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We consider possible exotic ground states of quantum spin ice as realized in rare earth pyrochlores.
Prior work in Ref.15 introduced a gauge mean field theory (gMFT) to treat spin or pseudospin Hamil-
tonians for such systems, reformulated as a problem of bosonic spinons coupled to a U(1) gauge field.
We extend gMFT to treat the most general, nearest neighbor exchange Hamiltonian, which contains
a further exchange interaction, not considered previously. This term leads to interactions between
spinons, and requires a significant extension of gMFT, which we provide. As an application, we
focus especially on the non-Kramers materials Pr2TM2O7 (TM =Sn, Zr, Hf, and Ir), for which the
additional term is especially important, but for which an Ising-planar exchange coupling discussed
previously is forbidden by time-reversal symmetry. In this case, when the planar XY exchange is
unfrustrated, we perform a full analysis and find three quantum ground states: a U(1) quantum spin
liquid (QSL), an antiferro-quadrupolar ordered state and a non-coplanar ferro-quadrupolar ordered
one. We also consider the case of frustrated XY exchange, and find that it favors a π-flux QSL,
with an emergent line degeneracy of low energy spinon excitations. This feature greatly enhances
the stability of the QSL with respect to classical ordering.

PACS numbers:

I. INTRODUCTION

The quest for quantum spin liquid (QSL) ground
states, exotic phases of matter with emergent gauge
structure and quasiparticles carrying fractional quan-
tum numbers1, is an ongoing endeavour in condensed-
matter physics. Well studied candidates include some
two-dimensional organic crystals2 and some inorganic
kagomé systems such as herbertsmithite3. Among three-
dimensional materials, experimental candidates include
several magnetic pyrochlore oxides4 and hyperkagome-
lattice magnets6. Classical spin liquids have been re-
alized in the spin ices5, in which the spins reside on
a pyrochlore lattice and interact via a dominant clas-
sical Ising coupling. It has been shown theoretically that
a weak quantum-mechanical perturbation does not pro-
duce long-range order in the ground state7. Instead, it
lifts the macroscopic degeneracy of the spin-ice manifold,
leaving gapless “photon” excitations, describable by an
emergent U(1) gauge field. The photon exists in a so-
called Coulomb phase or U(1) spin liquid phase, which is
stable to all weak perturbations, at zero temperature.

To describe the low-energy physics of magnetic py-
rochlore oxides associated with local magnetic doublets of
rare-earth ions, a minimal pseudospin-1/2 model can be
introduced on symmetry grounds8 (see Eq. (1)). It has
also been derived micropcopically using superexchange
theory for various materials11–13. This model success-
fully explains spin correlations experimentally observed
in Yb2Ti2O7 (Refs. 8,9). As can be seen from the gen-
eral form of Eq. (1), these comparisons between theory
and experiment also reveal that putative continuous ro-
tational symmetry of the pseudospins is broken by a sig-
nificant level of magnetic anisotropy. Moreover, at least

for Yb2Ti2O7 and possibly for other materials, the Ising
interaction remains dominant, in which case the physics
is that of a quantum variant of spin ice14. At a phe-
nomenological level, recent experimental findings suggest
the relevance of the Coulomb phase physics in real rare-
earth magnetic pyrochlore oxides8–10.

Based on this observation, detailed analyses of the non-
perturbative stability of the Coulomb phase and the pos-
sible existence of other phases and phase transitions are
called for. It must be noted that this is a very com-
plex problem; the general pseudospin Hamiltonian in
Eq. (1) contains four exchange constants: the Ising ex-
change Jzz, and three “quantum” terms J±, Jz±, and
J±±. Assuming we start from the classically frustrated
spin ice case Jzz > 0, one then has three dimension-
less couplings J±/Jzz, Jz±/Jzz and J±±/Jzz, forming a
three-dimensional phase space even at zero temperature.
The development of a comprehensive theory of this full
3d phase space is a challenging task.

A method for analysis of this problem was developed
in Ref. 15, based on a gauge theory reformulation of the
problem on a dual diamond lattice. There, the original
Hamiltonian was re-expressed as a problem of bosonic
spinons hopping in the background of a fluctuating com-
pact U(1) gauge field. This problem was in turn subse-
quently approximated using a mean-field theory. In that
work, this gauge Mean Field Theory (gMFT) was applied
to the corner of the phase diagram approximately appro-
priate to Yb2Ti2O7, with, in our (and their) notation,
J±± = 0, and J± > 0. Both the expected U(1) QSL
phase and an additional exotic state, a Coulomb ferro-
magnet, were found, though somewhat limited in their
domain of stability.

Here we extend the theoretical formalism to allow to
fully treat the most generic nearest-neighbor pseudospin-
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1/2 Hamiltonian, i.e. the fully general form of Eq. (1).
This requires some significant technical extensions to the
analysis in Ref. 15. In particular, the term J±± induces
interactions amongst the spinons, which may induce pair-
ing and other effects. Furthermore, in the case J± < 0,
a non-zero average gauge flux is present and complicates
the dispersion of the spinons. Surmounting these tech-
nical obstacles, we then apply the extended method to
the particular case where the lowest crystal-field levels
of the rare-earth ions are given by non-Kramers mag-
netic doublets with integer spins. This has a direct
relevance to Pr2TM2O7 with transition-metal elements
TM = Sn16,17, Zr10,18, Hf, and Ir16,19,20. One key re-
sult of this analysis is that the U(1) QSL phase is much
more stable than in the case of a Kramers (half-integer
spin) doublet, because of the absence of the coupling be-
tween the Ising and planar components of the rare-earth
moments (Sec. III). Moreover, the QSL becomes particu-
larly robust when the U(1)-symmetric planar pseudospin-
exchange interaction is frustrated (J± < 0).

The remainder of the paper is organized as follows. In
Sec. II, we introduce the most generic nearest-neighbor
pseudospin-1/2 Hamiltonian in rare earth pyrochlores
and reformulate it as a problem of bosonic spinons cou-
pled to a U(1) gauge field. Focusing on non-Kramers
doublet, we show in Sec. III a mean-field analysis of the
gauge theory, following and extending Ref. 15. Within
mean-field analysis, we also discuss that the different
flux patterns of gauge fields are favored in the presence
of (un)frustrated planar XY exchange cases, based on
a perturbation argument. In Sec. IV, unfrustrated pla-
nar XY exchange case (FM case) is studied as follow-
ing orders: In Sec. IV A and Sec. IV B, we discuss the
possible order parameters for spinons and the details of
self-consistent equations. Then gMFT phase diagram is
shown in Sec IV C with the characteristics of their phase
transitions described in Sec. IV D. In Sec V, we discuss
the enhancement of the stability of the QSL for the frus-
trated planar XY-exchange case (AF case). We finally
conclude in Sec. VI with a summary of results, a discus-
sion of relevant experiments and open questions.

II. COMPACT ABELIAN HIGGS MODEL FOR
PSEUDOSPIN-1/2 QUANTUM SPIN ICE MODEL

A. Nearest-neighbor pseudospin-1/2 quantum spin
ice model

We start with the generic nearest-neighbor pseudospin-
1/2 model for quantum spin ice8,11–13;

H =
∑
〈ij〉

[JzzS
z
i S
z
j − J±(S+

i S
−
j + S−i S

+
j )

+J±±(γijS
+
i S

+
j + γ∗ijS

−
i S
−
j )

+Jz±(Szi (ζijS
+
j + ζ∗ijS

−
j ) + (ζijS

+
i + ζ∗ijS

−
i )Szj )].

(1)

i 0 1 2 3

x̂i
1√
2
(011̄) 1√

2
(01̄1) 1√

2
(011) 1√

2
(01̄1̄)

ŷi
1√
6
(2̄11) 1√

6
(2̄1̄1̄) 1√

6
(211̄) 1√

6
(21̄1)

ẑi
1√
3
(111) 1√

3
(11̄1̄) 1√

3
(1̄11̄) 1√

3
(1̄1̄1)

TABLE I: Local coordinate frames for the four sublattices on
the pyrochlore lattice.

Here,
∑
〈ij〉 indicates the summation over all the nearest-

neighbor sites i and j on the pyrochlore lattice. Si is
a (pseudo-)spin 1/2 operator acting within the Hilbert
space of the local doublet of the rare-earth ion located at
that site. Its physical meaning is discussed further below.
The matrix γij = 1, e±i2π/3 (and ζ = −γ∗) depends on
the bond direction between the neighboring sites i and j
as seen in Fig.1:

γµν =
{ γ1 = 1, eµ − eν ∈ yz plane
γ2 = ei2π/3, eµ − eν ∈ xz plane
γ3 = e−i2π/3, eµ − eν ∈ xy plane

.

(2)

Here we defined the four vectors, eµ (µ = 0, 1, 2, 3), con-
necting a site on the diamond sublattice A to its neigh-
bors. In our coordinates, where the conventional cubic
unit cell is taken of length 1, these are related to the local
z quantization (Ising) axis for the pseudospins given in

Table.I by eµ =
√

3
4 ẑµ.

Now we review the physical meaning of the pseu-
dospins. The z component Szi is directly proportional to
the physical magnetic moment along the local Ising 〈111〉
axis. The interpretation of the “in-plane” pseudospin
operators, Sxi ,S

y
i , differs, however, for the Kramers and

non-Kramers cases. In the former, this is indeed pro-
portional to the magnetic dipole moment normal to the
local 〈111〉 axis. Because in the non-Kramers case, the
in-plane components of the pseudospin are time-reversal
invariant, they must be identified not with the magnetic
dipole moment but for instance the quadrupole moment
S±i ∼ {J

±
i , J

z
i } in the Pr cases12,13.

This is summarized formally as follows. Defining local
coordinate axes x̂i, ŷi, and ẑi, as in Table.I, the magnetic
dipole moment is given as

〈µi〉 = gxyµB(〈Sxi 〉x̂i + 〈Syi 〉ŷi) + gzµB〈Szi 〉ẑi, (3)

where for the non-Kramers magnetic doublets which are
of our particular interest in this paper, gxy = 0. For this
case (and specifically for Pr3+) the quadupole moment

(
←→
Q i)

µν = µ2
B{J

µ
i , J

ν
i } is

〈
←→
Q i〉 ∼

 0 0 〈Sxi 〉
0 0 〈Syi 〉
〈Sxi 〉 〈S

y
i 〉 0

 . (4)
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FIG. 1: (a) Mapping onto U(1) gauge theory : spinons are de-
fined on diamond lattice sites (black sphere) and gauge fields
live on their links (black solid line). J± (J±±) shows quadratic
(quartic) spinon hopping process in Eq.(11). (b) γ1,2,3 (de-
fined in Eq. (2)) depending on the bond directions : bonds
with double solid lines have the matrix γ1, bonds with single
solid lines have γ2 and bonds with dotted lines have γ3.

B. Interacting bosonic spinons coupled to compact
U(1) gauge fields on a diamond lattice

In this section, we exactly re-express the Hamiltonian
Eq. (1) as a U(1) gauge theory on the dual diamond
lattice. The formulation is identical, apart from some
minor notational changes, to the one in Ref. 15, except
that we now include the J±± term.

First, the Ising interaction term is simply expressed as
Jzz

∑
rQ

2
r with a gauge (“electric”) charge7,27

Qr = ηr

3∑
µ=0

Szr+ηreµ/2
, (5)

where the coordinate r labels the centers of the py-
rochlore tetrahedra, which form the “dual” diamond lat-
tice. We furthermore defined ηr = 1 and -1, when r is
on the A and B diamond sublattice, respectively. (see
Fig.1) Note that the electric charge Qr takes integer val-
ues. Then, the corresponding “electric field” can be taken
as a directed link variable,

Er,r+ηreµ = ηrS
z
r+ηreµ/2

= ηrs
z
r,r+ηreµ . (6)

sz is defined here and denotes the spin Sz at the center
of the links of the dual diamond lattice. With these defi-
nitions, Eq. (5) may be regarded as the lattice analog of
Gauss’ law. Maintaining the constraint in Eq. (5), one
then represents the planar components S± of the pseu-
dospin operator as

S+
r+eµ/2

= Φ†rs
+
r,r+eµΦr+eµ for r ∈ A, (7)

where Φr and Φ†r are annihilation and creation operators
of bosonic spinons that decrease and increase the “electric
charge” Qr, respectively,

[Φr, Qr] = Φr, [Φ†r, Qr] = −Φ†r. (8)

Note that s± conceptually plays the role of the expo-
nential of the gauge vector potential A, i.e. an element
of the gauge group, which creates or annihilates electric
field quanta. There is, however, no utility in explicitly
introducing E and A operators, at least at the mean-field
level we proceed with in the following, and we will not
do so.

It is convenient to introduce a rotor variable ϕr canon-
ical conjugate to Qr;

[ϕr, Qr] = i, (9)

which gives

Φr = e−iϕr , Φ†rΦr = 1. (10)

Using the representation in Eqs. (5)- (7), we rewrite spin
Hamiltonian Eq. (1)
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HQED =
Jzz
2

∑
r

Q2
r − J±

∑
r

∑
µ6=ν

Φ†r+ηreµΦr+ηreν s
−ηr
r,r+ηreµs

+ηr
r,r+ηreν

+
J±±

2

∑
r

∑
µ6=ν

(γ−2ηr
µν Φ†rΦ

†
rΦr+ηreµΦr+ηreν s

ηr
r,r+ηreµs

ηr
r,r+ηreν + h.c)

−Jz±
∑
r

∑
µ6=ν

szr,r+ηreµ

(
γ−ηrµν Φ†rΦr+ηreν s

ηr
r,r+ηreν + h.c.

)
+ const.. (11)

The total “electric charge” Q =
∑

rQr commutes with
the Hamiltonian HQED. Furthermore, HQED is invariant
under the gauge transformation,{

Φr → Φre
−iχr

s±rr′ → s±rr′e
±i(χr′−χr).

(12)

This completes the reformulation as a compact U(1)
gauge theory with bosonic matter: a compact interacting
Abelian Higgs model. In general, local gauge symmetry
cannot be spontaneously broken by Elitzur’s theorem,
thus 〈srr′〉 = 〈Φr〉 = 0. However, we carry on a particu-

lar gauge choice for a mean-field analysis in Sec.III.

III. MEAN-FIELD THEORY

We now proceed with a mean-field analysis of the gauge
theory in Eq. (11), following and extending Ref. 15. To
distinguish this from ordinary Curie-Weiss mean field
theory, we denote this treatment as gauge Mean Field
Theory (gMFT).15 Specifically, we decouple the various
terms in Eq. (11) as follows:

s+
r,r+eµs

−
r,r+eνΦ†r+eµΦr+eν → 〈s+

r,r+eµ〉〈s
−
r,r+eν 〉

(
Φ†r+eµΦr+eν − 〈Φ

†
r+eµΦr+eν 〉

)
+
(
s+
r,r+eµ〈s

−
r,r+eν 〉+ 〈s+

r,r+eµ〉s
−
r,r+eν − 〈s

+
r,r+eµ〉〈s

−
r,r+eν 〉

)
〈Φ†r+eµΦr+eν 〉, (13)

s+
r,r+eµs

+
r,r+eνΦ†rΦ

†
rΦr+eµΦr+eν → 〈s+

r,r+eµ〉〈s
+
r,r+eν 〉

[
Φ†rΦ

†
r〈Φr+eµΦr+eν 〉+ 〈Φ†rΦ†r〉Φr+eµΦr+eν − 2〈Φ†rΦ†r〉〈Φr+eµΦr+eν 〉

+2
(
Φ†rΦr+eµ〈Φ†rΦr+eν 〉+ 〈Φ†rΦr+eµ〉Φ†rΦr+eν − 2〈Φ†rΦr+eµ〉〈Φ†rΦr+eν 〉

)]
+
(
〈Φ†rΦ†r〉〈Φr+eµΦr+eν 〉+ 2〈Φ†rΦr+eµ〉〈Φ†rΦr+eν 〉

)
×
(
s+
r,r+eµ〈s

−
r,r+eν 〉+ 〈s+

r,r+eµ〉s
−
r,r+eν − 〈s

+
r,r+eµ〉〈s

−
r,r+eν 〉

)
. (14)

The second decoupling (Eq. (14)) is introduced here (and
was not considered in Ref. 15) to deal with the J±± inter-
action, which involves not only interaction between the
“gauge fields” (sr,r′) and spinons, but also between the
spinons themselves (being quartic in Φr,Φ

†
r operators).

After the above decoupling, some ansatz must be made
to determine the form of various expectation values. Of
particular interest are the “magnetic” expectation values

〈s±r,r′〉 = |〈s±r,r′〉|e
±iAr,r′ , (15)

which are formally similar to the bond operators appear-
ing in large N slave particle theories of quantum antifer-
romagnets. In particular, the phase Ar,r′ of this expecta-
tion value has the physical interpretation of a sort of “av-
erage” gauge field experienced by the spinons. Though
this is not itself gauge invariant (see Eq. (12)), the net
flux of this gauge field, or equivalently the product of

〈s+r,r′〉 expectation values around any closed loop, is phys-
ically meaningful. Different patterns of this flux describe
different QSL states, with different Projected Symmetry
Groups, or PSGs.21 Within the gMFT formalism, the
choice between different flux patterns, or PSGs, should
be made based on comparison of the mean-field free en-
ergy for different Ansätze.

Instead, we choose the flux pattern based on a non-
mean-field, but perturbative argument. This has the ad-
vantage of being simpler, and also correct beyond mean
field theory in the perturbative regime, but could in prin-
ciple break down by missing some other phase at larger
coupling. We leave a more exhaustive study of energetics
of different PSGs as an open problem for the future, but
expect that the choice made here is probably correct in
most cases of interest.
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In the perturbative regime, J±±/Jzz . J±/Jzz �
1, the leading contribution in degenerate perturbation
theory7 occurs at order (J3

±/J
2
zz) (the contribution from

J±± is subdominant), and gives a term in the Hamilto-
nian proportional to the sum of the cosine of the flux
through each hexagonal plaquette of the dual diamond
lattice,37

Hring ∼ −J3
±/J

2
zz

∑
7

cos(∇×A), (16)

where (∇ × A)7 ≡
∑
i∈7Ari,ri+1

denotes a lattice

curl of the gauge field Ar,r′ , i.e. the flux through the
hexagon containing the sites i. This calculation deter-
mines the PSG to be: (1) for J± > 0, a 0-flux state, with
cos(∇ × A) = 1 or (2) for J± < 0, a π-flux state with
cos(∇× A) = −1. This is somewhat consistent with the
physical intuition that for J± < 0, the XY pseudospin
order is frustrated, requiring formation of a more com-
plex ground state. Indeed, we will see later that quantum
fluctuations are greatly enhanced in π-flux state, leading
as a consequence to much enhanced domain of stability
of the QSL phase relative to the case J± > 0. In the
following, we will consider the zero-flux and π-flux cases
separately. Fig.2 shows mean-field ansatz of gauge fields
for zero-flux and π-flux cases. Thick links have Ar,r′ = π

and other links have Ar,r′ = 0. There exist many other
gauge field configurations that produce the same physical
state.

(a) (b)

e0 e1

e2e3

FIG. 2: Mean-field ansatz for gauge fields that preserve the
symmetry of Hamiltonian Eq. (11): (a) 0-flux state, and (b)
π-flux state. In (b), the thick links have Ar,r′ = π and other

links have Ar,r′ = 0. Thick solid (dashed) links are aligned in
upper (lower) hexagonal plane perpendicular to 〈111〉 direc-
tion in a diamond lattice.

IV. FM CASE (J± > 0) : ZERO-FLUX STATE

In this section, we carry out an analysis of the “fer-
romagnetic” case, J± > 0, for which the 0-flux state is
stabilized. The zero flux state was considered in Ref. 15,
but with J±± = 0.

A. Order parameters

The gMFT treatment introduces several self-
consistently determined “order parameters”, whose
interpretation requires additional care in comparison to
ordinary mean field theory, owing to gauge redundancy.
We discuss this now. In the “gauge” sector, there are
two types of expectation values: 〈szr,r′〉, which is gauge
invariant and directly proportional to the local magnetic
moment, see Eqs. (2,6), and 〈s±r,r′〉, which as discussed
above is not gauge invariant and related to the “average”
and fluctuations of the magnetic vector potential. There
are several other order parameters in the “matter”
sector. While it is not explicit as a decoupling in the
gMFT scheme, the spinon condensate itself, 〈Φr〉, is
an important (non-gauge invariant) order parameter.
In comparison to the prior case, the decomposition in
Eq. (14) introduces two new types of order parameters.
First, there are pairing terms between two spinon
fields on the same sublattice, 〈Φr+ηreµΦr+ηreν 〉. This
composite field carries electric gauge charge 2. Second,
there are particle-hole terms which are gauge neutral
but connect the two sublattices, 〈Φ†rΦr+ηreµ〉. The
possibility of non-zero expectation values of these fields
enlarges the spectrum of phases which may occur within
gMFT.

For the FM case, we have found that the mean field so-
lutions do not break translational symmetry. Presuming
this to be true, we can classify the different possible types
of solutions by their order parameter expectation values,
and we discuss the physical meaning of these patterns
now. The different possibilities are listed in Table.II and
summarized below.

1. Coulomb phases

Within a mean field description, Coulomb phases are
those in which the U(1) gauge symmetry is unbroken by
charged condensates, i.e. 〈Φr〉 = 〈Φr+ηreµΦr+ηreν 〉 = 0,
and where the gauge fluctuations are not so strong as
to wash out the average of the gauge elements, i.e.
〈s±r,r′〉 6= 0. This leaves 〈szr,r′〉 and 〈ΦrΦr+ηreµ〉 undeter-
mined, and depending upon their values, different phases
can be realized.
a. U(1) QSL — When 〈szr,r′〉 = 〈ΦrΦr+ηreµ〉 = 0,

all physical (global) symmetries of the system are unbro-
ken. Due to the non-zero value of 〈s±r,r′〉, the spinons
are able to coherently hop and propagate. Thus this
phase may be characterized as a U(1) QSL with propa-
gating spinons and an emergent U(1) gauge field (which
appears in the mean field treatment by fluctuations of
the phase Ar,r′). This is the realization in gMFT of the
QSL discussed perturbatively in Ref. 7.
b. Coulombic ordered phase — When either
〈Φ†rΦr′〉 6= 0, 〈szr,r′〉 6= 0, or both, global physical
symmetries of the pseudospin Hamiltonian are broken.
For instance, 〈szr,r′〉 6= 0 implies time-reversal symmetry
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breaking and the presence of spontaneous magnetic
dipole moments oriented along the local 〈111〉 axes.
However, phases of this nature are not trivial ordered
states, since like the QSL, they host propagating decon-
fined spinons and an emergent gapless Coulomb gauge
field. A particular example of this type, dubbed the
“Coulomb ferromagnet”, was discussed in Ref. 15, but
more general such phases may occur when the full phase
space is considered. They do not, however, occur in the
gMFT solution in the following subsection.

2. Confined phase — Ising order

Another possible phase is one in which the gauge fluc-
tuations of the magnetic gauge field A are sufficiently
strong that they destroy the bond operator expectation
values, 〈s±r,r′〉 = 0. Roughly speaking, the expectation

value 〈s±r,r′〉 indicates how strong the gauge fluctuations
are. If it is non-zero, then the gauge fluctuations may not
be too strong, and if one includes their quadratic fluctu-
ations about the mean-field solution, one recovers the
physics of the Coulomb phase. If, however, 〈s±r,r′〉 = 0,
then already at the mean-field level, the gauge fluctua-
tions are very strong, and indeed there is no way to even
define small fluctuations of the phase of s±r,r′ , which cor-
responds to the gauge field. In this case, the amplitude
for spinons to hop vanishes, and so they do not coher-
ently propagate. This should be considered therefore a
confined phase. Since the sr,r′ are spin-1/2 operators, the
only state consistent with the above condition is polar-
ized along the z direction, so that 〈szr,r′〉 6= 0, implying
broken time-reversal symmetry and Ising magnetic order.
In this state, electric gauge fluctuations are insignificant,
and there are no emergent low-energy gauge fields. In-
deed, such a state would be considered a classically or-
dered spin ice33,34. In our calculations, we find that this
phase does not occur in the region of phase space we
studied.

3. Higgs phase — quadrupolar order

It is well known that in gauge theories there are two
ways to remove the gauge fields from the low energy
physics: confinement, as described above, and the Higgs
mechanism. In the Higgs mechanism, a boson carrying
the fundamental gauge charge condenses, leading to a
“Meissner effect” for the gauge flux and a gap for the
photon. Though the Higgs mechanism for the transition
seems very different from that occuring in confinement,
it is believed that, in the absence of global symmetries,
the confinement and Higgs phases are indistinct, and
can be adiabatically transformed into one another. In
particular, Fradkin and Shenker showed that when the
Higgs fields transform like the fundamental representa-
tion of the gauge group, the Higgs and confining phases
are smoothly connected.38 Therefore, like the confined

state discussed above, the Higgs phase(s) which occur
in gMFT are conventional states of matter, absence any
exotic excitations or topological properties. In our case,
however, the Higgs phases can be distinguished by sym-
metry from the confined one.

To see this, consider a state with spinon condensation
at wavevector k, i.e.,

〈Φr〉 = 〈Φk〉eik·r 6= 0. (17)

For the spinons to condense, they must obviously propa-
gate, so we must also assume 〈s±r,r′〉 6= 0. The mean field
result is then long-range ordering of pseudospins on the
XY plane (which corresponds to quadrupolar ordering in
physical terms) since

〈S+
r 〉 = 〈Φ†r〉〈s+r,r+eµ〉〈Φr+eµ〉 6= 0. (18)

We indeed find Higgs phases of this type in the solution
of the gMFT equations given below.

4. Charge 2 Higgs phase — Z2 QSL

The remaining possible phase is one in which the
charge 2 Higgs (spinon pair) condensate is non-vanishing,
〈Φr+ηreµΦr+ηreν 〉 6= 0, but the fundamental spinon is un-
condensed, 〈Φr〉 = 0. In this case, the U(1) gauge sym-
metry is broken down to Z2, and the resulting state is a
gapped QSL with only Ising-like gauge charges. Spinons
remain deconfined, but become mixtures of particles and
anti-particles, much like Bogoliubov quasiparticles in a
superconductor are mixtures of electrons and holes. Due
to the absence of spinon condensation, this state generi-
cally has vanishing spin expectation values and need not
break symmetries. Like the confined and Coulombic or-
dered phases, this state does not, however, occur as a
ground state in gMFT, in the parameter regime we have
so far studied.

〈szr,r±eµ〉 〈s
±
r,r±eµ

〉 〈Φr〉 〈ΦrΦr〉 〈Φ†rΦr±eµ〉
Ising order 6= 0 0 0 0 0

(confined)

QSL

U(1) 0 6= 0 0 0 0

Z2 0 6= 0 0 6= 0 0

(charge-2 Higgs)

XY order

U(1) 0 6= 0 0 0 6= 0

Classical 0 6= 0 6= 0 6= 0 6= 0

(confined Higgs)

TABLE II: Classification of possible phases occuring in the
gMFT treatment.



7

B. Self-consistent equations

Once the replacements in Eqs. (13,14) have been made,
the mean field Hamiltonian reduces to a sum of Hamil-
tonians,

H → HgMFT = Hs +HΦ, (19)

where Hs describes the gauge sector as decoupled “spins”
sr,r′ , and the spinon part HΦ contains only Φr,Φ

†
r and

Qr operators and is quadratic in them. The gauge part
Hs is trivially soluble, as different bonds are decoupled,
and each sr,r′ is then treated simply as a s = 1/2 spin in a
field. The spinon part, however, is non-trivial, and actu-
ally still strongly interacting, since Φr is actually defined
in terms of the fundamental rotor field ϕr, c.f. Eq. (10).
To proceed with it, we follow Refs. 36,15, and replace
the “hard” constraint on Φ†rΦr = 1 with a “soft” an av-
erage one, enforced by a Lagrange multiplier λr. This
is equivalent, quantum mechanically, to promoting the
spinon field to a complex rotor, with Φr = xr + iyr and
Qr = pxr + ipyr , where x and p variables are canonically
conjugate coordinates and momenta. After this substitu-
tion, HΦ becomes quadratic and soluble. The Lagrange
multiplier, appearing as a mass for Φr, is adjusted to
maintain 〈Φ†rΦr〉 = 1 on every site.

In the following, we use this formulation to calcu-
late the necessary expectation values and impose self-
consistency. We assume here a zero flux state, and no
breaking of translational symmetry. We also neglect the
Jz± coupling, in which case one can show that the en-
ergy is minimized when 〈szr,r′〉 = 0. Then in general there

are many variables: 4 distinct gauge fields 〈s+r,r′〉 on the
four orientations of diamond bonds, 8 spinon pair fields
(2 on a single site and 6 distinct orientations of pairs
connecting same-sublattice sites in different unit cells),
4 A-B sublattice mixing field on diamond bonds, and 2
Lagrange multipliers, one for each of the two basis sites.
This makes 18 distinct mean field parameters, a general
analysis of which is daunting. To proceed, we looked for
self-consistent solutions with fewer parameters. We em-
ployed a rather general ansatz, containing both pairing
and A-B sublattice mixing, but imposing some discrete
symmetry constraints. We discuss the comparison of the
energy of these solutions in the subsequent subsection.

1. Mean-Field Ansatz

We introduce the following ansatz including both pair-
ing and A-B sublattice mixing:

∆ = 〈s±r,r±eµ〉, (20)

χA0 = 〈ΦrAΦrA〉, (21)

χB0 = 〈ΦrBΦrB 〉, (22)

χAi = 〈ΦrB−eµΦrB−eν 〉, eµ − eν ∈ jk plane, (23)

χBi = 〈ΦrA+eµΦrA+eν 〉, eµ − eν ∈ jk plane, (24)

ξµ = 〈Φ∗r−eµΦr〉. (25)

As mentioned in the previous section, the gauge sector is
trivially soluble, leading to ∆ = 1/2. The spinon action
part can be rewritten in matrix notation:

SΦ =

∫
dωn
2π

∑
k>0

~Φ†k

(
M(k) +

ω2
n

2Jzz
I

)
~Φk, (26)

where

~Φk =


ΦAk
ΦA∗−k
ΦBk
ΦB∗−k

 , (27)

M(k) =


A11(k) A12(k) C(k) 0

A∗12(k) A11(k) 0 C∗(−k)

C∗(k) 0 B11(k) B12(k)

0 C(−k) B∗12(k) B11(−k)

 ,(28)

and Aα,β(k), Bα,β(k) and C(k) are defined as

A11(k) = B11(k) = −J±∆2
∑
µ 6=ν

e−ik·(eµ−eν),

A12(k) =
J±±∆2

2

∑
µ6=ν

(γµνχ
B
µν + γµνχ

B
0 e

ik·(eµ−eν)),

B12(k) =
J±±∆2

2

∑
µ6=ν

(γ∗µνχ
A
µν + γ∗µνχ

A
0 e
−ik·(eµ−eν)),

C(k) =
J±±∆2

2

∑
µ6=ν

8γµνξµe
ik·eν . (29)

Finally, to render the mean field problem solvable, we
replace the constraint |Φr| = 1 by the “softened” con-
straint 〈|Φr|2〉 = 1, and implemented the latter by in-
cluding a Lagrange multiplier term for each sublattice
into the action SΦ.

Using this formulation, the mean field Hamiltonian al-
lows one to calculate 〈HQED〉 (Eq.(11)) and minimize
this variational energy. We found and compared several
self-consistent solutions of the gMFT equations, which
are subsets of the general ansatz given above. First, we
considered two limits allowing for pairing, or A-B sublat-
tice mixing, but not both:

(i) ξµ = 0, χ
A(B)
0 6= 0, χA(B)

µν 6= 0, (30)

(ii) ξµ 6= 0, χ
A(B)
0 = χA(B)

µν = 0. (31)

While self-consistent solutions may be found for both
these cases, we find that the minimum energy solutions
always have either vanishing pairing/sublattice mixing
(i.e. describe the U(1) QSL) or exhibit spinon condensa-
tion.

However, the both condensed solutions are unnatural,
insofar as once a single Φ field is condensed, all the ex-

pectation values χ
A/B
0 , χ

A/B
i , ξµ would be expected to be
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non-zero. Guided by the above cases, we found a self-
consistent ansatz where all these were allowed to be non-
vanishing, with the relations χA0 = χB0 ,

∑
µ 6=ν γµνχ

B
µν =∑

µ6=ν γ
∗
µνχ

A
µν 6= 0 and ξ0 = ξi = −ξj = −ξk 6= 0, for

{i, j, k} and permutation of {1, 2, 3}. This more general
ansatz describes both condensed and uncondensed states,
and was found to capture all the physical minimum en-
ergy solutions.

2. Spinon condensation

In the gMFT scheme used here, Higgs phases in which
the single spinon field is condensed, 〈Φr〉 6= 0, also occur.
This may appear surprising since the single spinon field
was not introduced explicitly as an order parameter – see
Eqs. (13) and (14). Instead, spinon condensation occurs,
as discussed in Ref. 15, via the same mechanism as does
Bose-Einstein condensation in the non-interacting Bose
gas. In particular, when a condensate is present, the La-
grange multiplier λ adjusts itself self-consistently so that
the minimum energy spinon state lies, in the thermody-
namic limit, at precisely zero energy. For large but finite
volume, a non-intensive part of the λ leads to and con-
trols the condensate, manifesting itself via off-diagonal
long range order in the spinon Green’s function. This is
discussed in more detail in Appendix A 1 b. Captured in
this way, spinon condensation does not introduce any ad-
ditional self-consistent variables, and only requires care-
ful treatment of any zero energy modes and the infinite
volume limit. This in turn means that the above ansätze
describe Higgs phases as well, for appropriate values of
parameters.

C. gMFT Phase Diagram

We minimized the variational energy using the above
ansatz numerically (see Appendix A 1 b for the formula-
tion of the variational energy). In fact, the self-consistent
gMFT equations are solved for any local minima of the
variational energy, so it is sufficient to search for the
global minimum of the latter. That determines the T = 0
phase diagram as a function of J±/Jzz > 0 and J±±/Jzz
(we assume Jzz > 0 throughout). Note that by a canon-
ical transformation, S± → ±iS±, we can always choose
J±± > 0, without loss of generality. The results are
shown in Fig.3.

The full phase diagram contains three distinct phases
in addition to the classical point corresponding to
the nearest-neighbor spin ice: a deconfined U(1) QSL
phase and two Higgs phases, corresponding to XY
ferro-pseudospin (antiferro-quadrupolar) and antiferro-
pseudospin (noncoplanar ferro-quadrupolar) orders. Un-
fortunately, the Z2 spin liquid phase with non-zero pair-
ing but a spinon gap is never the minimum energy solu-
tion. The QSL or Coulomb phase occurs in the small

U!1"QSL AFQ

noncoplanar FQ

Spin Ice
0.1 0.2 0.3 0.40.0

0.2

0.4

0.6

0.8

J!#Jzz

J !
!
#J zz

FIG. 3: Phase diagram of two dimensionless parameters
J±/Jzz vs J±±/Jzz. Four distinct phases exist : classical spin
ice (at the origin), U(1) QSL, AFQ and FQ. (more details in
the main context)

J±, J±± region, consistent with perturbative expecta-
tions. In this model, infinitesimal J± and/or J±± interac-
tions “melt” the classical spin ice, creating a dynamical
“photon” excitation and emergent quantum electrody-
namics. This phase is found to be more stable against
J±± than to Jz±, the latter having been studied already
in Ref. 15.

The Higgs or ordered phases merit some further de-
scription. With increasing J±/Jzz but J±± = 0, the

U(1) QSL phase remains stable untill J±
Jzz
|c ≈ 0.19, at

which spinons start to condense at a wave vector k0 ≡ 0
for both A and B sublattices. This induces a classical XY
order categorized in Table.II and has the ordering struc-
ture shown in Fig.4 (a). This phase has already been
obtained by a classical MF analysis12, and in gMFT for
J±± = 015. From Eqs. (17) and (18), the spinon conden-
sate at k0 yields a ferroic ordering of the XY component
of pseudospins, for instance, given by

〈~Si〉 ≈ |φk0 |2x̂i, (32)

for pseudo-spin on sublattice i. It spontaneously
breaks the threefold rotational symmetry while the
twofold rotational symmetries are preserved. This
ferro-pseudospin ordering structure is interpreted as an
antiferro-quadrupolar order for Pr3+ case as is clear from
Eq. (3) and the relation

∑3
i=0 x̂i = 0. Namely, it

produces an f -electron distribution shown in Fig.4 (a).
When J±± > 0 is sufficiently large and J± is small, the
QSL becomes unstable to a different Higgs phase, with
spinon condensation at k̃0 ≡ 2π(100) or the symmetry
related points, on both A and B sublattices. Note that
quantitatively the QSL phase is wider in the J±± direc-

tion than in the J± one: J±±
Jzz
|c ≈ 0.31, compared to

J±
Jzz
|c ≈ 0.19. This suggests that the U(1) QSL phase is
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(a) (b)

(c) (d)

ŷ
x̂

ẑ

FIG. 4: (a) AFQ : an f -electron charge distribution under
the antiferro-quadrupolar order induced by a spinon conden-
sation 〈Φ〉 6= 0 at k = (000) wave vector. Here, we have
taken the Pr3+ case with the local ground-state non-Kramers
doublet α|4σ〉 − βσ|σ〉 + γ| − 2σ〉 with α ≈ 0.970, β ≈ 0.075
and γ ≈ 0.230, where |Jz〉 is an eigenstate of the z compo-
nent of the total angular momentum in the local frame11. (b)
Noncoplanar FQ : an f -electron charge distribution under the
noncoplanar ferroquadrupolar order induced by a spinon con-
densation 〈Φ〉 6= 0 at k = 2π(100) for the Pr3+ case. (c)
Antiferromagnet : an XY antiferromagnetic ordering induced
by a spinon condensation 〈Φ〉 6= 0 at k = (000) wave vector
in the case of half-integer spins. (d) Noncoplanar ferromag-
net : an XY noncoplanar ferromagnetic ordering induced by
a spinon condensation 〈Φ〉 6= 0 at k = 2π(100) in the case of
half-integer spins.

more stable against the J±± interaction than the J± in-
teraction. This can be understood from degenerate per-
turbation theory. The J±± interaction induces a non-
trivial contribution only at the sixth order, O(J6

±±/J
5
z ),

whereas the comparable term is induced already at the
third order in J±. As for the other Higgs phase, the or-
dering structure is understood again from Eqs. (17) and
(18). One of the symmetry-broken ground states is

(〈~S0〉, 〈~S1〉, 〈~S2〉, 〈~S3〉) ≈ |φk̃0
|2(ŷ0, ŷ1,−ŷ2,−ŷ3). (33)

It spontaneously breaks both the threefold rotational
symmetry and the cubic symmetry, and loses two of the
twofold rotational axes. This antiferro-pseudospin struc-
ture is interpreted as a noncoplanar ferro-quadrupolar
order in the Pr3+ situation, as is clear from Eq. (3) and
the relation (ŷ0 + ŷ1 − ŷ2 − ŷ3) ‖ (100). It creates an
f -electron distribution shown in Fig.4 (b). It is worth
to note that the above ferrro- and antiferro-pseudospin
structures, associated with the antiferro- and noncopla-

nar ferro-quadrupole orders shown in Fig.4 (a) and (b) for
Pr3+ cases, are directly related to XY-magnetic orderings
shown in Fig.4 (c) and (d) when we consider half-integer
spin rare-earth pyrochlores instead of integer spin case.

D. Phase transitions

Within gMFT, the phase transition between the U(1)
QSL and AFQ state is second order, as indicated by
a continuous change of the MF variables χµ from zero
to finite values across the phase boundary (solid line in
Fig.3). A low energy continuum action for this transition
is simply an Abelian Higgs theory, with a charged bosonic
matter field (representing the condensing spinons) cou-
pled to a dynamical gauge field A. When gauge fluctua-
tions beyond the mean field are included, such transitions
are usually driven weakly first order.35 It is interesting
that, within gMFT, the phase boundary between QSL
and AFQ phases is precisely vertical, as seen in Fig.3.
This is because in the QSL phase arbitrarily close to the
phase boundary, both spinon pairing and A-B sublattice
mixing is absent, so that the J±± interaction gives zero
contribution to the energy.

By contrast with the above case, we find that the QSL
to FQ transition is strongly first order already in gMFT.
This is indicated by the dotted line in Fig.3. Fluctua-
tion effects will not change this conclusion. Note that
this phase boundary has a positive slope, i.e. the FQ
state is suppressed by increasing J±. This is because J±
interaction prefers instead the AFQ state.

V. AF CASE (J± < 0) : π-FLUX STATE

A similar analysis can in principle be completed for
the case J± < 0, for which the XY-pseudospin order
is frustrated. This case, however, introduces significant
new complexities which are beyond the scope of the
present work, and will be discussed in a future publi-
cation. Here, we confine ourself to the line in the phase
diagram J±± = 0 in the AF pseudospin region.

As discussed in Sec.IV, the J± < 0 favors a π-flux
state, in which all the hexagons carry a flux ∇× A = π
(mod 2π). For calculations, it is necessary to choose a
gauge with a specific assignment of Ar,r′ having π flux, as
shown in Fig.2 (b). In this case, the unit cell is doubled
compared to the case of FM J± and contains four sublat-
tices (comprising 2 diamond sites in each of the 2 mag-
netic unit cells ). This gauge field pattern can be repre-
sented as Ar,r+eµ = εµQ · r where (ε0, ε1, ε2, ε3) = (0110)
and Q = 2π(100). In the QSL state, this leads to
〈s±r,r+eµ〉 = ∆eiεµQ·r, with ∆ = 1/2.

In this fixed gauge, we consider the spinon dispersions
for J±± = 0. Within gMFT (see Eq. (14)), the A and B
sublattices are decoupled and the spinon action is
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SΦ =

∫
dτ

∑
r∈A,B

1

2Jz
∂τΦ∗r∂Φr + λA

∑
r∈A

(|Φr|2 − 1) + λB
∑
r∈B

(|Φr|2 − 1)

+J±

{∑
r∈A

∑
µ6=ν

(Φ∗r+eµΦr+eν 〈s−r,r+eµ〉〈s
+
r,r+eν 〉+

∑
r∈B

∑
µ6=ν

(Φ∗r−eµΦr−eν 〈s+
r,r−eµ〉〈sr,r−eν 〉

}
(34)

=

∫
d3k

VBZ

dω

2π

(
ΦA∗k,1 ΦA∗k,2

)( ω2

2Jzz
+ λA + PA1 −PA2 − iPA3

−PA2 + iPA3
ω2

2Jzz
+ λA − PA1

)(
ΦAk,1
ΦAk,2

)
+ (A→ B) . (35)

Here

PA1 = 4J±∆2 cos
ky
2

cos
kz
2
,

PA2 = 4J±∆2 sin
kx
2

sin
ky
2
,

PA3 = 4J±∆2 cos
kx
2

sin
kz
2
, (36)

with PB1 = PA1 (k → k + π(111)), PB2 = −PA2 (k →
k + π(111)) and PB3 = PA3 (k → k + π(111)). We now
seek a QCP between the U(1) π-flux QSL and a magnet-
ically ordered phase. Since the A and B sublattices are
decoupled, it is sufficient to focus on one sublattice, for
instance, A. As before, we adopt a “softened” constraint
1
N

∑
r〈ΦA∗r ΦAr 〉 = 1, which leads, assuming no spinon

condensation, to√
Jzz
2J±

1

∆

∫
d3k

VBZ

1 + λ̃√
λ̃2−P 2

k√
2λ̃+ 2

√
λ̃2 − P 2

k

= 1. (37)

Here we defined λ̃ = λA/J±∆2 and P 2
k =∑

α=1,2,3

[
Pαk/J±∆2

]2
. The spinon condensation point

occurs when the integrand diverges, which gives λ̃c =√
maxkP 2

k = 4. By substituting λ̃c = 4 and evaluating
the integration in Eq. (35) at this point, we obtain

|J±|
Jzz

∣∣∣
c
≈ 4.13. (38)

This is the main result of this Section. We observe that
the QSL phase is much more stable to antiferromagnet
J± than to ferromagnetic J±. This is rather natural since
the competing XY pseudospin order is frustrated in the
antiferromagnetic case. We can understand this more an-
alytically from the spinon dispersion in the π-flux state,
which has the form Eαk =

√
(Pα1k)2 + (Pα2k)2 + (Pα3k)2.

This form, which describes states in either A and B sub-
lattice, has a degenerate set of energy minima, consist-
ing of lines in reciprocal space (e.g. EAk is minimized
for k = (k, 0, 0) with an arbitrary real number k, and
there are several other similar minimum energy lines).
In contrast, in the FM case, k = (000) uniquely gives
the minimum energy. This effectively lowers the spatial
dimensionality at low energies, increasing the stability of

the U(1) QSL. We note, however, that this line degener-
acy is emergent and is not protected by any symmetry.
Effects beyond gMFT should be taken into account to
further split this degeneracy. Such effects would be es-
sential in determining the nature of quadrupolar ordering
in the Higgs phase beyond the critical point. We expect
this physics to lead to a significantly richer phase diagram
when J±± interaction is included.

VI. SUMMARY

In this paper, we have studied the generic pseudospin-
1/2 model describing nearest-neighbor coupling of
ground state magnetic doublets of rare earth ions on the
pyrochlore lattice. We showed how to extend the gMFT
treatment of Ref. 15 to take into account all the sym-
metry allowed interactions, which requires a significant
extension for the method. We focused on the case of a
non-Kramers ion, for which three interactions exist: an
Ising spin-ice interaction Jzz (which we presume always
takes the non-trivial frustrated sign), a U(1) symmetric
planar exchange J± and an in-plane anisotropic exchange
J±±. For the case of ferromagnetic symmetric planar ex-
change, we obtained a complete gMFT solution. This
situation favors “zero flux” states in the gauge theory
formulation. We obtained a finite region in the phase
diagram supporting a U(1) quantum spin liquid (QSL)
state, described as a type of emergent quantum electro-
dynamics. Phase transitions from the U(1) QSL state to
two types of planar pseudospin orders were found to oc-
cur by the Higgs mechanism with increasing J± and J±±.
For large J± this yields an antiferro-quadrupolar phase,
while large J±± yields a ferro-quadrupolar state. In the
case of antiferromagnetic symmetric planar exchange, a
π-flux state is preferred in the gauge theory, and the gen-
eral solution was too complex to attempt here. However,
we did prove that the increased frustration in this regime
greatly increases the stability of the U(1) QSL state.

It is hoped that these results form some basis for under-
standing experiments in the non-Kramer’s pyrochlores
Pr2TM2O7 with TM=Sn, Ir, and Zr. Future studies
should complete the full phase diagram in the antiferro-
magnetic planar symmetric exchange case, and address
the accuracy of the gMFT results by comparison with
other methods, considering the role of further neighbor
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interactions, lattice distortions, and disorder.
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Appendix A: Mean-field approximation

In this section, we proceed two steps of mean-field
(MF) approximation to make Eq. (11) soluble.

1. Green’s functions and energy

a. Green’s function

Using the MF ansatz listed in Eqs. (20)-(25), the
Hamiltonian of particle part are written as

Hp =
Jzz
2

∑
r

Q2
r + H̃p (A1)

H̃p = −J±∆2
∑
r

∑
µ6=ν

Φ†r+ηreµΦr+ηreν

+
J±±∆2

2

∑
r

∑
µ6=ν

γ−2ηr
µν

(
χ

Γηr
0

)∗
Φr+ηreµΦr+ηreν +

3∑
α=1

4γ−2ηr
α χ

Γηr
α Φ†rΦ

†
r + h.c


+2J±±∆2

∑
r

∑
µ6=ν

γ−2ηr
µν ξµΦ†rΦr+ηreν + h.c

 (A2)

with Γ+ = B and Γ− = A, which leads to the action,

Sp =

∫
dτ

∑
r∈A,B

1

2Jzz
∂τΦ†r∂τΦr + H̃p

+
∑

r∈A,B
λr(|Φr|2 − 1)) (A3)

In Eq. (A3), the first term comes from integrating out Qr

and the last term is for Lagrange multiplier which con-
strains |Φr|2 = 1. In large N limit, the integrals become
sharply peaked at the saddle point, say λA(B). Hence
we pull out λr from the summation with its saddle point
value λA(B). This is consistent with softening local con-
straint |Φ|2 = 1 to its average

∑
r |Φr|2 = N . Using this

saddle point approximation, Eq. (A3) can be rewritten in
a Fourier transform and this results in Eq. (26). Fourier
transform of Φr,τ is defined,

Φr,τ =
1

Nu.c

∫
dω

2π

∑
k

Φk,ωe
−i(ωτ−k·r) (A4)

where k is wave vector, ω is an imaginary frequency and
Nu.c is the number of unit cell. Then Green’s functions

are represented as

Gαβ(k, ω) ≡ 〈Φ∗αΦβ〉 =
∑
m

2Jzzφ
m∗
α φmβ

ω2 + 2Jzz(λ+ εm)
(A5)

The Matsubara sum of frequency leads

Gαβ(k) =

∫
dω

2π
Gαβ(k, ω)

=
∑
m

2Jzzφ
m∗
α φmβ

2
√

2Jzz(λ+ εm)
=
∑
m

Jzz
ωm

φm∗α φmβ

(A6)

where φmα is the α th component of m th eigenvec-
tors for M , εm is the m th eigenvalues for M and
ωm =

√
2Jzz(λ+ εm).

b. Variational energy

We consider the energy 〈HQED〉 by taking an expec-
tation value of Eq. (11).
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〈HQED〉 =
Jzz
2

∑
r

〈Q2
r〉 − J±

∑
r

∑
µ6=ν

〈Φ†r+ηreµΦr+ηreν 〉〈s
−ηr
r,r+ηreµ〉〈s

+ηr
r,r+ηreν 〉

+
J±±

2

∑
r

∑
µ6=ν

{
γ−2ηr
µν

(
〈Φ†rΦ†r〉〈Φr+ηreµΦr+ηreν 〉+ 2〈Φ†rΦr+ηreµ〉〈Φ†rΦr+ηreν 〉

)
〈sηrr,r+ηreµ〉〈s

ηr
r,r+ηreν 〉+ c.c)

}
(A7)

First of all, let’s consider Jzz/2
∑

r〈Q2
r〉. As we men-

tioned in Sec.IV B, this term can be represented as

Jzz
2

∑
r

〈Q2
r〉 =

Jzz
2

∑
r

〈p2
xr

+ p2
yr〉 (A8)

=

∫
dω

2π

∑
k∈A,B

(1− 1

2Jzz
ω2〈ΦkΦk〉) (A9)

=

∫
dω

2π

∑
k

(
2− 1

2Jzz
ω2(G11(k, ω) + G33(k, ω))

)
(A10)

=
∑
k

∑
m

1

2
ωm(φm∗1 φm1 + φm∗3 φm3 ) (A11)

Here, we used 〈p2〉 = 1/Z
∫
dpdxp2e−

∫
dτ(p2+ipẋ+f(x)) =

1− 〈ẋ2〉 where Z is partition function.
Finally, Eq. (A7) can be rewritten as,

〈HQED〉 =
∑
k

∑
m

1

2
ωm(φm∗1 φm1 + φm∗3 φm3 ) +

∑
k

∑
m

2Jzz
2ωm

(A11φ
m∗
1 φm1 +A11φ

m∗
3 φm3 )

+
J±±∆2

2Nu.c

[{∑
kA

∑
m

2Jzz
2ωm

φm∗1 φm2

}{∑
kB

∑
m′

2Jzz
2ωm′

φm∗
′

4 φm
′

3

∑
µ6=ν

γµνe
−ikB ·(eµ−eν)

}
+
{∑

kA

∑
m

2Jzz
2ωm

φm∗1 φm2
∑
µ6=ν

γµνe
ikA·(eµ−eν)

}{∑
kB

∑
m′

2Jzz
2ωm′

φm∗
′

4 φm
′

3

}
+ c.c

]
+
J±±∆2

2Nu.c

[∑
µ6=ν

4γµν

{∑
kA

∑
m

2Jzz
2ωm

φm∗1 φm3 e
ikA·eµ

}{∑
kB

∑
m′

2Jzz
2ωm

φm∗
′

1 φm
′

3 eikB ·eν
}

+ c.c
]

(A12)

2. spinon condensation

When spinons condense at momentum k0, summation
of k in the first Brillouin zone can be replaced by

1

Nu.c

∑
k

g(k)→ g(k0)

Nu.c
+

1

Nu.c

∑
k 6=k0

g(k) (A13)

Spinon condensation also affects to a lagrangian multi-
plier term and leads λ to be

λ = λ0 +
λ′

Nu.c
2 (A14)

where λ0 is the minimum of εm.
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1

Nu.c

∑
k

∑
m

f
(
k, ωm(λ,k)

)
φm∗α (k)φmβ (k)→ f

(
k0, ωm̄(λ′,k0)

)
φm̄∗α (k0)φm̄β (k0)

+

∫
k6=k0

d3k

VBZ

∑
m

f
(
k, ωm(λ0,k)

)
φm∗α (k)φmβ (k) (A15)

m̄ is the m th eigenvectors of M which has the minimum
eigenvalue of εm.
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