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We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to
characterize the coupling between bismuth donor spin-qubits in Si and the surrounding spin-bath
of 29Si impurities which provides the dominant decoherence mechanism (nuclear spin diffusion) at
low temperatures (< 16 K). Decoupling from the spin-bath is predicted and cluster correlation
expansion simulations show near-complete suppression of spin diffusion, at optimal working points.
The suppression takes the form of sharply peaked divergences of the spin diffusion coherence time, in
contrast with previously identified broader regions of insensitivity to classical fluctuations. ENDOR
data shows anisotropic contributions are comparatively weak, so the form of the divergences is
independent of crystal orientation.

PACS numbers: 76.70.Dx, 76.30.–v, 03.65.Yz, 03.67.Lx

I. INTRODUCTION

Quantum decoherence presents a fundamental limitation
to the realization of practical quantum computing and of
other technological devices which actively exploit quan-
tum phenomena. In 2002, a ground-breaking study estab-
lished the usefulness of so-called optimal working points
(OWPs):1 these are parameter regimes where the system
becomes – to first order – insensitive to fluctuations of
external classical fields. We consider here the effect of
OWPs in a system where decoherence of a central spin
system arises from interactions with a fluctuating bath of
surrounding spins; a scenario that is of considerable signif-
icance in the field of quantum information.2–10

A promising approach for silicon-based quantum infor-
mation processing (QIP) involves combined electron and
nuclear spins of donor atoms in Si, which are amenable
to high-fidelity manipulation by means of electron param-
agnetic resonance (EPR) and nuclear magnetic resonance
(NMR) respectively. Most studies have considered phos-
phorus (31P) donors in Si.11–22 More recently, several dif-
ferent groups have investigated another Group V donor,
209Bi. These studies not only showed that bismuth donors
have similar properties to Si:P, such as long coherence
times T2 of the order of several ms at low temperatures
(< 16 K),23,24 but that they also offer new possibilities
for QIP. For example, strong optical hyperpolarization
was demonstrated,23,25 allowing for efficient initialization
of the nuclear spin. The Si:Bi spin system has an elec-
tron spin S = 1/2 and a large nuclear spin I = 9/2 as
well as an atypically strong hyperfine coupling constant,
A/2π = 1.4754 GHz. The strong state-mixing occurring
for magnetic fields B ≃ 0.1 − 0.6 T where the hyperfine
interaction competes with the electronic Zeeman energy,
allows transitions which are forbidden at high magnetic

fields,26,27 observed recently in Ref. 28. In Refs. 26,27, a
set of minima and maxima were found in the f − B pa-
rameter space of dipole-allowed transitions at frequencies
f . These df/dB = 0 points were identified as OWPs: line
narrowing and reduced sensitivity to temporal and spatial
noise in B over a broad region of fields (closely related to
df/dB = 0 extrema), were found. However, to date, their
effectiveness for reducing decoherence in the real environ-
ment of a spin-bath remains untested.
In natural Si, 4.67% of lattice sites are occupied by the

nuclear spin-half 29Si isotope, rather than the spinless 28Si.
Flip-flopping of the 29Si spins provides the dominant mech-
anism of decoherence for both Si:P and Si:Bi systems at low
temperatures. The decay of the donor Hahn spin echo for
these systems is typically fitted to exp[−t/T2 − (t/TSD)

n],
where TSD < 1 ms characterizes the nuclear spin diffusion,
with n ≃ 2− 3.29 Other relaxation processes, such as those
arising from donor-donor interactions, are represented by
T2. Since T2 ≫ TSD, nuclear spin diffusion remains the
main channel of decoherence at low temperatures.30,31

In this work, we investigate the nature of the Bi-29Si
interaction by means of pulsed ENDOR.32 To obtain an
ENDOR spectrum, an EPR spin echo is detected as a func-
tion of a radio frequency (rf) excitation. When the rf radi-
ation is resonant with an NMR transition, changes are seen
in the EPR signal if the populations of the relevant energy
levels change. Previous ENDOR studies of Si:Bi used rf
frequencies of at least several hundreds of MHz,23,24 and
thus could not probe the weak couplings to a spin-bath.
In contrast, here, rf frequencies of a few MHz were used.
With this approach, we have measured the bismuth spin-
bath superhyperfine (SHF) couplings and determined their
anisotropy.
We also present the results of cluster correlation expan-

sion (CCE) simulations.29,33 This model has been used
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with considerable success to model central spin decoher-
ence in Si:P.4,6,7,29 In Ref. 24, weak state-mixing in Si:Bi
was investigated by simply allowing for the variation of an
effective gyromagnetic ratio. Here we adapt the CCE simu-
lations to include, for the first time, the strong state-mixing
seen near the OWPs. A key finding is the demonstration of
near-complete suppression of nuclear spin diffusion, even in
natural Si: this occurs in extremely narrow regions, where
TSD is in effect divergent,34 in contrast to the broader ef-
fect expected from the form of df/dB.1 A successful means
of controlling decoherence is to employ isotopically en-
riched samples,4,6,14,19,20,30,31,35–37 which can exhibit long
T2 times up to the order of seconds.31 Thus, the OWPs
represent a potentially complementary technique, effective
for both natural Si and partially enriched samples. In ad-
dition, our work suggests that the OWPs may also be ef-
fective in suppressing residual effects such as donor-donor
interactions which are responsible for shortening T2 times
from seconds to the ms timescale.26

II. SPIN HAMILTONIAN

We investigate a spin system with total Hamiltonian:

Ĥ = AÎ · Ŝ+ ĤZee + Ĥint + Ĥbath. (1)

The first term denotes the isotropic hyperfine interac-
tion between the bismuth electronic and nuclear spins.
For Si:Bi, the usual high-field reduction to Ising form
AÎ · Ŝ ≃ AÎzŜz cannot be made at the fields of inter-
est here. The second term represents the Zeeman interac-
tion with the external field, including the donor spins and
summed over bath spins,

ĤZee = ω0

(

Ŝz − δBiÎ
z − δSi

∑

n

Îzn

)

. (2)

Here, ω0 = µB/~ is the electronic Zeeman frequency
(µ = 1.857 × 10−23 JT−1) while δBi = 2.486 × 10−4 and
δSi = 3.021 × 10−4 are the ratios of the nuclear to elec-
tronic Zeeman frequencies for the donor and 29Si spins re-
spectively.
The spin-bath interaction term:

Ĥint =
∑

n

ÎnJnŜ, (3)

represents the SHF couplings between the donor and bath
spins, in general of tensor form (for anisotropic couplings).
Finally, dipolar coupling between each pair of 29Si spins is
represented by the bath term,

Ĥbath =
∑

n<m

ÎnD(rnm)Îm, (4)

where rnm denotes the relative position vector of bath spins
at lattice sites n andm. Writing rnm ≡ r for a pair of spins,
the components of the dipolar tensor D are given by,

Dij(r) =

(

µ0δ
2
Siµ

2

4π~r3

)

(

δij − 3
rirj
r2

)

, (5)

with µ0 = 4π × 10−7 NA−2 and i, j = x, y, z.

III. ENDOR MEASUREMENTS

The experimental ENDOR studies reported here served
to investigate and characterize the isotropic/anisotropic
character of the spin-bath interaction term, namely a set of
distinct Jn values – SHF couplings – in Eq. (3), correspond-
ing to occupancy of inequivalent lattice sites by 29Si impu-
rities. Pulsed ENDOR experiments were performed using
the Davies ENDOR pulse sequence.32,38 We applied the
pulse sequence πmw−τ1−πrf−τ2−

π
2 mw−τ3−πmw−τ3−echo,

where the microwave (mw) frequency is chosen to excite
one EPR transition and the rf is stochastically varied be-
tween 2 − 12 MHz or 2 − 7 MHz to excite all nuclear spin
transitions in this region. We used 256 ns long πmw-pulses
and a 128 ns long π

2mw-pulse. For optimal signal-to-noise
ratio and resolution, we used a πrf-pulse of 10 µs. Pulse
delays were set to τ1 = 1 µs, τ2 = 3 µs and τ3 = 1.5 µs
and a shot repetition time of 1.3 ms was employed to give
a good signal-to-noise ratio. All experiments were carried
out at 15 K on an E580 pulsed EPR spectrometer (Bruker
Biospin) equipped with pulsed ENDOR accessory (E560D-
P), a dielectric ring ENDOR resonator (EN4118X-MD4),
a liquid helium flow cryostat (Oxford CF935) and an rf
amplifier (ENI A-500W). We used a donor concentration
of 3 × 1015 cm−3 and the magnetic field was directed per-
pendicular to the [111] plane.
While not offering the higher frequency resolution at-

tainable with continuous-wave ENDOR,39,40 the pulsed
ENDOR measurements permit us to adequately constrain
and to demonstrate the reliability of the numerical simu-
lations. In particular, we established that isotropic cou-
plings to the spin-bath dominate the decoherence dynam-
ics. While not the focus of this study, a further motivation
is to investigate the feasibility of an alternative possibility
for QIP: to simultaneously manipulate the 29Si atoms as
spin-half qubits, along with the donors.41

Measured ENDOR spectra at f ≃ 9.755 GHz are pre-
sented in Fig. 1, together with a list of SHF couplings. For
the magnetic field range B ≃ 0.1− 0.6 T in Fig. 1, there is
significant mixing of the high-field Si:Bi energy eigenstates
|mS ,mI〉. The mixed eigenstates, |±,m〉, correspond to
doublets (at most) of constant m = mS +mI :

|±,m〉 = a±m
∣

∣± 1
2 ,m∓ 1

2

〉

+ b±m
∣

∣∓ 1
2 ,m± 1

2

〉

, (6)

|a±m|2 − |b±m|2 =
Ωm(ω0)

√

(Ω2
m(ω0) + 25−m2)

≡ γm(ω0), (7)

where Ωm(ω0) = m + ω0

A
(1 + δBi) and m is an integer,

−5 ≤ m ≤ 5. Such mixing leads to a complex EPR spec-
trum for bismuth with df/dB = 0 extrema. The minima
correspond to transitions between states corresponding to
adjacent avoided level crossings, of which there are four.
The disparity between the electronic Zeeman and hyper-
fine energy scales and SHF energy scales means that the
tensor coupling in Eq. (3) reduces to simpler form,

Ĥint,l ≈ (αlÎ
z
l + βlÎ

x
l )Ŝ

z , (8)

written for coupling to a single 29Si at site l, where
αl = [(aiso,l − Tl) + 3T 2

l cos2 ϑl] and βl = 3Tl sinϑl cosϑl
with aiso,l and Tl the isotropic and anisotropic parts of the
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molecular-frame SHF tensor respectively and ϑl the an-
gle between the external field and the line connecting the
bismuth site and site l. Non-secular terms involving Ŝx

and Ŝy can be neglected.32 Diagonalization of the result-
ing 2-dimensional Hamiltonian, and setting Tl = 0 for a
purely isotropic coupling leads to a simple expression for
the ENDOR resonance frequency for donor level |±,m〉:

∆±,m
iso,l (ω0) =

1

2π

∣

∣

∣
−ω0δSi ±

(aiso,l
2

)

γm(ω0)
∣

∣

∣
. (9)

The above expression is in perfect agreement with full nu-
merical diagonalization. The couplings in Fig. 1 were ex-
tracted from the measured spectra by fitting to the data
Gaussians of equal width and using Eq. (9). The same ex-
pression and a single set of couplings gave excellent agree-
ment with data at 10 different fields. In particular, the
observed pattern of half a dozen highest frequency 29Si res-
onances moving to a minimum at B ≃ 0.2 T, then increas-
ing again, is directly attributable to mixing of the states of
the bismuth donor: i.e., here γm(ω0) has a minimum.
Ten out of the twelve couplings extracted from data

were found to be purely isotropic. The highest-field
spectrum was measured for a range of crystal ori-
entations and only three weak intensity lines showed
orientation-dependent frequencies and hence anisotropy.
Two are indicated by X1 and X2 in Fig. 1: the cor-
responding two couplings with non-zero anisotropy were
found to have (aiso,X1

≃ 2.8, TX1
≃ 2.4) MHz and

(aiso,X2
≃ 0.4, TX2

≃ 2.8) MHz by fitting the more gen-
eral form of Eq. (9) with non-zero T . A previous ESEEM
(electron spin echo envelope modulation) study identified a
single anisotropic coupling,42 attributed to E-shell (nearest
neighbor) 29Si. The third line we identify is fitted by cou-
pling constants consistent with the anisotropic coupling in
Ref. 42. For most crystal orientations, this line is masked
by much higher intensity lines arising from isotropic cou-
plings.
At fields where γm(ω0) becomes small (this occurs close

to the df/dB = 0 minima as shown in Refs. 26,27), Eq. (9)
tends to the 29Si Zeeman frequency δSiω0. It is straight-
forward to extend Eq. (9) to the anisotropic case and show
that the latter statement also holds for anisotropic cou-
plings. In effect, at these points, the donor might be said
to approximately decouple from the bath. For example,
for the EPR transition |12〉 → |9〉, (labeling the eigenstates
|n = 1, 2, . . .20〉 in increasing order of energy), γm(ω0) = 0
at B = 157.9 mT for level |12〉 and B = 210.5 mT for |9〉.
We note that there is however no B-field value where both
the upper and lower levels have γm(ω0) = 0: as we see be-
low, this is not actually essential for complete suppression
of spin diffusion. The actual OWP (where df/dB = 0) is
at B = 188.0 mT, occurring when

γ−3(ω0) + γ−4(ω0)−
2δBi

(1 + δBi)
= 0. (10)

IV. CLUSTER CORRELATION EXPANSION
SIMULATIONS

In order to model the full dynamics, we assume that the
temperature and donor concentrations are low enough so
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FIG. 1: (color online) Pulsed ENDOR measured for bismuth-
doped silicon with frequency 9.8 GHz at which ten EPR lines
are observed, the resonance peaks due to interactions of the
donor with 29Si nuclei at inequivalent lattice sites. The isotropic
superhyperfine couplings were extracted from the spectrum at
the highest magnetic field. As the field is varied, the smooth
lines follow the resonance positions according to Eq. (9). Solid
and dotted lines distinguish between the two peaks observed for
each coupling, each corresponding to one of the two donor levels
involved in the EPR transition. Only the peaks labeled X1 and
X2, in addition to a third pair not resolved here, were found
to show anisotropy from performing ENDOR as a function of
crystal orientation.

that phonon-induced decoherence and decoherence due to
interactions between donors are negligible. The Hahn spin
echo decay of a central donor electron coupled to the bis-
muth nucleus in a bath of 29Si was calculated using the
CCE.33 Denoting the spin echo intensity by L(t), let LS(t)
be L(t) computed including only spins in some set or “clus-

ter” of bath spins S. The quantity L̃S(t) is defined as,

L(t) =
∏

S

L̃S(t), (11)

where the product is over all clusters. Applying this defini-
tion to LS(t) and factoring out L̃S(t), an explicit form for

the L̃S(t) is obtained in terms of the LS(t) and the L̃C(t)
in subsets C of S,

L̃S(t) = LS(t)/
∏

C⊂S

L̃C(t). (12)
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The problem of calculating L(t) is reduced into indepen-
dent components each for a distinct cluster of bath spins.
The exact solution to L(t) is obtained if the L̃S(t) from all
clusters are combined using Eq. (11) and the approxima-
tion to L (t) up to a maximum cluster size of k is defined
as,

L(k)(t) =
∏

|S|≤k

L̃S(t), (13)

which involves calculating reduced problems for all clusters
each containing at most k spins. Including up to L(k=2)(t)
(2-cluster) is a good approximation to L(t) when consider-
ing only dipolar interactions in the bath affecting the spin
echo, as these are of the order of a few kHz and hence per-
turbative compared to the SHF interactions in the MHz
range involving the donor electron. The CCE is exact, but
not always convergent. We calculated the 2-cluster (k = 2)
approximation to the CCE and obtained convergence for
up to k = 3.
The Hahn echo sequence evolves the combined system-

bath state to time t = 2τ :

|ψ(t = 2τ)〉 = e−iĤτ (σ̂x ⊗ 1B) e
−iĤτ |ψ(t = 0)〉, (14)

where σ̂x is the Pauli-X gate acting on the donor and
1B denotes the bath identity. We assume that the time
taken for a π-pulse is small compared to τ . The initial
state was written as a product of the initial donor and
bath states, the former chosen as an equal superposition
of states |12〉 and |9〉. The donor subsystem is recovered
after tracing over the bath and the modulus of the nor-
malized off-diagonal element of the donor reduced density
matrix is proportional to the intensity of the echo at time
t = 2τ . The reduced problem of the 2-cluster bath was
solved for each of the four initial 2-product bath states
and the average intensity obtained. 2-clusters were formed
by pairing 29Si spins separated by up to the 3rd nearest
neighbor distance in a diamond cubic lattice of side length
160 Å. Convergence was obtained as the lattice size and
the separation between the two bath nuclei were extended.
It was assumed that B was large enough to conserve the
total 29Si Zeeman energy. Thus, the dipolar interaction be-
tween the two bath spins took the form of a combination
of Ising (Îz1 Î

z
2 ) and flip-flop (Î+1 Î

−
2 + Î−1 Î

+
2 ) terms. The

Kohn-Luttinger electronic wavefunction was used to cal-
culate the isotropic Fermi contact SHF strength with an
ionization energy of 0.069 eV for the bismuth donor. Cal-
culated couplings were of the same order as those obtained
from data. The data showed that isotropic couplings pre-
dominate; hence anisotropic couplings could be neglected
and the simulations are insensitive to orientation. Finally,
we obtained the average L(k=2)(t) over 100 spatial config-
urations of 29Si occupying 4.67% of lattice sites. The re-
sulting decay curves were fitted to exp[−t/T2 − (t/TSD)

n],
obtaining T2 ≫ TSD and values of n ≃ 2− 3.

V. SUPPRESSION OF NUCLEAR SPIN
DIFFUSION

The results of our CCE simulations are presented in
Fig. 2. Figure 2(a) shows the behavior around the
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FIG. 2: (color online) Suppression of Bi-29Si spin-bath decoher-
ence for the |12〉 → |9〉 EPR transition. (a) Simulated ENDOR
and nuclear spin diffusion coherence times TSD as a function of
magnetic field B, showing collapse of the superhyperfine cou-
plings and a sharp increase in TSD as the field approaches the
B = 188.0 mT optimal working point (OWP). The dashed line
is a fit. (b) Simulated ENDOR at the B = 188.0 mT OWP
(upper panel) and experimental spectrum at 9.755 GHz (lower
panel). (c) Calculated donor Hahn spin echo decays from which
coherence times in Fig. 2(a) were extracted.

B = 188.0 mT OWP, associated with the |12〉 → |9〉 EPR
line. The calculated coherence time TSD (orange dashed
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line) is superposed on a color map showing the SHF spec-
trum: the latter shows ENDOR spectra simulated as a
function of B, using Eq. (9) and centered about the 29Si
nuclear Zeeman frequency. Strikingly, as B approaches the
OWP, the “comb” of SHF lines narrows to little more than
the width of a single line. This suggests a drastic reduc-
tion in the value of the SHF couplings, indicating that the
bismuth has become largely uncoupled from the 29Si spin-
bath.
The collapse in the SHF couplings is illustrated further

in Fig. 2(b). The lower panel shows the measured spec-
trum at 9.755 GHz. Using our experimentally-determined
SHF couplings, the corresponding spectrum at the OWP
is shown in the upper panel of Fig. 2(b), demonstrating
clearly the line narrowing (corresponding to the same pa-
rameters as Fig. 2(a) but at the precise field value of the
OWP).
The behavior of TSD is also quite striking and unex-

pected: the coherence time predicted by CCE simulations
increases asymptotically at the OWP by several orders
of magnitude. Away from the OWP, the results agree
well with experimentally measured values of approximately
0.7 ms.24 In Ref. 24, in a regime of weak state-mixing, simu-
lations using an effective gyromagnetic ratio indicated that
TSD was slightly reduced (by about 5%) in a regime corre-
sponding to lower df/dB. The present study on the other
hand, (which in contrast to Ref. 24 employed a full treat-
ment of the quantum eigenstate mixing) shows rather an
effect very sharply peaked about the OWP: nuclear spin
diffusion is predicted to be largely suppressed, but over an
extremely narrow magnetic field range.
Figure 2(c) shows a sample of CCE spin echo decays from

which TSD times were extracted, and also serves to further
illustrate the sharp increase in TSD. Similar suppression
is present for other OWPs in Si:Bi. There are df/dB = 0
minima for the |15〉 → |6〉, |14〉 → |7〉, |13〉 → |8〉, |12〉 →
|9〉 and |11〉 → |8〉 transitions in the frequency range 5 −
7.5 GHz and two maxima for |12〉 → |11〉 and |9〉 → |8〉
close to 1 GHz. The decoupling from the spin-bath is also
expected to lead to suppression of decoherence arising from
the interaction with a bath of donors.26

VI. CONCLUSIONS

In conclusion, we present the first measurements of the
isotropic SHF couplings which dominate the interaction be-
tween a bismuth donor and a bath of 29Si impurities. We
further demonstrate the suppression of couplings at OWPs.
Finally, the spin echo decay of the donor is calculated as a
many-body problem and sharp divergence of the spin dif-
fusion time is observed at an OWP. Our study motivates
experimental EPR studies in the range 5− 7.5 GHz corre-
sponding to the regions of suppressed decoherence.
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