ψ〉 = WγWβ |Ψ〉 (27)

At the same time, Wβ ,Wγ anti-commute, as we now
show. To see this, we first note that Wβ ,Wγ anti-
commute:

WβWγ = −WγWβ (28)
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This relation can be checked using the explicit formula
for Wβ (similarly to eq. (16)). Next, we recall that Wβ

looks like S in the interior of β and the identity map in
the exterior of β so that

WβUcUdW
−1
β = (SUcS

−1)Ud = ±UcUd (29)

where the sign is determined by the parity of Uc under
S. Similarly, we have

WγUaUbW
−1
γ = Ua(SUbS

−1) = ±UaUb (30)

where the sign is determined by the parity of Ub under S.
Importantly, these two signs are the same since the Ux
operators all share the same parity. Hence, the two pairs
{Wβ , UcUd} and {Wγ , UaUb} either both commute or
both anti-commute. In either case, the anti-commutation
relation (28) implies that Wβ ,Wγ anti-commute:

WβWγ = −WγWβ (31)

Comparing (27), (31), we arrive at a contradiction.
Hence our assumption must be false and |Ψ〉 cannot be
both Ising symmetric and short-range entangled.

VI. MICROSCOPIC EDGE ANALYSIS

In this section, we investigate the protected edge
modes of H1 at a more concrete level. We analyze a par-
ticular example of a gapless edge for H1, derive a field
theoretic description of the low energy modes, and in-
vestigate the effect of perturbations. As in section V,
we consider a disk geometry, with a Hamiltonian of the
form H = Hbulk +Hedge. The bulk Hamiltonian Hbulk is
defined by Hbulk = −

∑
pBp where the sum runs over all

sites that are strictly in the interior of the disk. The edge
Hamiltonian Hedge can be any Ising symmetric Hamilto-
nian with local interactions which acts on the spins on or
near the boundary.

A. Zero energy edge states

We begin with the case where Hedge = 0 – that is, the
edge Hamiltonian vanishes. In this case, we can compute
the energy spectrum in the same way as we did for the
periodic (torus) geometry. First, we simultaneously diag-
onalize the Bp operators for all sites p that are strictly in
the interior of the disk. Next, we note that each of these
simultaneous eigenstates is an energy eigenstate with en-
ergy E = −

∑
p bp where bp = ±1 is the eigenvalue under

Bp. The final step is to determine the degeneracy of these
simultaneous eigenspaces. A natural guess, based on di-
mension counting, is that each simultaneous eigenspace
{bp = ±1} has a degeneracy of 2N , where N is the num-
ber of spins along the boundary of the disk. In particular,
we expect that there are 2N degenerate ground states.

We can verify this counting by constructing ex-
plicit wave functions for these degenerate ground states.

FIG. 10. A schematic picture of the zero energy edge states in
the case Hedge = 0. (a) The 2N zero energy edge states can be
parameterized by boundary spin configurations {α1, ..., αN},
where αn =↑, ↓. (b) For each choice of {α}, the corresponding
wave function Ψ{α} is defined by Ψ{α}({αint}) = (−1)Ndw

where Ndw is the total number of domain walls in the system.
We use a convention where we close up all the domain walls
by assuming there is a “ghost” spin in the exterior of the disk,
pointing in the ↑ direction.

Specifically, we define a wave function Ψ{α} for each
boundary spin configuration {α1, ..., αN}, where αn =↑, ↓
(Fig. 10a). This wave function is a function of the spins
αint =↑, ↓ lying strictly in the interior of the disk, and is
given by

Ψ{α}({αint}) = (−1)Ndw (32)

where Ndw is the the total number of domain walls in the
system. Here, we define Ndw using a particular conven-
tion where we close up all the domain walls that end at
the boundary by assuming that there is a “ghost” spin
in the exterior of the disk, pointing in the ↑ direction
(Fig. 10b). We will denote these states by |α1, ..., αN 〉.
As is apparent from this parameterization, we can think
of these degenerate ground states as zero energy edge
states.

It is useful to define operators {σxn, σyn, σzn} that act on
|α1, ..., αN 〉 just like the usual Pauli spin operators. We
note that the σin operators should not be confused with
the physical boundary spin operators σin which act on the
full Hilbert space of the spin system. In the σz case, the
two types of operators are closely related – for example,
σzn = P0σ

z
nP0 where P0 is the projection operator onto

the 2N dimensional edge state subspace. However, this
simple relation does not hold for the σx or σy operators,
or for more complicated products of spin operators.

An important question is to understand how the sym-
metry S acts on the edge states. Using the definition
(32), one finds that the Ising symmetry S acts as

S|α1, ..., αN 〉 = ±
N∏
n=1

σxαnβn |β1, ..., βN 〉 (33)
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n

q’q

FIG. 11. The operator B↑n is defined just like Bp (2), except
with an additional “ghost” spin in the exterior of the disk
pointing in the ↑ direction (dotted arrow). More explicitly,
B↑n acts on the three triangles 〈nqq′〉 containing the boundary
spin n with an action given by (37). The operator B↓n is
defined similarly.

where the sign depends on the configuration of αn =↑, ↓
as follows: the sign is − if the total number of domain
walls between the α’s is divisible by 4 and + otherwise.
In other words, the action of the Ising symmetry on the
above basis states is described by the operator

S = −
N∏
n=1

σxn · exp

(
iπ

4

N∑
n=1

(1− σznσzn+1)

)
(34)

In order to gain some intuition about S, we note that
the operators σx, σy, σz transform under the symmetry
according to

S−1σxnS = −σzn−1σxnσzn+1

S−1σynS = σzn−1σ
y
nσ

z
n+1

S−1σznS = −σzn (35)

B. An example of an edge Hamiltonian

We now imagine adding a nonvanishing edge Hamil-
tonian Hedge. If Hedge is small, then we can analyze its
effect using degenerate perturbation theory. The first
order splitting of the 2N degenerate ground states can
be obtained by diagonalizing P0HedgeP0 where P0 is the
projection onto the zero energy edge state subspace. In
general, P0HedgeP0 can be expressed as a function of the
σin operators. We can therefore find the edge state spec-
trum by solving a 1D spin chain with an unusual Ising
symmetry (34).10

Here we will focus on a particular choice of Hedge which
can be solved exactly. We emphasize that this choice is
not unique, and that other edge Hamiltonians may give
rise to different edge spectra. Nevertheless, we believe
that the particular Hedge we consider is a useful illustra-
tive example. We will derive a low energy edge theory for
this example, and investigate the effect of perturbations.

Specifically, we consider an edge Hamiltonian

Hedge = −J
N∑
n=1

(B↑n +B↓n) (36)

where B↑n is defined just like Bp, except with an addi-
tional “ghost” spin in the exterior of the disk, pointing
in the ↑ direction. More explicitly,

B↑n = −σxn · i
1−σzn−1

2 · i
1−σzn+1

2 ·
∏
〈nqq′〉

i
1−σzqσ

z
q′

2 (37)

where the product runs over the three triangles 〈nqq′〉
containing the boundary spin n, and where n+ 1, n− 1
denote the two neighboring boundary spins (Fig. 11).
The operator B↓n is defined the same way, except that we
take the “ghost” spin to point in the ↓ direction. That
is,

B↓n = −σxn · i
1+σzn−1

2 · i
1+σzn+1

2 ·
∏
〈nqq′〉

i
1−σzqσ

z
q′

2 (38)

The above edge Hamiltonian has several nice prop-
erties. First, the edge Hamiltonian is Ising symmetric.
Indeed, this follows from the fact that S−1B↑nS = B↓n,
S−1B↓nS = B↑n. Another property of Hedge is that
[Hedge, Hbulk] = 0. This property follows from the fact
that the Bp operators commute with B↑n, B

↓
n (which in

turn follows from the fact that the Bp operators commute
with each other). One consequence of this commutation
relation is that the low energy edge spectrum obtained by
diagonalizing P0HedgeP0 is exact, rather than just being
correct to first order in perturbation theory.

We now compute P0HedgeP0. Using the definition of
the basis states (32), it is easy to check that

P0B
↑
nP0 = σxn (39)

from which it follows that

P0B
↓
nP0 = S−1σxnS = −σzn−1σxnσzn+1 (40)

We conclude that:

P0HedgeP0 = −J
N∑
n=1

(σxn − σzn−1σxnσzn+1) (41)

A nice feature of this Hamiltonian is that it has a U(1)

symmetry: it conserves
∑N
n=1 σ

z
nσ

z
n+1 – the total number

of domain walls between the boundary spins. In order
to make this U(1) symmetry manifest and to simplify
the analysis, it is useful to rewrite the Hamiltonian in
terms of the dual domain wall variables. Naively, we can
accomplish this by defining

τzn = σznσ
z
n+1 (42)

and re-expressing everything in terms of the τ ’s. How-
ever, the above duality transformation doesn’t quite work
for a system with periodic boundary conditions, since

the τzn variables obey the global constraint
∏N
n=1 τ

z
n = 1,

and therefore only describe N−1 independent degrees of
freedom. (Equivalently, there is no way to express σz in
terms of the τz variables).
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In order to incorporate the missing degree of freedom
and make the dual description complete, we introduce an
additional Z2 gauge field µzn−1,n that lives on the links
〈(n − 1)n〉 connecting neighboring boundary sites (n −
1), n. We then define the duality transformation between
σ and τ, µ by the relation

µxn−1,n = σzn (43)

together with the gauge invariance constraint

µxn−1,nµ
x
n,n+1τ

z
n = 1 (44)

It is easy to check that there is a one-to-one correspon-
dence between configurations of σzn = ±1 and configura-
tions of µxn = ±1, τzn = ±1 obeying the constraint (44).
Similarly, there is a one-to-one correspondence between
physical operators written in terms of the σ’s and gauge
invariant combinations of µ, τ (i.e. operators that com-
mute with the left hand side of (44)). In particular, the
operators σx, σy, σz are given by

σxn = τxn−1τ
x
nµ

z
n−1,n

σyn = −τxn−1τxnµ
y
n−1,n

σzn = µxn−1,n (45)

while the symmetry transformation S is given by

S = −
N∏
n=1

µzn−1,n · exp

(
iπ

4

N∑
n=1

(1− τzn)

)
(46)

Using (45) to re-express the Hamiltonian (41) in terms
of the domain wall variables τ , we find

P0HedgeP0 = −2J

N∑
n=1

(τ+n−1τ
−
n µ

z
n−1,n + h.c.) (47)

This Hamiltonian is the usual spin-1/2 XX chain, coupled
to a Z2 gauge field µzn−1,n. The only effect of the Z2 gauge
field is to double the size of the Hilbert space so that
is includes sectors with both periodic and anti-periodic
boundary conditions for the τ variables. The two types of
boundary conditions correspond to the two possibilities∏N
n=1 µ

z
n−1,n = ±1.

C. Edge theory

Given previous work on the spin-1/2 XX chain, it is
now straightforward to construct a field theory descrip-
tion of the low energy edge modes. (We could also derive
the exact edge spectrum, but this is less useful to us,
as we ultimately want to analyze the effect of perturba-
tions). To be specific, the low energy excitations of the
spin-1/2 XX chain (47) are known34 to be described by
the non-chiral Luttinger liquid

L =
1

4π
(∂xθ∂tφ+ ∂xφ∂tθ)

− v

8π

(
K(∂xθ)

2 +
4

K
(∂xφ)2

)
(48)

with Luttinger parameter K = 1, and velocity v = 4Ja
where a is the lattice spacing. Here, we are using a nor-
malization convention in which expressions of the form
eikθ+ilφ with integer k, l correspond to local spin oper-
ators (i.e. gauge invariant combinations of τ, µ). For
example,

τ+n−1τ
+
n µ

z
n−1,n ∼ eiθ

µxn−1,n ∼ cos(φ)

τzn
2a
∼ 1

π
∂xφ (49)

In the above normalization convention, the boundary
condition for θ is that θ(L) ≡ θ(0) (mod 2π). This con-
dition automatically incorporates both the periodic and
anti-periodic sectors for τ : the two sectors correspond to
the two cases θ(L) = θ(0)+4mπ and θ(L) = θ(0)+(4m+
2)π, as one can see using the heuristic τ+ ∼ eiθ/2. The
boundary condition for φ is also φ(L) ≡ φ(0) (mod 2π).

The last component of the edge theory (48) is to under-
stand how the Ising symmetry S acts in the new variables
θ, φ. To this end, we note that (49) implies that

exp

(
−πi

4

N∑
n=1

τzn

)
= exp

(
− i

2

∫
∂xφdx

)
(50)

Similarly, we have:

N∏
n=1

µzn−1,n = exp

(
i

2

∫
∂xθdx

)
(51)

This equality follows from the observation that the

periodic/anti-periodic sectors
∏N
n=1 µ

z
n−1,n = ±1 cor-

respond to the two boundary conditions θ(L) − θ(0) =
4mπ, (4m+ 2)π respectively.

Combining these two results, we see that our expres-
sion (46) for S becomes

S = exp

(
i

2

∫
∂xθdx−

i

2

∫
∂xφdx

)
(52)

(up to a phase factor). Using the commutation relation
[θ(x), ∂xφ(y)] = 2πiδ(x− y), we deduce that

S−1θS = θ + π; S−1φS = φ+ π (53)

The transformation law (53) together with the action
(48) gives a complete description of the low energy edge
physics.

D. Stability and instability of the edge modes

In this section, we investigate the effect of perturba-
tions on the gapless edge (48). We find two results. Our
first result is that the edge is unstable: the edge modes
can be gapped out by arbitrarily small Ising symmet-
ric perturbations. Our second result is that the edge
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is protected : we find that in all cases where perturba-
tions gap out the edge, the Ising symmetry is broken
spontaneously. In other words, we do not find any per-
turbations which gap out the edge without breaking the
Ising symmetry, explicitly or spontaneously. This result
is consistent with the general edge protection argument
presented in section V.

We focus on a particular class of perturbations of the
form

U(l1, l2) = U(x) cos(l1θ + l2φ− α(x)) (54)

where l1, l2 are integers. Using (53), we can see that
the perturbation U(l1, l2) is even or odd under the Ising
symmetry depending on whether l1 + l2 is even or odd,
respectively.

The above perturbations are all “local” in the sense
that they can be generated by adding appropriate short
range spin interactions at the edge. For example, the case
U(0, 1) can be generated by adding to the edge Hamil-
tonian (36) a term of the form Uσzn. Similarly, U(1, 0)
can be generated by the term U(B↑n − B↓n). Higher val-
ues of l1, l2 can be generated by more complicated spin
interactions.

Of particular interest are perturbations of the form
U(l, 0) and U(0, l). We know from the standard analysis
of the sine-Gordon model that these terms can drive the
edge to a gapped state by freezing the value of θ or φ.
This gapping can occur even for infinitesimal U , if U(l, 0)
or U(0, l) are relevant in the renormalization group sense.

To determine whether any of these operators are rel-
evant, we note that their scaling dimensions are given
by:

h(l, 0) =
l2

K
; h(0, l) =

Kl2

4
(55)

Clearly, the smaller the value of l, the more relevant the
perturbation. On the other hand, Ising symmetry (53)
requires even l. Thus, the most relevant Ising-symmetric
operators are U(2, 0) and U(0, 2). Setting K = 1, we
see that the term U(2, 0) has a scaling dimension greater
than 2 and is therefore irrelevant, but U(0, 2) is relevant.
Hence, U(0, 2) describes an Ising-symmetric instability of
the edge.

Microscopically, the term U(0, 2) can be generated by
adding a staggered spin interaction

U

N∑
n=1

(−1)n(B↑n +B↓n) (56)

to Hedge (36). In this case, the resulting gapping of the
edge modes can be analyzed exactly. The analysis is
similar to the derivation above: first, one maps the per-
turbed Hamiltonian onto an XX chain with a staggered
coupling constant Jn = J+(−1)nU . Then, one solves the
resulting system using a Jordan-Wigner transformation.
One can check that the effect of the perturbation is to
induce backscattering for the non-interacting fermions,
and hence open up a gap of order U .

Before proceeding further, we make two observations
about this edge instability. The first observation is that
the instability described by U(0, 2) requires the break-
ing of discrete translational symmetry. Indeed, as dis-
cussed in the previous paragraph, U(0, 2) corresponds to
backscattering between the left and right moving Jordan-
Wigner fermions. This backscattering process doesn’t
conserve the lattice momentum and therefore requires
the breaking of discrete translational symmetry and the
doubling of the unit cell.

The second observation is that the edge instability per-
sists for any value of the Luttinger parameter, K. To
see this, note that (55) implies that h(2, 0) · h(0, 2) = 4.
There are three cases to consider: either (a) h(2, 0) <
2 < h(0, 2), (b) h(0, 2) < 2 < h(2, 0), or (c) h(2, 0) =
h(0, 2) = 2. In the first two cases, either U(2, 0) or
U(0, 2) is relevant, implying that the edge is unstable.
In the third case, both operators are marginal, but the
edge is still unstable since small perturbations can affect
K and therefore make either U(2, 0) or U(0, 2) relevant.
This analysis implies that the above edge theory has an
Ising symmetric instability for any value of K. (This
instability is closely related to the fact that there is no
stable algebraic long range ordered phase in the 2D Z4

clock model35).

Although the perturbation U(0, 2) can open up a gap
at the edge, it also spontaneously breaks the Ising sym-
metry. To see this, note that U(0, 2) drives the edge into
a state where φ is frozen at some fixed value. In such a
state, the operator cos(φ−α(x)) acquires a nonvanishing
expectation value. But this operator is odd under S (53)
implying that the resulting state spontaneously breaks
the Ising symmetry. This result is consistent with the
general argument in section V: the edge modes can never
be gapped out without breaking the Ising symmetry, ei-
ther explicitly or spontaneously.

We have seen that the above edge is unstable in the
sense that small perturbations can gap out the edge
while simultaneously breaking the Ising symmetry. We
do not know whether a different choice of edge Hamilto-
nian Hedge can give rise to a stable edge. Nevertheless,
whether or not a stable Z2 edge is possible, we believe
that the Zn generalizations of the Ising paramagnet H1

support stable gapless edge modes for n > 2. Our expec-
tation is based on the following conjecture: we believe
that the Zn generalizations of H1 support edge modes
described by (48) with a Zn symmetry given by

S−1θS = θ + 2π/n; S−1φS = φ+ 2πk/n (57)

with k = 1, ..., n − 1. In this scenario, the most relevant
Zn symmetric perturbations are U(n, 0), U(0, n). Exam-
ining (55), we can see that both of these operators are
irrelevant over the finite range 8/n2 < K < n2/2. Hence,
if K lies in this range, then the edge is stable to small
perturbations.



14

VII. CONCLUSION

In this paper we investigated a 2D bosonic SPT phase
with a Z2 Ising-like symmetry. This SPT phase can
be thought of as a new kind of Ising paramagnet. We
showed that this phase can be distinguished from a con-
ventional paramagnet by coupling the system to a Z2

gauge field and then analyzing the braiding statistics
of the π-flux excitations. We found that while the π-
fluxes have bosonic or fermionic statistics in a conven-
tional paramagnet, they have semionic statistics in the
new kind of paramagnet. This result immediately im-
plies that the two types of paramagnets belong to distinct
phases. We also showed that these semionic braiding
statistics directly imply the existence of protected edge
modes. To complete the picture, we analyzed a particu-
lar microscopic edge model for this phase, derived a field
theoretic description of the edge modes, and investigated
their stability to perturbations.

While this paper has focused on a particular example,
we believe that our basic approach can be applied more
broadly. The simplest extension would be to consider
2D bosonic SPT phases with arbitrary unitary symmetry
groups G. Following the same approach as above, we can
couple each such SPT phase to a gauge field with gauge
group G. We can then analyze the quasiparticle excita-
tions in this system and find their braiding statistics. By
analogy with the Z2 case, we expect that these braid-
ing statistics can be used to uniquely characterize each
SPT phase and to derive the existence of protected edge
modes. The same approach could potentially be used for
2D fermionic SPT phases with unitary symmetries.

One can also imagine a generalization to higher dimen-
sional bosonic/fermionic SPT phases with unitary sym-
metries. Again, we envision coupling each phase to the
appropriate gauge field and then analyzing the braiding
statistics in the resulting system. In the 3D case for ex-
ample, we expect that gauged SPT phases will contain
both particle-like and loop-like excitations. The analog
of braiding statistics is then the Berry phase associated
with braiding a particle-like excitation around a loop-like
excitation. We find it plausible that these braiding statis-
tics could be used to distinguish different SPT phases and
to derive the existence of protected boundary modes just
as in 2D. Similarly, the duality between bosonic 2D SPT
phases and 2D gauge theories (section IV) may also ex-
tend to higher dimensions.

On the other hand, it is not clear how to apply these
ideas to SPT phases with anti-unitary symmetries such
as time reversal symmetry. The problem is that we do
not know how to define a gauge field for an anti-unitary
symmetry. This question, as well as the potential gener-
alizations discussed above, is an interesting direction for
future work.
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Appendix A: Adiabatic equivalence of H0, H1 in the
absence of the symmetry

While H0, H1 cannot be continuously connected when
the Ising symmetry is preserved, these two models can
be connected when the symmetry is broken. Indeed,
consider the one-parameter family of unitary transfor-
mations

Uθ =
∏
〈pqr〉

eiθ(3σ
z
pσ
z
qσ
z
r−σ

z
p−σ

z
q−σ

z
r ) (A1)

where the product runs over all triangles 〈pqr〉. Us-
ing these unitary transformations, we can define a one-
parameter family of Hamiltonians H(θ) = U−1θ H0Uθ.
These Hamiltonians have local spin-spin interactions and
have a finite energy gap for any value of θ. Moreover,
H(0) = H0, and one can check that H(π/24) = H1, us-
ing the identity

U−1π/24 · σ
x
p · Uπ/24 = Bp (A2)

Hence, this construction gives an explicit path that con-
nects H0, H1. We note that H(θ) breaks the Ising sym-
metry for intermediate values of θ, as required by the
argument of section III.

Appendix B: Topological non-linear sigma models
for the two paramagnets

In this section, we explore the duality between the
spin models H0, H1 and the string models Ht.c., Hd.s in
a space-time Lagrangian formulation. Using this space-
time duality, we construct topological non-linear sigma
models describing each of the two paramagnet phases,
and thereby make a connection to the analysis of Ref.
11.

We begin with the Lagrangian description of the toric
code and doubled semion models, Ht.c, Hd.s. These mod-
els – like all string-net models26 – have a Euclidean space-
time description in terms of Turaev-Viro36 invariants.
In general, these invariants define a space-time partition
function for any 3D manifold M and any triangulation
of M into tetrahedra. For the above two models the
Turaev-Viro invariants are of the form

Z =
1

2Nv

∑
ijk...

∏
link

di
∏

tetrahedron

Gijmkln , (B1)
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FIG. 12. (Color online) In the Turaev-Viro model (B1),
the degrees of freedom i, j, k = 0, 1 live on the links of the
triangulation and Gijmkln gives a weight to each tetrahedron
in the space-time triangulation. In the dual spin model, the
degrees of freedom are Ising spins living on the vertices of the

triangulation while the dual weight G̃ is defined by mapping
domain walls between spins onto the link variables i = 0, 1.

For example, the above configuration corresponds to G̃(↓, ↑, ↓
, ↑) = G110

110. The thick red lines denote links with i = 1.

where the degrees of freedom i, j, k... live on the links of
the tetrahedra and run over the finite set {0, 1}. The
variable Nv denotes the number of vertices in the trian-
gulation.

To specify the two partition functions, we need to de-
fine di, G

ijm
kln – the weights associated with the links and

tetrahedra in the triangulation. For toric code model, we
have d0 = d1 = 1 and26

G000
000 = 1,

G000
111 = G110

001 = G011
100 = G101

010 = 1,

G110
110 = G101

101 = G011
011 = 1,

others = 0 (B2)

For double semion model, we have d0 = 1, d1 = −1 and

G000
000 = 1,

G000
111 = G110

001 = G011
100 = G101

010 = −i,
G110

110 = G101
101 = G011

011 = −1,

others = 0 (B3)

Our convention for ordering the indices of G is that the 3
upper indices i, j,m live on one of the faces of the tetra-
hedron, while the corresponding lower indices k, l, n live
on the opposite links (Fig. 12). There is no further ambi-
guity in the index ordering since the G-symbols for these
models have full tetrahedral symmetry.

An important property of these partition functions is
that they are independent of the choice of triangula-
tion, and depend only on the topology of the space-time
manifold M . This triangulation independence should
not be taken for granted: it only comes about because
Gijmkln , di, D satisfy highly nontrivial algebraic relations.36

We are now ready to discuss the space-time descrip-
tion of the duality between the spin models H0, H1 and
the string models Ht.c, Hd.s. By analogy with the Hamil-
tonian description (section IV), we place the dual Ising

spins on the vertices of the tetrahedra and then define the
duality by mapping each Ising spin configuration onto its
corresponding domain wall configuration (Fig. 12). To
be precise, given any Ising spin configuration, we define
a corresponding configuration of i = 0, 1 by placing i = 1
on the links where the adjoining spins are anti-parallel
(i.e. where there is a domain wall) and i = 0 on the
links where the spins are parallel (i.e. where there is
no domain wall). Importantly, we can see from (B2,B3)
that G vanishes for configurations of i, j, k... which do
not correspond to valid domain wall configurations, so
this correspondence is (locally) one-to-one. In this way,
we can map the two Turaev-Viro models (B1) onto two
spin partition functions

Z̃ =
1

2Nv

∑
g0g1g2g3...

∏
link

d̃(g0, g1)
∏

tetrahedron

G̃(g0, g1, g2, g3),

(B4)
where gi =↑, ↓ runs over the two Ising spin states. The

dual G-symbols G̃(g0, g1, g2, g3) are defined by

G̃(↑, ↑, ↑, ↑) = G̃(↓, ↓, ↓, ↓) = G000
000,

G̃(↑, ↑, ↑, ↓) = G̃(↓, ↓, ↓, ↑) = G000
111,

G̃(↑, ↓, ↑, ↑) = G̃(↓, ↑, ↓, ↓) = G110
001,

G̃(↑, ↑, ↓, ↑) = G̃(↓, ↓, ↑, ↓) = G011
100,

G̃(↓, ↑, ↑, ↑) = G̃(↑, ↓, ↓, ↓) = G101
010,

G̃(↑, ↓, ↑, ↓) = G̃(↓, ↑, ↓, ↑) = G110
110,

G̃(↑, ↓, ↓, ↑) = G̃(↓, ↑, ↑, ↓) = G101
101,

G̃(↑, ↑, ↓, ↓) = G̃(↑, ↑, ↓, ↓) = G011
011. (B5)

while d̃(g0, g1) is given by

d̃(↑, ↑) = d̃(↓, ↓) = d0

d̃(↑, ↓) = d̃(↓, ↑) = d1, (B6)

By construction, G̃ and d̃ are invariant under Ising
symmetry:

G̃(gg0, gg1, gg2, gg3) = G̃(g0, g1, g2, g3),

d̃(gg0, gg1) = d̃(g0, g1) (B7)

where g· ↑=↓, g· ↓=↑. Thus, the dual partition functions
(B4) both describe Ising symmetric phases. We expect
that these two phases correspond to the two types of
paramagnets, H0, H1.

In addition, we note that the dual partition functions
(B4) satisfy the property that they are independent of the
choice of triangulation: this result follows from the corre-
sponding property of the Turaev-Viro partition function.
This property suggests that the two actions described by
(B4) can be regarded as Z2 topological non-linear sigma
models similar to those constructed in Ref. 11.

We expect that this construction of topological non-
linear sigma models can be generalized to arbitrary
bosonic 2D SPT phases with finite unitary symmetry
group G. The first step is to find all the Turaev-Viro
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models associated with the group G. In these Turaev-
Viro models – which are equivalent to the topological
gauge theories discussed in Ref. 23 – the link labels i
run over the different group elements of G. (One can
also construct Turaev-Viro models by placing irreducible
representations of G on the links, but this approach is
less convenient here). One can then construct dual mod-
els by placing group elements (“spins”) on the vertices of
the tetrahedra, and mapping the domain walls between
these generalized spins onto the group elements living on
the links. The result will be a set of topological non-linear
sigma models with symmetry group G.

Appendix C: Parity of Ua, Ub under S

In this section, we show that the operators Ua, Ub de-
fined by UaUbWβ |Ψ〉 = |Ψ〉 can always be chosen so that
Ua, Ub are either both even or both odd under S. Fur-
thermore, we show that this even or odd parity must be
the same for all pairs of endpoints a, b.

We begin with the first claim – showing that Ua, Ub
can always be chosen so that they are either both even or
both odd under S. To derive this fact, we define even and
odd combinations Ua± = 1

2 (Ua±S−1UaS), and similarly
for Ub. We then have

|Ψ〉 = (Ua+ + Ua−)(Ub+ + Ub−)|Ψ′〉 (C1)

where |Ψ′〉 = Wβ |Ψ〉. We note that |Ψ〉, |Ψ′〉 have the
same parity under S since Wβ is even under S. It then
follows from symmetry that

Ua+Ub−|Ψ′〉+ Ua−Ub+|Ψ′〉 = 0 (C2)

On the other hand, it is easy to see that the two states
Ua+Ub−|Ψ′〉, Ua−Ub+|Ψ′〉 must be orthogonal to one an-
other:

〈Ψ′|U†b−U
†
a+Ua−Ub+|Ψ′〉 = 〈Ψ′|(U†a+Ua−)(U†b−Ub+)|Ψ′〉

= 〈Ψ′|U†a+Ua−|Ψ′〉
· 〈Ψ′|U†b−Ub+|Ψ

′〉
= 0 (C3)

where the second equality follows from the fact that |Ψ′〉
has short range correlations, and the last equality follows
from the fact that |Ψ′〉 has a definite parity under S.
Given that the two states are orthogonal and sum to
zero, both states must vanish:

Ua+Ub−|Ψ′〉 = Ua−Ub+|Ψ′〉 = 0 (C4)

Next, we use the fact that |Ψ′〉 has short range correla-
tions to deduce that

0 = 〈Ψ′|U†b−U
†
a+Ua+Ub−|Ψ′〉

= 〈Ψ′|(U†a+Ua+)(U†b−Ub−)|Ψ′〉

= 〈Ψ′|(U†a+Ua+)|Ψ〉〈Ψ|(U†b−Ub−)|Ψ′〉 (C5)

Hence, either Ua+|Ψ′〉 = 0 or Ub−|Ψ′〉 = 0. In the
same way, we can show that either Ua−|Ψ′〉 = 0 or
Ub+|Ψ′〉 = 0. There are only two consistent possibilities:
either Ua−|Ψ′〉 = Ub−|Ψ′〉 = 0 or Ua+|Ψ′〉 = Ub+|Ψ′〉 = 0.
In the first case, we can replace Ua → Ua+, Ub → Ub+ so
that both operators are even under S. Similarly, in the
second case, we can replace Ua → Ua−, Ub → Ub− so
that both operators are odd under S. This establishes
the first claim.

We now prove the second claim – i.e. that this even or
odd parity is the same for all endpoints a, b. To see this,
let β be a path joining a, b and β′ be a path joining a with
some other point c. Then, we have UaUbWβ |Ψ〉 = |Ψ〉
and U ′aU

′
cWβ′ |Ψ〉 = |Ψ〉 for some operators Ua, Ub, U

′
a, U

′
c.

Now, by the result above, we know that Ua, Ub have the
same parity and U ′a, U

′
c have the same parity. Also, it is

not hard to see that U ′a, Ua have the same parity: in fact,
we can always choose U ′a = Ua up to a phase factor, since
Wβ′ |Ψ〉,Wβ |Ψ〉 have the same local expectation values
near a. It then follows that Ub, U

′
c also have the same

parity under S.
We now repeat this argument for a path β′′ connect-

ing c with some other point d, letting U ′′c U
′′
dWβ′′ |Ψ〉 =

|Ψ〉. By the same reasoning, we find that Ua, Ub, U
′′
c , U

′′
d

all have the same parity under S for arbitrary points
a, b, c, d. This establishes the claim.
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