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Motivated by the spate of recent experimental and theoretical interest in Mott insulating S = 1
triangular lattice magnets, we consider a model S = 1 Hamiltonian on a triangular lattice interacting
with rotationally symmetric biquadratic interactions. We show that the partition function of this
model can be expressed in terms of configurations of three colors of tightly-packed, closed loops with
non-negative weights, which allows for efficient quantum Monte Carlo sampling on large lattices. We
find the ground state has spin nematic order, i.e. it spontaneously breaks spin rotation symmetry
but preserves time reversal symmetry. We present accurate results for the parameters of the low
energy field theory, as well as finite-temperature thermodynamic functions.

I. INTRODUCTION

Magnetism in Mott insulators has blossomed into an
exciting frontier of quantum condensed matter physics
on both the experimental and the theoretical front1. The
magnetism in such materials is usually modeled by lat-
tice spin Hamiltonians. These are the simplest many-
body problems but yet they can be notoriously complex.
In most cases, one must resort to uncontrolled approxi-
mations to capture the rich landscape of emergent phe-
nomena. Given the central role they play, it is of great
importance to develop a collection of spin models that
can be studied in the thermodynamic limit in an unbi-
ased manner. These controlled results can serve as a
benchmark for approximate methods and are sometimes
necessary to study certain non-perturbative phenomena.
While in one dimension, recent advances in numerical
methods have allowed the study of almost any Hamilto-
nian2, in two and higher dimension quantum Monte Carlo
of a small set of “sign-problem” free models provide us
with the only unbiased view of the quantum physics of
spin models in the thermodynamic limit3.

The motivation for the “sign-problem” free model we
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FIG. 1. Loop configurations. The cartoons show how the
color (x, y, z) of a site and its nearest neighbor evolve in a
step of imaginary time and how this affects loop decomposi-
tion with (a) off-diagonal operators, e.g. |xx〉〈yy| (b) diagonal
operators, e.g. |xx〉〈xx|, and (c) no operator. In the MC up-
dates, updating the colors of the loops converts between (a)
and (b). Dividing or joining loops of the same color converts
between (b) and (c). In combination these updates are er-
godic. The horizontal bars denote the action of one of the
terms in the bond operator, Eq. (3).

consider here comes from two recently studied materials
with Ni2+ ions living on a triangular lattice, NiGa2S4

4

and Ba3NiSb2O9
5. Both materials are Mott insulators

with the Ni2+ ions in a S = 1 state. In surprising dis-
coveries, it was found that both materials have gapless
ground states but do not realize the 120◦ magnetically
order state predicted by a semi-classical analysis of the
antiferromagnetic Heisenberg model. Despite further in-
vestigations, the low temperature phase in these materi-
als is still under debate6. Prompted by the experimental
work, there has been a number of theoretical studies of
S = 1 models on the triangular lattice, using various ap-
proximate methods and exact diagonalization on lattice
with up to 21 sites. Depending on the model or method
chosen, researchers have found magnetic states, proxim-
ity to quantum criticality7 various spin nematics8–10 and
spin liquids11,12. One popular theoretical rationalization
for the unusual experimental behavior is the presence of
a strong biquadratic interaction13.

Inspired by the extensive experimental and theoretical
work we study a S = 1 model on the triangular lattice
with pure biquadratic exchange. Remarkably, we find
that this Hamiltonian does not suffer from the sign prob-
lem, and exploit this fact to study systems without any
approximation on lattices with more than 104 spins. Us-
ing our numerical results we confirm that the biquadratic
model has a spin nematic ground state, consistent with
previous approximate studies and small cluster exact di-
agonalization studies of the same Hamiltonian8,10. We
then make accurate estimates for the low energy param-
eters of this model, thanks to the large system sizes made
accesible by our method.

II. MODEL

The model we are interested in can be expressed in

terms of the spin-1 Pauli matrices ~S as,

Ĥ = −K
∑
〈ij〉

(
~Si · ~Sj

)2

(1)

where the sum is taken over pairs of nearest neighbor
sites of a triangular lattice. It is well known that the
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pure biquadratic model has a staggered SU(3) symme-
try on bipartitie lattices. On the non-bipartite triangu-
lar lattice studied here it has only the symmetry of spin
rotations. In the usual labeling of the eigenstates on a
site, the states |1〉, |0〉 and |1̄〉 are eigenstates of Sz with
eigenvalues 1, 0 and −1. When written in the form above,
the model, Eq. (1) appears to have off-diagonal matrix
elements with both positive and negative signs, violat-
ing the Marshall sign rule. The mappings to follow are
most transparent in the orthonormal basis of eigenstates
of Sx, Sy and Sz with eigenvalue 0. These are,

|x〉 =
1√
2

(|1〉 − |1̄〉)

|y〉 =
i√
2

(|1〉+ |1̄〉)

|z〉 = |0〉 (2)

It is possible to verify by inspection that in terms of these
basis states the biquadratic operator can be re-written
simply as a projector,(

~Si · ~Sj
)2

− 1 = 3|S〉〈S| (3)

where |S〉 = |xx〉+|yy〉+|zz〉√
3

. In this basis it is transparent

that the Hamiltonian, Eq. (1), satisfies the Marshall sign
criteria, all off-diagonal matrix elements are negative or
zero, even on non-bipartite lattices. We note in that al-
though as mentioned above the model does not have all
non-positive off diagonal matrix elements in the standard
Sz basis, this situation can be remedied by the phase ro-

tation |0〉 → i|0〉, in which case |S〉 = |00〉+|1̄1〉+|11̄〉√
3

, then

from Eq. (3) it has all its matrix elements non-positive.
The Marshall condition implies that our model Eq. (1)

has a positive definite path integral, if we use the
|x〉, |y〉, |z〉 basis. For concreteness we use the stochastic
series expansion (SSE) method to change from Hamil-
tonian to path integral at finite temperature T = 1/β,

in which Z =
∑
n

(−β)n

n! Tr(Ĥn)14 (The mapping below
goes through equally well in the usual Trotter path in-
tegral approach). An SSE configuration is specified by

assigning to each Ĥ in the trace one of the terms of
Eq. (3) that contributes to the Hamiltonian and its lo-
cation on the lattice, e.g. |xx〉ij〈zz|ij (see Fig. 1). The
partition function is a sum over all SSE configurations,
which at any given step in the evaluation of the trace
is described by specifying the basis state the system is
in at that time slice, i.e., by stating which one of the
three colors, x, y or z, is on each lattice point. Colors
can change through the action of the off-diagonal terms
in Eq. (3) in which two neighboring lattice points with
the same color can both switch at the next time slice to
a new color [see Fig. 1(a)]. It can now be shown that
every SSE configuration is identified with a unique loop
decomposition: loops are constructed by starting at a
point in space-time and moving along the world-line in
the time direction until a bond operator is encountered
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FIG. 2. Finite-temperature specific heat, Cv (circles) and
uniform susceptibility, χu, (squares) of the S = 1 biquadratic
model, Eq. (1) on a 64×64 triangular lattice. The results are
representative of the thermodynamic limit. The single spin
Curie law S(S + 1)/3T is shown for comparison as a dashed
line. We have plotted Cv/2 to make both data sets fit on the
same scale.

at which point one traverses to the neighboring site on
the bond and switches the direction of motion until the
loop closes; loops join space-time points with the same
color and every space-time point is connected to only one
loop (see Ref.15 for related details). Putting the entire
imaginary time history together, it is easy to see that
every world-line configuration maps uniquely to a config-
uration of closed tightly packed loops, each of which is
assigned one of three colors, x, y or z. The weight of any
loop configuration from the stochastic series expansion is
then given by the simple formula,

Z =
∑
l

(βK)nl

nl!
3Nl , (4)

where the sum over l is a sum over all closely packed loop
configurations, nl is the number of operator insertions
(shown in Fig. 1 as horizontal blue bars) and 3Nl is an
entropic factor that counts the number of ways colors can
be assigned to the Nl loops in l.

III. QUANTUM MONTE CARLO

We implement the described mapping of Eq. (1) to
a loop model and sampled the SSE configurations with
Monte Carlo updates. Loop configurations can be up-
dated by joining loops of the same color, dividing a loop
into two smaller loops and changing the color of a loop
(see the caption of Fig. 1). Such updates are ergodic and
can be chosen with the proper weights to satisfy detailed
balance. We note here that past quantum Monte-Carlo
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FIG. 3. Equal time spin structure factor. (left) Re[SS(~q)]
shown in the full first Brillouin zone of the triangular lattice
on a 32× 32 system at β = 32. (right) the peak height of the
structure factor at the corner of the BZ (so-called “K”-point)
as a function of inverse system size. The solid circles are the
QMC data and the solid line is a numerical fit that shows the
spin order vanishes in the thermodynamic limit.

work has looked at the biquadratic interaction using a
different algorithm in which S = 1 operators are decom-
posed into two S = 1/2 operators as well as a loop al-
gorithm similiar to the one described here, but in the
Sz basis. These studies were however restricted to bi-
partite lattices (1-d chains, 2-d square and 3-d cubic lat-
tices)16–18.

One can now derive expressions in the loop language
for various quantities of interest in the spin model. The
total energy E and the specific heat Cv ≡ 1

Ns

dE
dT can

be measured in the usual manner of the SSE14. The

uniform susceptibility χu ≡ β
Ns

〈(∑Ns

i=1 S
z
i

)2
〉

can be

shown to be exactly 2
3

〈∑
i (W τ

i )
2
〉

where W τ
i is the tem-

poral winding number and i is the index which sums over
the loops identified with a given configuration in space-
time. The spin stiffness is related to the well known wind-

ing number estimator ρs = T
〈∑

i (W x
i )

2
〉

, where W x is

the spatial winding number.
We begin by studying the specific heat and the suscep-

tibility of our magnet as it is cooled to its ground state.
The data in Fig. 2 on a 64×64 system is representative of
the thermodynamic limit. The peak in Cv(T ) at T ≈ 0.5
signals the lifting of the extensive entropy of the spins in
the high-temperature phase. The observed simultaneous
saturation of χu(T ) is the classic behavior expected of an
anti-ferromagnet. Even so, a study of the spin structure

factor SS(~q) ≡ 1
3L2

∑
r e

ik·r〈~S(r) · ~S(0)〉, shows no peaks
that scale to a finite value in the thermodynamic limit,
indicating the absence of simple magnetic long range or-
der as shown in Fig. 3.

A natural guess for a magnetic state with no Bragg
peaks in the spin structure factor is a spin nematic. Such
a state breaks spin rotational symmetry but preserves
time reversal symmetry. The order parameter for the
spin nematic is a traceless symmetric matrix,

Q̂αβ =
ŜαŜβ + ŜβŜα

2
− 2δαβ

3
. (5)
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FIG. 4. Finite-size scaling at fixed Kβ/L = 1. The upper
panel shows finite size scaling of the data for the nematic order
parameter, which in the thermodynamic limit extrapolates to
O2
Q = 0.1376(2). The lower panel shows the extrapolation of

the spin stiffness to a value ρs = 1.298(2).

where Ŝα are components of the S = 1 operator. Since
the order parameter is even in the spin operators, its
condensation does not imply breaking of time reversal.
In order to test for this order we measure the corre-
lation function CQ(r) =

∑
α〈Q̂αα(r)Q̂αα(0)〉, which is

easy to measure in our basis since it is diagonal. It
is possible to show that the O(3) invariant correlation
function is simply related by a constant, i.e., CQ(r) =
2
5

∑
αβ〈Q̂αβ(r)Q̂βα(0)〉. Fig. 4(a) shows a plot of O2

Q =
1
L2

∑
r CQ(r) versus 1/L, keeping the ratio of Kβ/L = 1

fixed so that we probe the ground state behavior. The fi-
nite value for O2

Q in the T = 0 and thermodynamic limit

(combined with no condensation in the magnetic struc-
ture factor) proves unambiguously that the ground state
of our model, Eq. (1), is a spin nematic. It is interesting
to ask how much our ground state deviates from a simple
product nematic state with no quantum fluctuations, a
wavefunction for which is simply, |Ψprod〉 =

∏
i |Sz = 0〉i.

In this state the 〈Qαβ〉 = δαβ/3− δαzδβz, from which we

conclude that (Oprod
Q )2 = 4/15 ≈ 0.26666.... This is the

maximum value the order parameter can take, if there
are no fluctuations. From the extrapolation in Fig. 4 we
find that (OQ)2 = 0.1376(2) in the real ground state,
the reduction of about 50% being due to the effect of
quantum fluctuations.

The breaking of the continuous O(3) spin rotational
symmetry results in gapless spin waves. Analogous to
past work on the Néel state19 the low energy effective
theory of the Goldstone bosons at leading order is char-
acterized completely by just two parameters, the spin
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FIG. 5. Determination of the spin wave velocity, c. In the
main panel we show data for the 〈W 2

x 〉 and 〈W 2
τ 〉 on an L = 32

system as a function of β/L. In the inset we show how the β/L
value at the crossing of the types of plots in the main panel
scales with system size. These are finite-size estimates for
1/c, from which we obtain c = 1.869(4) in the thermodynamic
limit.

stiffness, ρs, and the spin wave velocity, c. The stiffness
can be estimated by the usual winding number estima-
tor. Fig. 4 (b) shows a plot of ρs as a function of 1/L,
at fixed Kβ/L = 1. A finite thermodynamic value for ρs
provides further evidence for gapless spinful excitations
at long wavelengths. The spin wave velocity is a number
that converts the units of space into the units of time.
An estimator for the spin wave velocity, c, is hence the
ratio of L/β at which the anisotropic 2+1 dimensional
system behaves cubic. We compute this ratio for each

L by adjusting β until 〈Wx
2〉 = 〈Wτ

2〉. Then we carry
out a thermodynamic extrapolation of the finite size L/β
data to obtain an estimate for c. The data for the wind-
ing numbers for a 32×32 system is shown as an example
in main panel of Fig. 5. We fit polynomials through this
data and estimate the location of the crossing point for
each L studied. The value of L/Kβ at the crossing is
then plotted versus 1/L in the inset. Extrapolating to
the thermodynamic limit we obtain that the spin wave
velocity, c = 1.869(4). The estimates of the order param-
eter Qαβ , the spin stiffness ρs and the spin wave velocity
c, give a complete description of the low energy effective
field theory to leading order.

IV. SUMMARY

In conclusion, we have provided a model S = 1 hamil-
tonian with biquadratic interactions that is sign-problem
free on non-bipartite lattices. We have shown how the
partition function of this model maps to a remarkably
simple loop model with positive weights, see Eq. (4). In
this publications we studied how this mapping has al-
lowed for a detailed study of the spin nematic ground
state on the triangular lattice relevant to many recent
experimental and theoretical works and provided high
precision estimates for the ground state paramaters. Ex-
tensions of the current work to carry out unbiased numer-
ical studies of the role of disorder in quantum spin ne-
matics and deconfined critical points out of the nematic
phase20,21 are exciting directions for future research. An-
other field of experiments in which the nematic phase for
S = 1 spins has been discussed is in ultra-cold atoms in
optical lattices; it is hoped that our high precision re-
sults may be useful for guiding and testing experimental
efforts in this context22.
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15 Olav F. Syljůasen and Anders W. Sandvik. Quan-

tum monte carlo with directed loops. Phys. Rev. E,
66(4):046701, Oct 2002.

16 Naoki Kawashima and Kenji Harada. Recent developments
of world-line monte carlo methods. Journal of the Physical
Society of Japan, 73:1379, 2004.

17 Kenji Harada and Naoki Kawashima. Loop algorithm for
heisenberg models with biquadratic interaction and phase

transitions in two dimensions. Journal of the Physical So-
ciety of Japan, 70(13), 2001.

18 Kenji Harada and Naoki Kawashima. Quadrupolar order in
isotropic heisenberg models with biquadratic interaction.
Phys. Rev. B, 65(052403), 2002.

19 Sudip Chakravarty, Bertrand I. Halperin, and David R.
Nelson. Low-temperature behavior of two-dimensional
quantum antiferromagnets. Phys. Rev. Lett., 60(11):1057–
1060, Mar 1988.

20 Kenji Harada, Naoki Kawashima, and Matthias Troyer.
Dimer-quadrupolar quantum phase transition in the quasi-
one-dimensional heisenberg model with biquadratic in-
teraction. Journal of the Physical Society of Japan,
76(1):013703, 2007.

21 Tarun Grover and T. Senthil. Quantum spin nematics,
dimerization, and deconfined criticality in quasi-1d spin-
one magnets. Phys. Rev. Lett., 98(24):247202, Jun 2007.

22 Adilet Imambekov, Mikhail Lukin, and Eugene Demler.
Spin-exchange interactions of spin-one bosons in optical
lattices: Singlet, nematic, and dimerized phases. Phys.
Rev. A, 68(6):063602, Dec 2003.


