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A number of ferromagnetic superconductors have been recently discovered which are believed to
be in the so-called “equal spin pairing” (ESP) state. In the equal spin pairing state the Cooper
pairs condense forming order parameters ∆↑↑,∆↓↓ which are decoupled in the spin-sector. We
show that these three-dimensional systems should generically support topologically protected surface
Majorana arcs and bulk Weyl fermions as gapless excitations. Similar protected low-energy exotic
quasiparticles should also appear in the recently discovered non-centrosymmteric superconductors
in the presence of a Zeeman splitting. The protected surface arcs can be probed by angle-resolved
photoemission (ARPES) as well as fourier transform scanning tunneling spectroscopty (FT-STS)
experiments.

PACS numbers: 74.20.Rp, 03.65.Vf, 71.10.Pm

I. INTRODUCTION

Ferromagnetic superconductors display a remarkable
coexistence of the mutually exclusive order parameters of
ferromagnetism and superconductivity1,2. In the recently
discovered Uranium-based Ising ferromagnetic supercon-
ductors UGe2

3, URhGe4, and UCoGe5, it is believed
that superconductivity appears in the spin-triplet p-wave
equal-spin-pairing channel6. In this channel the super-
conducting order parameters ∆↑↑ and ∆↓↓ are decoupled
in the spin space. In ferromagnetic superconductors typ-
ically the ferromagnetic transition temperature T ∗ far
exceeds the superconducting transition temperature Tc.
In this paper we show that in 3D the superconductivity in
these materials supports protected chiral Dirac or Weyl
nodes in the bulk and topologically robust open Majo-
rana fermion arcs on the surface. Similar quasiparticle
spectrum, but without the Majorana properties, have
been recently predicted in some non-superconducting
systems7–9. They have also been predicted to occur in su-
perfluid He3-A10,11 and the recently discovered systems
known as non-centrosymmetric superconductors12–14 in
the presence of time reversal (TR) invariance15. As we
show below, the ferromagnetic superconductor systems
are another candidate providing one of the simplest plat-
forms for the realization and detection of 3D gapless
topological superconductivity (TS) with protected sur-
face Majorana quasiparticles. Such modes on the surface
should be accessible to surface sensitive probes such as
Fourier transform scanning tunneling spectroscopy (FT-
STS)16–18.

The Weyl nodes in the ferromagnetic superconductors
are characterized by an energy dispersion linearly pro-
portional to momentum and come with a specific hand-
edness or chirality. There are an even number of such
nodes with each pair consisting of nodes with opposite
chiralities. Such chiral Dirac, or Weyl, nodes are topo-
logically protected in 3D by an invariant19 which takes
the values ±1, and hence can only be removed when a

pair of such nodes with opposite signs of the invariant col-
lide in the momentum space. From the bulk-boundary
correspondence such topologically protected gapless bulk
spectrum leads to open Majorana fermion arcs on the
surface which should be detectable in surface tunneling
experiments.

Recently, there has been a lot of excitement about 2D
and 1D TS systems supporting Majorana fermion quasi-

particles defined by hermitian operators γ†
0 = γ0

20. The
canonical example of these systems is the 2D spin-less
px + ipy superconductor21 which is gapped in the bulk
and has a single zero-energy Majorana fermion mode lo-
calized at order parameter defects such as vortices. Addi-
tionally, this system has gapless chiral Majorana fermion

modes (defined by operators γ
†
k = γ−k) on the sam-

ple boundary. The robustness of such non-trivial topo-
logical properties of a 2D spin-less px + ipy supercon-
ductor can be understood in terms of a Z2 topologi-
cal invariant which is the parity of the Chern number
of the corresponding 2D Bogoliubov-de Gennes (BdG)
Hamiltonian22,23. Practical realizations of these exotic
properties have recently been proposed in strong topolog-
ical insulators (TI)24 and, remarkably, even in ordinary
semiconductors with spin-orbit coupling and a suitably
directed Zeeman splitting25–27.

In this paper we extend the concepts of time rever-
sal breaking TS states to 3D solid state materials and
investigate possible experimentally accessible condensed
matter systems where such physics can be realized. We
find that ferromagnetic superconductor systems are ideal
candidates in 3D where very similar physics is realized
even in the absence of a spin-orbit coupling and an ex-

ternal Zeeman splitting. Interestingly, we find that in
ferromagnetic superconductors the analogous states are
no-longer gapped in the bulk, but have gapless points in
the momentum space with a Weyl spectrum of the BdG
quasiparticles. Even more interestingly, the existence of
the bulk Weyl nodes directly corresponds to the existence
of open gapless Majorana fermion arcs on some suitable
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surfaces of the 3D system. The open surface Majorana
fermion arcs offer the tantalizing possibility of detecting
gapless Majorana excitations using the available surface
sensitive probes such as ARPES and STM tunneling ex-
periments.

II. TOPOLOGICAL PHASES IN

FERROMAGNETIC SUPERCONDUCTORS

Ferromagnetic superconductors are characterized by
a spin-triplet pairing potential which separates in the
spin-sector (i.e., ∆↑↑ and ∆↓↓ are the relevant order
parameters). Moreover, because of the existence of a
strong internal Zeeman splitting (owing to ferromag-
netism) enough to suppress spin-singlet pairing, the su-
perconducting order has been proposed to be28 the so-
called non-unitary p-wave type6. We will take below the
relevant representative order parameter as

∆σσ′ (k) = δσσ′∆σ(kz)
(kx + iky)

kF
, (1)

with ∆↑ 6= ∆↓, which is the order parameter of the A2

phase of He36. This form of the dependence on kx, ky
implies that ∆σ must be an even function of kz because
overall a spin-triplet superconducting order parameter
must be odd in momentum space. The general results in
this paper (i.e., the predictions of the bulk Weyl modes
and surface Majorana arcs) will follow simply from the
equal spin pairing structure of the superconductivity and
that the order parameter is an even function in momen-
tum space. The orbital form of the order parameter,
Eq. (1), will be used at the end for numerical calcula-
tions. In practice a ferromagnetic superconductor may
break into several domains in which the magnetization
may point into different directions. Our theoretical cal-
culations in this paper will apply within a single domain.
The proposed experimental signatures of the surface Ma-
jorana arcs are in terms of the scanning tunneling mi-
croscopy experiments which, because of the atomic scale
resolution, can in principle access the system within a
single domain.
The mean-field Hamiltonian describing an equal spin

pairing state for a p-wave superconductor is written as

HBCS =
∑

σ

∫

d2k(
k2x + k2y + k2z

2m∗
− εF,σ)f

†
σkfσk

+ [∆σ(k)f
†
σkf

†
σ,−k + h.c] (2)

where σ =↑, ↓ labels the spin index of the electron opera-
tors. Here we have assumed that the pairing potential is
of the equal spin pairing form i.e. ∆σσ′ (k) = δσσ′∆σ(k)
and the pairing potential is odd in momentum space so
that ∆σ(k) = −∆σ(−k). The magnetization of the ferro-
magnetic superconductor is accounted for by the differ-
ence in the Fermi energies (εF,↑ − εF,↓). Defining the

Nambu spinor Ψ(k) = (f †
↑(k), f

†
↓ (k), f↑(−k), f↓(−k)),

the BdG Hamiltonian for the ferromagnetic supercon-
ductor is written as

Hb(kx, ky, kz) = (
k2x + k2y + k2z

2m∗
− εF,av −MN(0)σz)τz

+ [∆(k)τ+ + h.c] (3)

where M =
εF,↑−εF,↓

2N(0) is proportional to the magnetiza-

tion, N(0) is the density of states at the fermi level, and

εF,av =
(εF,↑+εF,↓)

2 is the average fermi energy of the two
spin components. The Nambu spinor Ψ(k) is a four-
component spinor that can be thought of as a vector in
the tensor product space of a two-component spin-degree
of freedom consisting of the labels σz =↑, ↓ in the spinor
and a particle-hole degree of freedom consisting of the
upper pair of components and lower pair of components.
The Pauli matrices τx,y,z in Eq. 3 act on the particle-
hole degree of freedom while σz acts on the spin degree
of freedom. Also τ± = τx± iτy. Here ∆(k) is the pairing
potential matrix with matrix-elements δσσ′∆σ(k).
The properties of the 3D phase described by Eq. 3

can be understood by dimensional reduction in momen-
tum space to classes of 2D topological phases. The idea
of dimensional reduction is to consider the Hamiltonian
Hb(kx, ky, kz) for the translationally invariant 3D bulk
system as a set of 2D systems i.e.,

H
(2D)
kz

(kx, ky) = Hb(kx, ky, kz) (4)

where H
(2D)
kz

(kx, ky) are effective 2D Hamiltonians
parametrized by kz . The topological properties of such
2D Hamiltonians, which break the time reversal symme-
try, are characterized by the Chern number associated
with the occupied states29. The Chern number of a 2D
topological Hamiltonian counts the number of chiral edge
states at a given kz . The edge states of the 2D system can
be understood as surface states of the 3D system for sur-
faces which are parallel to the z-axis. For such surface
states, the wave-vector along z, kz is a good quantum
number and the dispersion of the surface states can be
obtained from the dispersion of the edge states.

III. TOPOLOGICAL INVARIANTS

The 3D BdG Hamiltonian Hb of the ferromagnetic
superconductor systems has a particle-hole symmetry
Λ = iτyK, which anti-commutes with Hb. Here K is
the complex conjugation operator. To make use of this
symmetry, we will assume from here onwards that Hb is

an even function of kz so that H
(2D)
kz

is also particle-hole
symmetric. In this case, one can use the so-called Pfaffian

topological invariant, sgn(Pf(iτyH
(2D)
kz

(kx = ky = 0)))23

which determines the parity of the Chern number. The
Chern number is the integer topological invariant of a 2D
quadratic Hamiltonian which gives the number of chi-
ral edge states (equal to the value of the invariant)29.
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For BdG Hamiltonians the chiral edge states are Majo-

rana edge states (i.e., the satisfy γ
†
k = γ−k)

21. By parity
of the Chern number we mean if the Chern number is
even (even parity) or odd (odd parity). The Pfaffian
of the anti-symmetrized BdG Hamiltonian, in 2D, is re-

lated to the Chern number by Pf(iτyH
(2D)
kz

(kx = ky =

0)) = exp(iπC1) (with C1 the Chern number)23. Thus,

the Pfaffian topological invariant sgn(Pf(iτyH
(2D)
kz

(kx =

ky = 0))) gives the parity of C1; it is negative when C1 is
odd, positive when C1 is even. As a function of kz when
the Pfaffian invariant changes sign it indicates a jump in
the integer invariant C1. A jump in the value of C1 can
only happen if the spectral gap closes at the correspond-
ing value of kz (with no closing of the spectral gap the
2D systems parametrized by kz, see Eq. (4), must have
the same values for C1 since it can only be an integer
and thus must be the same for 2D systems which can be
adiabatically connected to each other).

As mentioned above the Pfaffian invariant is non-
trivial (i.e, is negative), the Chern parity is odd, oth-
erwise the latter is even23. Since the pairing potentials
vanish at (kx = ky = 0, kz), the Pfaffian topological in-
variant is found to be

sgn(Pf(iτyH
(2D)
kz

(kx, ky = 0))) = sgn(εF,↑−k2z)sgn(εF,↓−k2z).

(5)
The above topological invariant is non-trivial only in the
restricted range of values of kz which satisfy:

kz,c,↓ =
√

2m∗εF,↓ < |kz| < kz,c,↑ =
√

2m∗εF,↑. (6)

For values of kz outside this range, the system has even
Chern parity.

IV. BULK WEYL FERMIONS

The family of topological superconductors described

by the Hamiltonian H
(2D)
kz

undergoes a quantum phase
transition from the topological to the non-topological
phase when the Chern parity changes at the values of
kz where the conditions in Eq. 6 are saturated. Such
topological quantum phase transitions are accompanied
by a closing of the topological gap at kx = ky = 0.
The set of energy eigenvalues of the 3D Hamiltonian
Hb(kx, ky, kz) in Eq. 3 is a union of the energy eigen-
values of the entire family of 2D topological supercon-

ductors described by the Hamiltonians H
(2D)
kz

. Therefore

the Hamiltonian Hb(kx, ky, kz) must have gapless points
at Kσ = (kx = 0, ky = 0, kz = ±kz,c,σ), with a two-
fold degeneracy of eigenstates, |τz = ±1, σz = σ〉, where
σ =↑, ↓. The dispersion of the pair of degenerate states (
|τz = ±1, σz = σ〉) around the degeneracy points K can
be obtained by expanding the Hamiltonian in Eq. 3 as
k = K + δk to linear order in δk. The resulting Hamil-
tonian then describes a spectrum resembling a three-

dimensional Dirac cone,

Hb(Kσ + δk) = δk ·∇∆R,σ(Kσ)τx + δk ·∇∆I,σ(Kσ)τy

+ δkz
2kz,c,σ
m∗

τz + o(δk2), (7)

where ∆R,I,σ(Kσ) are the real and imaginary parts of
∆σ(Kσ) in Eq. 2. Such Dirac cone spectra in 3D are
protected (by ‘protected’ we mean that the spectrum
remains gapless) because any perturbation of the bulk
Hamiltonian Hb(k) which does not couple two Dirac
cones (which are separated in the momentum space by a
finite extent in kz) can only shift the position of the Dirac
points and, in particular, cannot create a gap in the spec-
trum. A perturbation to Eq. 3 can only remove Dirac
cones from the spectrum by merging them in pairs19.
This kind of protection of Dirac cones in D = 3 can be
further represented by associating them with a topologi-
cal invariant19 which, for brevity, we do not discuss here.
Bulk 3D semi-metals with such Dirac-like point Fermi
surfaces are referred to as Weyl semimetals. Thus Hb in
Eq. 3 represents a nodal superconductor with four iso-
lated Dirac cones which we call a Weyl superconductor.

V. SURFACE MAJORANA ARCS

The 2D topological superconductor Hamiltonians

H
(2D)
kz

(kx, ky), which are parameterized by kz , have an
odd Chern number in the range Eq. 6 and are there-
fore characterized by chiral Majorana edge states that
are confined to the edge of the system. A surface along
the x− z plane for the original 3D Hamiltonian Eq. 3 is
translationally invariant along the z and x directions and
therefore has well-defined kz and kx momenta. Therefore
the surface state with a fixed kz and kx of the 3D Hamil-
tonian Eq. 3 is identical to the edge state with momentum
kx of the 2D Hamiltonian in Eq. 4 with kz as a parameter
value. The energy of such a chiral Majorana mode van-
ishes for kx = 0 at any value of kz in the range in Eq. 6
and therefore appears on the surface ARPES spectrum
as a Majorana arc.
The typical extent in kz of such a non-degenerate Ma-

jorana arc is limited to the range given in Eq. 6. Below,
as mentioned earlier, we take the order parameter of the
ferromagnetic superconductor systems to be of the non-
unitary equal spin pairing type with an orbital structure

given by ∆σσ′(k) = δσσ′∆σ
(kx+iky)

kF
with ∆↑ 6= ∆↓. In

this case, the pairing potential ∆σσ′ (k) is associated with
a Chern number 2, therefore one would have a pair of chi-
ral surface modes propagating along the surface in the
range |kz | < kz,↓. This could in general appear as a pair
of fermi arcs of Bogolibov quasiparticles in the ARPES or
STM spectrum. Since the BdG Hamiltonian now decou-
ples into a spin-↑ and spin-↓ sector, the 2D Hamiltonian

H
(2D)
kz,σ

(kx, ky) for each spin σ can be thought of as inde-
pendent odd Chern number topological superconductors
which have a Majorana chiral edge mode in the ranges
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|kz | < kz,c,↑ for spin-up electrons and |kz | < kz,c,↓ for
spin-down electrons. Therefore we find that the surface
arcs exist over a much larger range in kz i.e between
−kz,c,↑ and kz,c,↑.
These chiral edge modes exist for kz satisfying |kz,σ| <

kz,c,σ and have a dispersion of the form εkz
(kx) =

v(kz)kx, where σ =↑, ↓ is the Sz spin-sector along which
the modes are polarized. Therefore the dispersion of the
corresponding surface mode is given by

ǫ(kx, kz, σ) = v(kz , σ)kx ∼
∆σ(kz)

√

2m∗(εF,σ − k2z)
kx (8)

for |kz| < kz,c,σ and |ǫ(kx, kz, σ)| > ǫg where ǫg is a finite
positive gap for |kz | > kz,c,σ. The dispersion of the sur-
face modes given in Eq. 8 has the special property that
the energy vanishes on a pair of lines kx = 0 which ter-
minates at kz = ±kz,c,σ. These lines are referred to as
Majorana arcs. We refer to these lines in energy as Majo-
rana arcs because the operators γn,kx,kz

associated with
these zero-energy states satisfy the Majorana constraint

γ
†
n,kx=0,kz

= γn,−kx,−kz
. (9)

As mentioned before the Majorana character of the
surface arcs is only protected in the restricted range in
Eq. 6. In the rest of the kz range, the dispersion arcs
are spin-degenerate Majorana fermions corresponding to
a spin-label in Eq. 9 of n =↑, ↓, which in principle can be
split into more conventional Dirac fermions. In particular

an in-plane Zeeman splitting along x, which we call V
(Z)
x ,

can lead to a mixing of the σ =↑, ↓ states so that the
surface Majorana arcs now split into a pair of fermi arcs,
indexed by s = ±1, with dispersion

ǫ(kx, kz, s) ∼
v(kz , ↑) + v(kz , ↓)

2
kx

+ s

√

(

v(kz , ↑)− v(kz , ↓)

2

)2

k2x + V
(Z)2
x (10)

for |kz | < kz,c,↓. The fermi-arcs have wave-functions

fs=1,kx,kz
= γ↑,kx,kz

+ iγ↓,kx,kz
(11)

fs=−1,kx,kz
= γ↑,kx,kz

− iγ↓,kx,kz
, (12)

which no longer satisfy the constraint Eq. 9 because

f
†
s,kx,kz

6= fs,−kx,−kz
. Therefore we refer to them as

Fermi arcs rather than Majorana arcs.
The Majorana arcs are obtained by solving

ǫ(kx, kz, s) = 0. This leads to the equation for the
Majorana arc

kx = ±
V

(Z)
x

√

v(kz , ↑)v(kz , ↓)
≈ ±

V
(Z)
x

√

ǫF − k2z
√

∆↑∆↓

(13)

where we have assumed the magnetization to be small
compared to the total density (i.e. |ε↑−ε↓| ≪ εF,av) and
the expression ∆σ(kz) = ∆σ. The resulting Majorana
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FIG. 1. V
(Z)
x -dependent surface fermi contour plotted ac-

cording to Eq. 13 for ∆↓ = 0.6∆↑,∆↑ = ∆0. The width of

the contour in the kx direction is proportional to V
(Z)
x . As

V
(Z)
x → 0, the spin-↑ and spin-↓ sectors decouple and the

fermi contour evolves into a pair of surface Majorana arcs.

arcs are ellipses in the (kx, kz) plane between |kz | < kz,c,↓
as plotted in Fig. 1.
The Majorana arcs obtained in these systems are sim-

ilar to Majorana surface states33 and non-chiral Majo-
rana modes24 and require the wave-vector (kx, ky) to be
a good quantum number, thus requiring translational in-
variance. Additionally, similar to the case of the proxim-
ity induced superconductivity from the high-Tc cuprate
superconductors34, the breaking of translational invari-
ance such as by impurities or domain walls would also
scatter the Majorana fermions into the bulk quasipar-
ticles leading to a finite life-time. However, the result-
ing Majorana arcs should still have interesting observ-
able consequences as long as the mean scattering time is
small.

VI. QUASIPARTICLE INTERFERENCE OF

MAJORANA ARCS IN STM:

The surface Majorana arcs shown in Fig. 1 should in
principle be directly visible as arcs in momentum space
at the Fermi energy in the ARPES spectrum. However,
since these arcs are separated from the bulk states by a
relatively small superconducting gap (∼ 1K ∼ 0.1 meV),
it is not clear if the typical energy resolution achieved in
ARPES is sufficient to resolve the Majorana arcs. On the
other hand, tunneling experiments31 provide a very con-
venient way to detect Majorana fermion systems. While
one might worry that normal electrons might have a
vanishingly small matrix element for tunneling into Ma-
jorana states, theoretical studies of proposals for such
experiments31 have shown that tunneling of normal elec-
trons into states containing Majorana fermions is an ef-
ficient way to detect such states. In fact, recent point
contact tunneling experiments32 on CuxBi2Se3 accom-
panied by theoretical studies33 have shown evidence for
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FIG. 2. (color online) The joint density of states ρ(q) (in
arbitrary units) at the fermi surface, which, as explained in
the text, would be measured by FT-STS on the surfaces of
ferromagnetic superconductor systems. We have used Eq. 14,

and the parameter values V
(Z)
x = 0.1∆↑ and ∆↓ = 0.6∆↓ (i.e.

same as Fig. 1).

Majorana surface states in such materials by tunneling.
On the other hand, low temperature and low noise STM
measurements often have sub-100 mK energy resolution
allowing one access to the energy scale of the Majorana
arcs. This energy resolution is crucial to be able to sepa-
rate out the relatively small phase space associated with
the Majorana arcs from the bulk states. At low biases the
current in the STM will be composed of a contribution
from the Majorana arcs together with the gapless bulk
states near the Dirac points of the Weyl semi-metals.
Because STM is a surface probe and the bulk states are
delocalized over the bulk of the system and have a van-
ishingly small density of states near zero-energy, one can
expect the bulk contribution to be small.
While conventional STM is able to detect the Majo-

rana arcs as gapless modes on the surface, it does not pro-
vide any information about the structure (finite extent
in momentum, curvature, etc.) of the Majorana arcs in
momentum space. Such information can be obtained by
FT-STS16–18. FT-STS relies on the fact that impurity-
scattering at the surface leads to a spatially varying local
quasiparticle density of states, n(r) at the surface, which
can be determined from the spatial variation of the tun-
neling current It(r) ∝ n(r) at the surface. The resulting
current map obtained from STM can be Fourier trans-
formed to obtain It(q) =

∫

drIt(r)e
iq·r ∝

∫

drn(r)eiq·r.
The disorder averaged square of the Fourier transform
〈|I(q)|2〉 can be shown to be related to the joint density
of states ρ(q) (i.e. ρ(q) ∝ 〈|I(q)|2〉) defined by

ρ(q) =

∫

dkδ(ǫ(k))δ(ǫ(k + q)), (14)

where ǫ(k) is the surface mode dispersion in Eq. 11. The
application of the FT-STS method16–18 outlined above
for the weakly disordered surface of a ferromagnetic semi-

conductor is expected to lead to the characteristic struc-
ture that is plotted in Fig. 2.

VII. CONCLUSION:

We propose the recently discovered ferromagnetic
superconductors1–5 as experimentally accessible 3D sys-
tems supporting topologically protected chiral Weyl
fermions in the bulk and open Majorana fermion arcs
on suitably oriented surfaces. The Weyl nodes in the
bulk are topologically protected because they arise from
topologically unavoidable closing of the quasiparticle gap
at isolated points in the momentum space. The existence
of the bulk Weyl nodes directly corresponds to the exis-
tence of open gapless Majorana fermion arcs (Fig. 1) on
suitable surfaces of the 3D system. The surface Majorana
fermion arcs offer the tantalizing possibility of detecting
gapless Majorana excitations using the available surface
sensitive probes such as ARPES and spectroscopic STM
experiments (Fig. 2).
The ferromagnetic superconductor systems are not

the only materials which can support 3D gapless TS
states with broken time reversal symmetry. The
newly discovered 3D non-centrosymmetric superconduct-
ing materials12–14 can also support such states in the
presence of a sufficiently large Zeeman splitting. The
Zeeman splitting, however, should not be accompanied
by a large orbital depairing field which may destroy the
superconductivity itself. This can be ensured by choos-
ing materials with a large enough g-factor. so that a
relatively small magnetic field can still create a Zeeman
splitting larger than the superconducting order parame-
ter.
J.S. thanks the Harvard Quantum Optics Center for

support. S.T. thanks Grants DARPA-MTO (FA9550-10-
1-0497) and NSF (PHY-1104527) for support.
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