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We develop a framework for orbital-free generalized gradient approximations (GGAs) for the non-
interacting free energy density and its components (kinetic energy, entropy) based upon analysis
of the corresponding gradient expansion. From that we obtain a new finite-temperature GGA
(ftGGA) pair. We discuss implementation of the finite-temperature Thomas-Fermi, second-order
gradient expansion, and our new ftGGA free energy functionals in an orbital-free density functional
theory (OF-DFT) code, including the construction and validation of required local pseudopoten-
tials. Then we compare results of self-consistent OF-DFT calculations on hydrogen using those
non-interacting free energy functionals (in combination with the zero-temperature local density
approximation (LDA) for exchange-correlation) with results from conventional finite-temperature
Kohn-Sham calculations and the same LDA. As an aid to implementation, we provide analytical
expressions for the temperature-dependent scaling factors involved.

PACS numbers:

I. INTRODUCTION

Warm dense matter (WDM) is characterized by el-
evated temperature (up to one hundred eV) and high
pressures (up to hundreds of TPa). These character-
istics differ greatly from those in standard condensed
matter physics, yet such temperatures and pressures are
not high enough to make standard plasma physics meth-
ods fully applicable. The typical present-day theoretical
and computational approach to WDM thus is a combi-
nation of finite-temperature density functional theory to
describe the electrons1–3 and classical molecular dynam-
ics for ions. Finite-temperature DFT for the electronic
degrees of freedom is realized via the Kohn-Sham (KS)
procedure. It becomes computationally very expensive
at elevated temperature because of the large number of
fractionally occupied KS orbitals which must be taken
into account. (The computational cost of solving the KS
equations in an atom-centered basis scales in principle as
N4, where N is proportional to the number of occupied
KS orbitals. Obviously N increases with temperature.
Variational Coulomb fitting4 reduces the scaling to N3.
In a plane-wave basis with pseudopotentials, the general
scaling is N3 also. Less costly schemes eventually exploit
some form of matrix sparsity, thus are not generally ap-
plicable.)

In contrast, the orbital-free version of density func-
tional theory (OF-DFT) is, in principle at least, a much
less expensive alternative to the orbital-based KS method
for both zero-temperature and finite-temperature cal-
culations. OF-DFT scales only with the cell size, so
the computational cost of a well-implemented OF-DFT
scheme should be about the same for both zero- and
finite-temperature regimes.

OF-DFT at zero temperature requires reliable approx-

imations for the exchange-correlation (XC) and non-
interacting kinetic energy (KE) Ts density functionals.
These two contribute to the total energy Etot with sub-
stantially different magnitudes: Ts ≈ |Etot| while |Exc| is
about one order of magnitude smaller. Because of this
disparity, development of accurate approximate OF-KE
functionals is a challenging task which has not reached
the refinement of Exc functionals.

The standard developmental approach to non-
empirical Exc approximations invokes a sequence of
added functional variables, hence the local density ap-
proximation (LDA), gradient expansion approximation
(GEA) and generalized gradient approximations (GGA),
meta-GGAs (which add the KE density or Laplacian
of the density), etc. Functional construction is facil-
itated by enforcement of known properties of the ex-
act functional. Examples include the highly popular
PBE Ex,GGA

5 and proposed improvements on it6–8. The
GGA approach to the KE functional also is based on
satisfaction of some of the known exact conditions on
this functional9,10. “Modified conjoint” GGA type KE
functionals11,12, for example, are constrained to satisfy
one of the important exact conditions, namely, positivity
of the functional itself and of the so-called Pauli potential
associated with it.

Fortunately, the high density and elevated tempera-
ture of the WDM regime is favorable for use of the OF-
DFT approach. In finite-temperature OF-DFT, the task
is to approximate the entire free energy (non-interacting
KE, non-interacting entropy, and XC) as a functional of
the electronic density. At present, the basic Thomas-
Fermi (TF)13,14 model and TF with gradient corrections
are the dominant computational approaches in finite-
temperature OF-DFT15,16. Renewed interest in better
free-energy density functionals is exemplified by two re-
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cent studies of their scaling behavior17,18. Here we de-
velop a finite-temperature GGA (ftGGA) approximation
for the non-interacting free energy functional. ftGGA
is a non-trivial extension of the zero-temperature GGA
to finite-temperatures for, as we shall show, it should
depend upon explicitly temperature-dependent variables
which are defined on the basis of the gradient expan-
sion for the kinetic and entropic contributions to the free
energy. Those variables play roles analogous with the
reduced density gradient in ground-state functionals.

Pseudopotentials (PPs) are an important implementa-
tional challenge in this context. Standard Kohn-Sham
calculations on extended, periodically bounded systems
most commonly employ PP techniques. In DFT codes
of both the plane-wave and numerical grid varieties,
PPs reduce computational cost by eliminating the bare
Coulomb nuclear-electron singularity and by reducing
(substantially) the number of active electrons in the self-
consistent field (SCF) procedure. The most common
standard PPs are non-local (see for example Refs. 19–
21), i.e., there is a different operator for each atomic
orbital angular momentum. While the computational
cost of OF-DFT does not depend on the total number of
electrons, the problems from the singularity of the bare
Coulomb external potential remain if one intends to use a
plane-wave basis or numerical grid. For OF-DFT in such
an implementation, a local PP or regularized potential is
inescapable.

II. ORBITAL-FREE NON-INTERACTING FREE

ENERGY FUNCTIONALS

A. Finite-temperature DFT summary

For development of the finite-temperature version of
DFT it is customary to work in the grand canonical en-
semble. The grand canonical potential of a system of
electrons in an external potential v(r) with electronic
density n(r), chemical potential µ, and temperature T
can be written as a functional of the density1,2

Ω[n] = F [n] +

∫

(v(r) − µ)n(r)dr . (1)

The universal free-energy functional F [n] has the decom-
position

F [n] = Fs[n] + FH[n] + Fxc[n] , (2)

where Fs[n] is the non-interacting free energy, FH[n] is
the classical Coulomb repulsion energy, and Fxc[n] is the
exchange-correlation contribution to the free energy. In
order, these are

Fs[n] = Ts[n]− TSs[n] , (3)

where Ts and Ss are the non-interacting kinetic energy
and entropy respectively, and

FH[n] =
1
2

∫ ∫

n(r)n(r′)

|r− r′| drdr′ (4)

is the Hartree (classical Coulomb repulsion) energy. The
exchange-correlation (XC) functional is

Fxc[n] = (T [n]− Ts[n])− T(S[n]− Ss[n])

+(Uee[n]−FH[n]) . (5)

In it, T [n] and S[n] are the fully interacting system ki-
netic energy and entropy respectively and Uee is the full
electron-electron Coulomb interaction energy.

B. Thomas-Fermi approximation

Evaluation of the grand potential Eq. (1) for the non-

interacting uniform electron gas (UEG) of constant den-
sity n in a volume V (with uniform background for charge
neutrality; see discussion on this point in Ref. 22) gives
the UEG free energy,

FUEG
s (n,T) = ΩUEG

s (n)− µ

(

∂ΩUEG
s (n)

∂µ

)

T,V

= V

√
2

π2β5/2

[

− 2

3
I3/2(βµ) + βµI1/2(βµ)

]

. (6)

Here, β = (kBT)
−1 and Iα is the Fermi-Dirac integral23

Iα(η) :=

∫

∞

0

dx
xα

1 + exp(x− η)
, α > −1

Iα−1(η) =
1

α

d

dη
Iα(η) (7)

The chemical potential µ is determined from

n = − 1

V

∂Ω

∂µ

∣

∣

∣

T,V
=

√
2

π2β3/2
I1/2(βµ) . (8)

Invocation of the local density approximation gives
the Thomas-Fermi (TF)13,14 non-interacting free energy
density15 as

fTF
s (n(r),T) ≡

( 1

V
FUEG

s

)∣

∣

∣

n=n(r)

=

√
2

π2β5/2

[

− 2

3
I3/2(βµ) + βµI1/2(βµ)

]

. (9)

Here µ is the local TF chemical potential defined by n(r)
through Eq. (8), and not the chemical potential of the
non-uniform system. The LDA non-interacting free en-
ergy functional is then

FTF
s [n] =

∫

fTF
s (n(r),T)dr . (10)
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The corresponding entropy and kinetic energy densities
then follow from Eq. (9):

σTF
s (n,T) = −∂fTF

s (n,T)

∂T

∣

∣

∣

n

=

√
2

π2β5/2T

[5

3
I3/2(βµ)− βµI1/2(βµ)

]

, (11)

and

τTF
s (n,T) = fTF

s (n,T) + TσTF
s (n, T )

=

√
2

π2β5/2
I3/2(βµ) . (12)

In terms of the reduced temperature

t = T/TF =
2

β[3π2n(r)]2/3
, (13)

Eq. (8) gives

I1/2(βµ) =
nπ2β3/2

√
2

=
2

3t3/2
. (14)

Because I1/2(x) is strictly increasing with x, (βµ) is a
function of t, hence all functions of (βµ) are functions of
t. As a consequence, the entire term in parenthesis in Eq.
(9) also is a function of t. This insight, in combination
with the zero-temperature TF kinetic energy density,

τTF
0 (n) =

3

10
(3π2)2/3n5/3 =

2

5

√
2

π2β5/2t5/2
, (15)

allows Eq. (9) to be presented in the factorized form

fTF
s (n,T) = τTF

0 (n)κ(t) (16)

where

κ(t) :=
5

2
t5/2

[

− 2

3
I3/2(βµ) + βµI1/2(βµ)

]

. (17)

To facilitate computation, an analytical fit to κ(t) is pro-
vided in Appendix A.
The correspondingly factorized entropy and kinetic en-

ergy densities may be found from Eq. (16) as

σTF
s (n,T) = −∂fTF

s (n,T)

∂T

∣

∣

∣

n
≡ 1

T
τTF
0 (n)ζ(t) ,

ζ(t) = −t
∂κ(t)

∂t
(18)

and

τTF
s (n,T) = fTF

s (n,T) + TσTF
s (n,T) ≡ τTF

0 (n)ξ(t)

ξ(t) = κ(t)− t
∂κ(t)

∂t
. (19)

Fig. 1 shows the functions κ(t), ζ(t), ξ(t), and h̃(t). (The
last-named of these is discussed in the next Section.)

0.01 0.1 1 10
t

-2

-1

0

1

2

3

4

κ
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ζ
72h

FIG. 1: Behavior of functions κ, ζ, ξ, and h̃ ≡ 72h.

The zero-temperature limit for the entropic contribu-
tion TσTF

s and the kinetic energy τTF
s may be found from

Eqs. (11) and (12)

lim
T→0

TσTF
s (n,T) = 0 , (20)

and

lim
T→0

τTF
s = τTF

0 (n) . (21)

To evaluate these limits, the properties of Fermi-
Dirac integrals, limβ→∞ I1/2(βµ) = 2

3 (βµ)
3/2,

limβ→∞ I3/2(βµ) = 2
5 (βµ)

5/2, and the relation

n = (2µ)3/2/(3π2) obtained from Eq. (8) in the
limit β → ∞ were used. From Eqs. (20)-(21) (alterna-
tively, from Eqs. (18)-(19)) and from the non-negativity
of the entropy, Eq. (11), and the kinetic energy density,
it follows that

lim
T→0

ζ(t) = 0 ,

ζ(t) ≥ 0, ∀ t , (22)

and

lim
T→0

ξ(t) = 1 ,

ξ(t) ≥ 0, ∀ t . (23)

C. Gradient expansion

The zero-temperature gradient correction to the
Thomas-Fermi model was generalized to finite tempera-
tures by Perrot16, with higher order corrections given in
Ref. 23. In the limit T → 0, that generalization reduces
to the zero-temperature second-order gradient approxi-
mation (SGA)24. The finite-temperature gradient term
has the form of the von Weizsäcker25 (VW) kinetic en-
ergy density, tW(n,∇n) = |∇n|2/(8n), scaled by a func-
tion h(t) of the reduced temperature, namely

fSGA
s (n,∇n,T) = fTF

s (n,T) + 8h(t)tW(n,∇n) . (24)
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This follows by elimination of βµ in favor of t (recall Eq.
(14)) in Perrot’s expression16

h(t) = − 1

24

I1/2(βµ)I−3/2(βµ)

I2
−1/2(βµ)

. (25)

It is convenient to use the quantity h̃(t) = 72h(t), be-
cause limt→0 h̃(t) = 1, which allows us to write the full
von Weizsäcker term as h̃tW and the corresponding SGA
in the more familiar form (1/9)h̃tW . We adopt the an-
alytical fit of Eq. (25) given in Ref. 16 to a function of
reduced temperature t as shown in Appendix A.
For further analysis, it is convenient to introduce the

reduced density gradient familiar in zero-temperature
GGAs for exchange and KE, namely

s(n,∇n) ≡ |∇n|
(2kF )n

=
1

2(3π2)1/3
|∇n|
n4/3

, (26)

and rewrite Eq. (24) as

fSGA
s (n,∇n,T) = τTF

0 (n)κ(t) + τTF
0 (n)

5

27
s2h̃(t) , (27)

where the VW term is rewritten as tW = 5
3τ

TF
0 s2.

The kinetic energy and entropy contributions to the
free energy functional defined by Eq. (27) may be evalu-
ated as usual (see also Refs. 23,26). First,

σSGA
s (n,∇n,T) = −∂fSGA

s (n,∇n,T)

∂T

∣

∣

∣

n

=
1

T
τTF
0 (n)ζ(t)

(

1− 5

27
s2

t

ζ(t)

dh̃(t)

dt

)

. (28)

Then τSGA
s = fSGA

s +TσSGA
s gives

τSGA
s (n,∇n,T) = τTF

0 (n)ξ(t)×
(

1 +
5

27
s2

1

ξ(t)

[

h̃(t)− t
dh̃(t)

dt

])

, (29)

where we have taken into account the definition Eq. (13)
and simplified the derivative term in Eqs. (28)-(29) ac-
cording to T(∂h̃(t)/∂T)n = tdh̃(t)/dt.
In the zero-temperature limit, the entropic con-

tribution to the free energy of course vanishes,
limT→0(Tσ

SGA
s ) = 0, and the kinetic energy part

reduces to the zero-temperature SGA kinetic energy,
limT→0 τ

SGA
s = τTF

0 (n)(1 + 5
3s

2).

D. Finite-temperature generalized gradient

approximation

The underlying concept of GGAs in zero-temperature
XC and KE functionals is to take into account the phys-
ical content of higher-order terms in the gradient ex-
pansion and effects beyond the slowly varying density

approximation while avoiding difficulties associated with
use of a strict second-order expansion as a general func-
tional. For X and KE, this generalization is done by
multiplying the relevant LDA (zero-order term) energy
density by an enhancement factor which is a functional
of the reduced density gradient s, Eq. (26). Both the an-
alytical form and parameters of the enhancement factors
may be defined (or at least constrained) by imposition of
known exact conditions. We follow an analogous strategy
here for the finite-temperature non-interacting system.
The correction terms in Eqs. (27)-(29) are the first

terms of a general gradient expansion for the non-
interacting free energy and its components (again, see
Refs. 23,26). In the finite-temperature case, the structure
of Eqs. (28)-(29), suggests that we define corresponding
finite-temperature reduced density gradients as

sσ(n,∇n,T) = s(n,∇n)

√

tdh̃(t)/dt

ζ(t)
,

sτ (n,∇n,T) = s(n,∇n)

√

h̃(t)− tdh̃(t)/dt

ξ(t)
, (30)

for use in the entropy and kinetic energy respectively. It
is straightforward to show that in the zero-temperature
limit

lim
T→0

sτ (n,∇n,T) = s(n,∇n) . (31)

Figure 2 shows the ratios (sτ/s)
2 and (sσ/s)

2 as functions
of reduced temperature t. Both are smooth, non-negative
functions with some structure at intermediate t. Both
vanish at t >> 1. The ratio (sτ/s)

2 goes to a constant
at t << 1, namely limt→0(sτ/s)

2 = 1. Direct numerical
evaluation shows that (sσ/s)

2 ≈ 0.8 for t << 1.
With this information, we may define the finite-

temperature GGA free energy functional form as

F ftGGA
s [n,T] =

∫

τTF
0 (n)ξ(t)Fτ (sτ )dr .

−
∫

τTF
0 (n)ζ(t)Fσ(sσ)dr , (32)

where Fτ and Fσ are the non-interacting kinetic en-
ergy and entropic enhancement factors depending on
reduced density gradients sτ and sσ correspondingly.
The definitions in Eq. (32) are generalizations of the
second-order gradient expansion of the non-interacting
free energy components in Eqs. (28)-(29) in the form
of zeroth-order terms multiplied by corresponding en-
hancement factors. Notice that this definition automat-
ically ensures that the entropic and KE contributions
scale correctly, since TSs and Ts scale identically17,18.
Specifically, T ftGGA

s [nλ,T] = λ2T ftGGA
s [n,T/λ2] and

SftGGA
s [nλ,T] = SftGGA

s [n,T/λ2], with nλ(r) = λ3n(λr).
All of the scaling is in τTF

0 (n). All the other factors in



5

the integrands in Eq. (32) are dimensionless functions of
dimensionless variables.
The two RHS terms in Eq. (32) should be interpretable

as the kinetic energy (T ftGGA
s ) and entropic (TSftGGA

s )
contributions. To enforce this interpretation, we invoke
the thermodynamic relation

SftGGA
s = −∂F ftGGA

s

∂T

∣

∣

∣

N,V

= −∂T ftGGA
s

∂T

∣

∣

∣

N,V
+

∂(TSftGGA
s )

∂T

∣

∣

∣

N,V
, (33)

which can be rearranged as

∂T ftGGA
s

∂T

∣

∣

∣

N,V
= T

∂SftGGA
s

∂T

∣

∣

∣

N,V
. (34)

Interchange of integration and partial derivative evalua-
tion gives a relation between Fτ and Fσ ,

ξ′(t)Fτ (sτ ) + ξ(t)F ′

τ (sτ )
∂sτ
∂t

=

−1

t
ζ(t)Fσ(sσ) + ζ′(t)Fσ(sσ) + ζ(t)F ′

σ(sσ)
∂sσ
∂t

.(35)

Primes denote derivatives with respect to corresponding
arguments, i.e., with respect to t, sτ , or sσ. Whether
or not Eq. (35) is satisfied exactly by a pair of proposed
Fτ and Fσ enhancement factors, Eq. (33) always can
be used to obtain the entropic contribution, TSftGGA

s ,
corresponding to a specified ftGGA functional Eq. (32):

TSftGGA
s [n,T] = −T

∂F ftGGA
s [n,T]

∂T

∣

∣

∣

V

=

∫

τTF
0 (n)t

[

− ξ′(t)Fτ (sτ )− ξ(t)F ′

τ (sτ )
∂sτ
∂t

+ ζ′(t)Fσ(sσ) + ζ(t)F ′

σ(sσ)
∂sσ
∂t

]

dr . (36)

There is motivation to satisfy Eq. (35) since the scaling
factors ξ and ζ already constrain the terms of Eq. (32)
be the kinetic and entropic pieces, respectively, in both
the zero-temperature and Thomas-Fermi limits.
However, use of Eq. (35) to determine one of the en-

hancement factors when the other is given is not straight-
forward in general. The SGA functionals Eqs. (28) - (29),
which do satisfy Eq. (35), provide a clue to a simpler ap-
proximate route. Those functionals can be written in the
form of Eq. (32) with enhancement factors

F SGA
τ (sτ ) = (1 +

5

27
s2τ )

F SGA
σ (sσ) = (1− 5

27
s2σ) , (37)

Thus, the two SGA enhancement factors are related by

F SGA
σ (sσ) = 2− F SGA

τ (sσ) . (38)

0.001 0.01 0.1 1 10 100
t

0

0.5

1

1.5

(sτ/s)
2

(sσ/s)
2

FIG. 2: Functions (sτ/s)
2 and (sσ/s)

2.

Eq. (38) can be generalized in the usual spirit of GGAs
by requiring that the entropic contribution enhancement
factor associated with a chosen Fτ (sτ ), Eq. (32), is

Fσ(sσ) ≈ 2− Fτ (sσ) , (39)

In general, a pair of enhancement factors related in this
way will not satisfy Eq. (35) precisely. The main con-
sequence of such a failure is that the two terms in Eq.
(32) may not be interpretable strictly as kinetic and en-
tropic contributions. Instead, Eq. (36) gives the entropic
contribution, Eq. (32) gives the non-interacting free-
energy, and the kinetic energy functional is Ts[n,T] =
Fs[n,T]+TSs[n,T]. A complementary discussion to this
approach is given in Appendix B.
The requirement that the zero-temperature limit of

the functional F ftGGA
s [n, T ], Eq. (32), should reduce to

the zero-temperature GGA kinetic energy, in conjunction
with the factorized form of the integrand, leads to the
realization that the simplest approximation for a finite-
temperature GGA Fτ is to use a zero-temperature GGA
kinetic energy enhancement factor Ft form in Eq. (32),
i.e.,

Fτ (sτ ) ≈ Ft(sτ ) . (40)

By this argument, the finite-temperature analog of the
modified conjoint GGA for the kinetic energy introduced
in Refs. 11,12 is the two-parameter KST2 free energy
functional FKST2

s [n, T ] defined by Eq. (32) with the fol-
lowing enhancement factors

FKST2
τ (sτ ) = 1 +

C1s
2
τ

1 + a1s2τ

FKST2
σ (sσ) = 1− C1s

2
σ

1 + a1s2σ
, (41)

with C1 = 2.03087, a1 = 0.29424. These are the zero-
temperature parameters from Refs. 11,12.
The second enhancement factor, which is nominally en-

tropic, may take negative values, just as for the SGA en-
hancement factor. However, the relevant positivity con-
straint is on the entropy, not the entropy density. The
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FIG. 3: Left: LHS and RHS-LHS of Eq. (35) evaluated for
KST2 enhancement factors, Eq. (41), at s = 0.2 and 0.5.
Right: same as left panel, but evaluated for enhancement fac-
tors Eq. (41) with parameters defined by the Tran-Wesolowski
(TW) kinetic energy functional27.

distinction and challenge for functional design resembles
closely the debate over local versus global satisfaction of
the Lieb-Oxford bound in exchange functionals; see Ref.
6 and references therein. While we generally favor the
argument that universality of a functional compels local
enforcement of such constraints i.e., on the free energy
densities, here we have chosen to explore the simple form
Eq. (41) and confirm a posteriori that the total entropy
is positive. Numerical results are in Sec. IV.

To test the effects of non-satisfaction of Eq. (35), we
have evaluated both sides of that equation with the KST2
functionals and parametrization, Eq. (41). The left-hand
panel of Fig. 3 shows the values from the left-hand side
(LHS) and the difference between the right-hand side
(RHS) and LHS values (RHS-LHS) of Eq. (35) at both
s = 0.2 and s = 0.5. The right-hand panel of that fig-
ure shows the same quantities evaluated for enhancement
factors of the same form as Eq. (41) but with parame-
ters defined by the zero-temperature orbital-free kinetic
energy functional of Tran and Wesolowski (TW)27 (see
Section IV for parameter values). The difference (RHS-
LHS) is small for both functionals. Although that dif-
ference increases with increasing s, one may expect that
the second term in Eq. (32) will be close to the proper
entropic contribution Eq. (36) for this pair of functionals.
Note moreover, that despite the seemingly smaller error
of the TW parameterization, in fact KST2 does better
in actual calculations; again see Section IV. Eventually
the quality of an approximate functional is defined by
the quality of its prediction of the non-interacting free
energy, Fs.

We remark that, in all cases, the LHS and the RHS
of Eq. (35) are not continuous functions of t at t ≈ t0
(see Appendix A), the point at which the two fits for
t ≥ t0 and t ≤ t0 are joined. Clearly at least the sec-
ond derivative of the fits presented in Appendix A has
abrupt behavior at t0. Apparently this technical issue
traces to Perrot’s original fits16. So far it has not proved
problematic but may need to be addressed in the future.

Ref. 28 showed that the simple combination of the

VW and Thomas-Fermi functionals provides total ener-
gies and lattice parameters which are reasonably close
(at least for a few systems) to those obtained with
the mcGGA kinetic energy functional, though the latter
functional is better justified formally. Put into ftGGA
form, the VWTF kinetic energy has the enhancement
factors

FVWTF
τ (sτ ) = 1 +

5

3
s2τ

FVWTF
σ (sσ) = 1− 5

3
s2σ . (42)

Thus we have the corresponding free energy functional
FVWTF

s [n,T] defined by Eqs. (32) and (42). At T= 0
K, this is simply a rearrangement which exposes the TF
contribution as the choice of approximation for the so-
called Pauli term12, while at T > 0, the T-dependent
Thomas-Fermi contribution becomes the finite-T version.

III. IMPLEMENTATION

In Sec. I we remarked that OF-DFT in a plane-wave
basis (or on a numerical grid) requires a local pseudopo-
tential (LPP) (sometimes known as a regularized poten-
tial, depending on the analysis used for development).
Since it is desirable to exploit the OF-DFT optimization
tools in our modified version of the ground-state Pro-

fess code29,30, the issue is germane here.
Perhaps the simplest form of regularization is the

model potential proposed by Heine and Abarenkov31,32.
In real space, it is

vmod(r) =

{

−A, r < rc
−Z/r, r ≥ rc

(43)

where A is a constant, rc is the core radius, and Z is the
core charge. For use in a plane-wave code, it is convenient
to have a reciprocal space representation,

vmod(q) =
−4π

V q2
[(Z −Arc)cos(qrc)

+(A/q)sin(qrc)]f(q), (44)

where V is the unit cell volume. The factor f(q) =
exp[(−q/qc)

6] is a rounded step-function introduced to
suppress spurious oscillations in vmod(q) caused by the
Fourier transform of the discontinuity of the real-space
potential at the core radius. This smoothing also en-
sures rapid decay of vmod(q) at large wave-vectors (see
Ref. 31). In the work reported below, we chose qc as sug-
gested in that reference, namely, to equal the position of
the second zero of vmod(q).
For this initial study, we focus on Hydrogen. For the H

atom we chose rc = 0.25 Bohr in Eq. (43), with the pa-
rameter A determined by constraining a KS calculation
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FIG. 4: Model pseudopotential for hydrogen in real space as
defined by Eq. (43) and the smoothed version which results
from inverse Fourier-Bessel transform of vmod(q), Eq. (44).

with the local pseudopotential (LPP) Eq. (43) to repro-
duce the reference optimized simple-cubic Hydrogen (sc-
H) lattice constant a = 1.447 Å(see Table I). Those KS
calculations were done with Perdew-Zunger (PZ) LDA
exchange-correlation33 in the Abinit code34. KS refer-
ence calculations were performed with the non-local pro-
jector augmented wave (PAW) scheme as implemented
in Abinit using cutoff radius rc = 0.45 Bohr. Both the
Abinit PAW and local (model) pseudopotential calcula-
tions used an 8-atom unit cell and a 13×13×13 k-mesh.
For further reference, corresponding bare potential cal-
culations were done with Quantum-Espresso35 using
a 500 Ry energy cutoff and exactly the same unit cell
and k-mesh.

The optimized parameter values which result are A =
6.18 Hartree, qc = 29.97 Bohr−1. Figure 4 shows both
the original real-space and the back-transformed poten-
tial (after reciprocal-space smoothing) for Hydrogen.

Fig. 5 gives a comparison of pressures calculated from
the model potential (again with Abinit) and the bare
Coulomb potential (with Quantum-Espresso) for stan-
dard KS calculations on sc-H at two temperatures; 100K
and 100,000K, again with simple PZ LDA. Since we
are interested only in the effects of regularization, the
deficiencies of ground state LDA-XC as an implicitly
temperature-dependent functional are irrelevant. For
both electronic temperatures, the pressure from the local
(regularized) pseudopotential calculations is in excellent
agreement with results from the bare Coulomb nuclear-
electron potential calculations. The total-free energies
from these two calculations also are in near-perfect agree-
ment: the relative difference between the model potential
and the bare Coulomb results does not exceed 0.5% ex-
cept for a small range of material densities around ρH ≈ 6
g/cm3 for both temperatures, where the absolute value
of the total free-energy is close to zero as it crosses from
positive to negative values. The upper part of Table I
gives a detailed comparison of the equilibrium KS pre-
dictions from these various potentials.

5 10 15
ρ

H 
(g/cm

3
)

10

100

1000

10000

P 
(G

Pa
)

KS (bare Coulomb) T=100 K
KS (bare Coulomb) T=100 000 K
KS (LPP) T=100 K
KS (LPP) T=100 000 K

FIG. 5: Test of model potential Eq. (44) for sc-H by com-
parison between Kohn-Sham results obtained with the bare
Coulomb nuclear-electron interaction and those obtained with
Eq. (44) (both with PZ LDA XC functional) for T= 100K and
100,000 K.

TABLE I: Upper panel: Kohn-Sham equilibrium lattice con-
stant a (Å) and bulk modulus B (GPa) for sc-H calcu-
lated with Quantum-Espresso plane-wave code (PW) and
bare Coulomb potential and with Abinit PW projector aug-
mented wave (PAW) and model potentials (real and reciprocal
space). Lower panel: Comparison of OF-DFT calculations
using ftGGA(KST2), ftGGA(TW), ft(VWTF), and ftSGA
non-interacting free-energy functionals in combination with
zero-temperature PZ LDA exchange-correlation33 with local
pseudopotentials vmod (see text). All calculations are done at
electronic temperature T=100 K (ionic temperature Tion = 0
K). See text regarding blank entries.

Method PP a B

Kohn-Sham
PW (QE) bare Coul. 1.446 108.4
PW (Abinit) PAW 1.447 108.3

Kohn-Sham
PW (Abinit) modela 1.447 108.1

PW (Abinit) model reg.b 1.446 108.3

OFDFT
ftGGA(KST2) modelc 1.392 146
ft(VWTF) modelc 1.394 146
ftGGA(TW) modelc – –
ftSGA modelc – –
ftTF modelc – –

aReal space potential defined by Eq. (43).
bReal space potential defined by inverse Fourier-Bessel transform

of Eq. (44).
cReciprocal space potential defined by Eq. (44).

IV. OF-DFT RESULTS

All our OF-DFT calculations were done with a locally
modified version of the Profess code29,30. For simplic-
ity and to provide a uniform, clear-cut comparison, all
the non-interacting free energy functionals we studied
were used in conjunction with the ground state PZ LDA



8

exchange-correlation functional33.

We implemented the new ftGGA functionals, Eq. (32),
with the enhancement factors defined in Eq. (41) FKST2

τ ,
FKST2
σ (ftGGA(KST2)). For comparison we also imple-

mented the ft(VWTF) functional, FVWTF
τ , FVWTF

σ , from
Eq. (42), and the ftGGA version of the zero-temperature
GGA kinetic energy functional parameterized by Tran
and Wesolowski (TW)27. The ftGGA(TW) enhancement
factors have the form of Eq. (41) but with C1 = 0.2319
and a1 = 0.2748. (In fairness to those authors, the
TW parameters were not intended for this purpose.)
For reference, we also implemented the familiar finite-
temperature TF and ftSGA free energy functionals in
the form of Eq. (32), where Fτ = Fσ = 1 for ftTF
and Fτ , Fσ are defined through Eq. (37) for ftSGA. To
our knowledge, the only non-interacting free-energy func-
tionals proposed previously are these last two, ftTF and
ftSGA.

Figure 6 compares Kohn-Sham and OF-DFT results
for total free energies per atom as a function of mate-
rial density for sc-H at electronic temperature T=100 K.
Both calculations were done with the same regularized
local potential, Eq. (44). The Profess OF-DFT cal-
culation used a 64-atom supercell. The KS calculations
with local pseudopotential used an 8-atom cell and a 13
× 13 × 13 k-mesh. Two functionals, ft(VWTF) and
ftGGA(KST2), demonstrate reasonable agreement with
the KS reference data. As is evident from that figure,
the widely used ftSGA and ftTF functionals, as well as
the ftTW functional, do not predict energy minima, at
least in the range of densities treated. The lower part of
Table I shows OF-DFT results for the equilibrium lat-
tice constant and bulk moduli obtained by fitting the
calculated total energies per cell to the stabilized jellium
model equation of state (SJEOS)36. Two functionals,
ftGGA(KST2) and ft(VWTF), predict quite similar re-
sults: the lattice constant is underestimated by three per-
cent, but the bulk modulus is overestimated by about
40%. These results are encouraging as compared to the
other three orbital-free functionals.

The left-hand panels of Figures 7-8 compare Kohn-
Sham and OF-DFT total free energies per atom as a func-
tion of electronic temperature for two material densities,
ρH = 2.0 and 4.0 g/cm3. The right-hand panels show
relative differences of the OF-DFT values with respect
to the Kohn-Sham reference results. At lower temper-
atures two functionals, ft(VWTF) and ftGGA(KST2),
overestimate the total free energy by about 10% and 15%
for ρH = 2.0 and 4.0 g/cm3 respectively. Two function-
als, ftSGA and ftGGA(TW), underestimate the free en-
ergy with relative error between 20% and 30% for those
two densities. The error of the ftTF functional is much
higher, 40% and 65% respectively. It is interesting that
the relative error of all functionals remains nearly con-
stant up to T=100,000K, after which that error decreases
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FIG. 6: Total free energy per atom as a function of material
density for sc-H at electronic temperature T=100 K (ionic
temperature Tion = 0 K) for LPP KS and OF-DFT calcula-
tions (both with PZ LDA XC functional). The LPP is Eq.
(44).
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FIG. 7: Left: total free-energy per atom as a function of
electronic temperature for LPP KS and OF-DFT calcula-
tions (both with PZ LDA XC functional). Right: relative
free energy differences with respect to KS values, |(Fs −
FKS

s )/FKS
s |×100% for the ft(VWTF), ftGGA(KST2), ftSGA,

ftGGA(TW), and ftTF free energy functionals. Material den-
sity ρH = 2.0 g/cm3. The LPP is Eq. (44).

with increasing T. At T=1,000,000K, the relative error of
the ftTF functional is about 0.4% and 1% for the two den-
sities respectively, i.e., the high-temperature Thomas-
Fermi limit is reached at this point. Also we note that
for T> 200, 000K ( ρH = 2.0 g/cm3) and T> 400, 000K
(ρH = 4.0 g/cm3), the relative errors of the ftSGA and
ftGGA(TW) functionals become smaller than the errors
of the ft(VWTF) and ftGGA(KST2). This behavior may
be understood by the fact that for those temperatures the
systemmay be considered as a weakly inhomogeneous gas
before reaching the high-T Thomas-Fermi limit. In such
circumstances, the second-order gradient approximation
should be appropriate.
Figures 9 - 11 compare KS and OF-DFT results

for pressure versus material density in sc-H at elec-
tronic temperatures T=100 K, 50,000 K, and 100,000
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FIG. 8: As in Fig. 7 for ρH = 4.0 g/cm3.
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FIG. 9: Pressure as a function of material density (low to
intermediate at left, high at right) for sc-H at electronic tem-
perature T=100 K for LPP KS and OF-DFT calculations
(both with PZ LDA xc functional). The LPP is Eq. (44).
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FIG. 10: As in Fig. 9 for electronic temperature T=50,000K.
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FIG. 11: As in Fig. 9 for electronic temperature T=100,000K.

K respectively. At low temperature, the functionals
clearly fall into two groups at the lower densities. The
ftGGA(KST2) and ft(VWTF) functionals give slightly
low pressures compared to the KS result, while the
pure ftTF, ftSGA, and ftGGA(TW) functionals yield
distinctly higher pressures. For the higher densities,
the pressures from all the functionals become closer (as
they should, since ftTF is the eventual limit). Simi-
larly, the pressures from all the functionals are closer
at T=50,000K and 100,000K, but two functionals from
the first group (ftGGA(KST2) and ft(VWTF)) yield vis-
ibly smaller errors compared to the second group for
all density ranges and for all electronic temperatures,
with one exception, ftSGA. It separates itself from the
former second group at T=100,000K and gets closer to
the KS behavior in a small range of densities (approxi-
mately 0.6− 1.2 g/cm3) than at lower temperatures. At
T=50,000K and for low densities, the relative error of
the first group of functionals (ftSGA, ftGGA(TW) and
ftTF) is between 30% and 50%, while the relative er-
ror from the ftGGA(KST2) and ft(VWTF) functionals
is about 30%. With increasing temperature, for low den-
sities all the functionals give pressures closer to the KS
results. At T=100,000K, the errors for ftGGA(KST2)
and ftSGA are about 7%. At high density for all temper-
atures, the relative error of the ftGGA(KST2) functional
is less than 1%, while the error of functionals from the
first group is between 1% and 2%.
Finally, we return to the issue of positivity of the en-

tropy for the KST2 functional. Eq. (35) may be rear-
ranged to the form

T∆Ss :=

∫

[

− ξ′(t)Fτ (sτ )− ξ(t)F ′

τ (sτ )
∂sτ
∂t

+ζ′(t)Fσ(sσ) + ζ(t)F ′

σ(sσ)
∂sσ
∂t

−1

t
ζ(t)Fσ(sσ)

]

tτTF
0 (n)dr3 . (45)
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TABLE II: Non-interacting entropic component of the free-energy functional, TSs, negative contribution, TS−

s , and the differ-
ence between Eq. (36) and the second term of Eq. (32) for the ftGGA functionals for 1-atom sc-H at density ρH = 0.15 g/cm3

and ionic temperature Tion = 0K. All in eV.

T(K) ft(VWTF) ftGGA(KST2) ftSGA ftGGA(TW)
TSs TS−

s TSs TS−

s T∆Ss TSs TS−

s TSs TS−

s T∆Ss

5 000 0.10 0.0 0.10 0.0 0.0 0.10 0.0 0.10 -0.01 -0.01
10 000 0.40 0.0 0.38 0.0 -0.01 0.37 0.0 0.38 -0.02 -0.03
20 000 1.47 0.0 1.48 -0.01 -0.02 1.37 0.0 1.41 -0.07 -0.09
30 000 3.30 0.0 3.32 -0.01 -0.03 2.91 0.0 3.00 -0.12 -0.15
40 000 5.78 0.0 5.85 0.0 -0.02 4.88 0.0 4.98 -0.17 -0.21
50 000 8.69 0.0 8.78 0.0 -0.01 7.23 0.0 7.35 -0.19 -0.25

100 000 26.36 0.0 26.42 0.0 0.0 23.00 0.0 23.1 -0.3 -0.4
250 000 95.11 0.0 95.14 0.0 0.0 93.05 0.0 91.1 -0.3 -0.5
300 000 121.15 0.0 121.18 0.0 0.0 119.69 0.0 117.4 0.0 -0.4
400 000 176.33 0.0 176.36 0.0 0.0 175.40 0.0 174.7 0.0 -0.1

1 000 000 559.03 0.0 559.05 0.0 0.0 558.77 0.0 558.8 0.0 -0.0

By comparison with Eqs. (36) and (32), we recognize im-
mediately that Eq. (45) gives the difference between the
GGA entropy defined in Eq. (36) and the entropic con-
tribution from the approximate functional given by the
second term in Eq. (32). If Eq. (35) is satisfied exactly,
then the bracket in Eq. (45) is zero, hence T∆Ss = 0.
Thus we have two ways of assessing the proper behav-
ior of a proposed entropy functional. Table II shows
that, at least for the sc-H system, the KST2 GGA en-
hancement factor defined by Eqs. (41) gives a properly
positive entropy. There is little or no contamination by
negative contributions relative to the total TSs value.
For material densities at least as low as 0.5 g/cm3 and
higher, the negative contribution to the entropy is zero.
Moreover, the deviation from satisfaction of Eq. (35) is
small compared to the entropy, that is, |T∆Ss|/TSs ≈ 0.
This is not true for a ftGGA based on a different zero-
temperature ofKE functional, as illustrated by the results
for ftGGA(TW) in that table. Nevertheless, the behavior
of T∆Ss with increasing temperature is similar for both
functionals. Also, the SGA entropy is positive, not an
entirely expected result in view of the fact that the SGA
enhancement factor F SGA

σ (sσ) can go negative, recall Eq.
(37).

V. SUMMARY AND CONCLUSIONS

We have presented a new analytical route for the devel-
opment of finite-temperature analogs of the GGA for the
non-interacting free-energy functional, as well as a sim-
plified version of it. Analysis of the finite-temperature
second-order gradient expansion of the free energy leads
to the definition of temperature-dependent reduced den-
sity gradients for both the kinetic and entropic contribu-
tions to the free energy. The dependence of these vari-
ables upon reduced temperature t is smooth and they

have proper t << 1 and t >> 1 behavior. We com-
ment that, in principle one may try to use the gradient
expansion for the total non-interacting free energy Eq.
(27) to define a corresponding temperature-dependent re-
duced density gradient sf , then introduce a ftGGA with
a single enhancement factor Ff(sf). But it becomes clear
almost immediately that the variable s2f is not positive
definite. Moreover, it has a pole because the function
κ(t), which appears in the denominator of the variable
sf , has a zero (see Fig. 1). This analysis leads to the
conclusion that a finite-T GGA should be constructed
with the kinetic and entropic contributions treated sep-
arately (as we have done), not combined in a functional
with a single enhancement factor.

Such a two-part ftGGA functional is defined com-
pletely by a pair of enhancement factors, Fτ and Fσ.
From standard thermodynamics, it follows that these en-
hancement factors are not independent. We have given
the formal relationship in Eq. (35) but solution of that
equation relating Fτ and Fσ is formidable. As an initial
step therefore, we have proposed a simpler approximate
relationship between the two enhancement factors and
showed that it provides reasonably satisfactory results.
In the T → 0 limit, all ftGGA free energy functionals
should reduce to known zero-temperature kinetic energy
functionals, a fact we have used to present a new, rather
simple ftGGA.

Numerical implementation of the OF-DFT calcula-
tions in a plane-wave basis requires a local pseudopo-
tential which we have presented. Comparison of finite
temperature OF-DFT and KS calculations on sc-H over
a wide range of material densities for electronic temper-
atures up to 100,000K leads to the conclusions that two
ftGGA functionals, namely KST2 and VWTF, provide
overall best results and that the relative error in the high
density regime is small for all functionals.
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Appendix A

The temperature scaling function κ introduced in Eq.
(16) may be written by use of Eqs. (9) and (15) as

κ(βµ) =
5

2

(

3

2
I1/2(βµ)

)

−5/3

×
[

− 2

3
I3/2(βµ) + βµI1/2(βµ)

]

. (A1)

By use of Eq. (14), we may eliminate (βµ) in favor of t
in Eq. (A1). We have done that numerically. With that
result, we can present κ(t) analytically as an adapted
form of Perrot’s free energy fit16. See below. The func-
tions ζ(t) and ξ(t) may be calculated using relations with
κ(t) given in Eqs. (18)-(19). In addition, we provide an
adapted analytical h̃(t). Both functions are split into
regions t ≤ t0 and t ≥ t0, where t0 = 4(2/3π2)1/3/3,
to take account of the different asymptotic forms of the
Fermi integrals for (βµ) << 0 and (βµ) >> 0.

For t ≥ t0 = 0.543010717965

κ(t) = −2.5t ln(t)− 2.141088549t+ 0.2210798602t−0.5 + 0.7916274395× 10−3t−2

−0.4351943569× 10−2t−3.5 + 0.4188256879× 10−2t−5 − 0.2144912720× 10−2t−6.5

+0.5590314373× 10−3t−8 − 0.5824689694× 10−4t−9.5 (A2)

h̃(t) = 3− 0.7996705242t−1.5+ 0.2604164189t−3− 0.1108908431t−4.5+ 0.6875811936× 10−1t−6

−0.3515486636× 10−1t−7.5 + 0.1002514804× 10−1t−9 − 0.1153263119× 10−2t−10.5 (A3)

For t ≤ t0 = 0.543010717965

κ(t) = 1− 4.112335167t2 + 1.995732255t4 + 14.83844536t6− 178.4789624t8

+992.5850212t10− 3126.965212t12 + 5296.225924t14 − 3742.224547t16 (A4)

h̃(t) = 1 + 3.210141829t2 + 58.30028308t4 − 887.5691412t6+ 6055.757436t8

−22429.59828t10+ 43277.02562t12 − 34029.06962t14 (A5)

Appendix B

We outline a route to simplified GGAs which is a po-
tential alternative to the one given in the discussion of
Equations (37) - (39). Equations (37) obviously combine
to give

F SGA
σ (sσ) = 2 +

5

27
(s2τ − s2σ)− F SGA

τ (sτ ) (B1)

As suggested in the discussion in conjunction with Fig.
2, the ratio

ν(t) := (sσ(t)/sτ (t))
2 (B2)

is a smooth, bounded (0 ≤ ν(t) <∼ 2.2) function. See Fig.
12. With this function, Eq. (B1) becomes

F SGA
σ (sσ) = 2 +

5

27
s2τ (1− ν(t)) − F SGA

τ (sτ ) (B3)

Utilization to form a GGA is via

FGGA
σ (sσ) = 2 +

5

27
s2τ (1− νGGA(t))− FGGA

τ (sτ ) (B4)

where the superscript “GGA” on ν indicates use of some
judiciously selected approximate representation of ν(t).
This choice can be constrained by insertion of the form
from Eq. (B4) in Eq. (35). We have this approach under
study.
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