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We examine the dynamical magnetic response of the underdoped cuprates by employing a phe-
nomenological theory of a doped resonant valence bond state where the Fermi surface is truncated
into four pockets. This theory predicts a resonant spin response which with increasing energy (0
to 100meV) appears as an hourglass. The very low energy spin response is found at (π, π ± δ) and
(π± δ, π) and is determined by scattering from the pockets’ frontside to the tips of opposite pockets
where a van Hove singularity resides. At energies beyond 100 meV, strong scattering is seen from
(π, 0) to (π, π). This theory thus provides a semi-quantitative description of the spin response seen
in both INS and RIXS experiments at all relevant energy scales.

PACS numbers: 74.25.Ha,74.20.Mn,74.72.Gh

Introduction: Neutron scattering studies of the mag-
netic properties of underdoped cuprate superconductors
have revealed an unusual ‘hourglass’ pattern in the spin
excitation spectrum that persists into the normal state
[1]. This spectrum, centered on (π, π), can be divided
into three energy regions. At low energies the weight is
shifted to nearby incommensurate wavevectors, peaking
along the crystal axes. With increasing energy the weight
moves towards (π, π) and is more uniformly distributed
about this wavevector. Whether this inward dispersion
reaches (π, π) depends on the particular cuprate being ex-
amined. At still higher energies a uniform ring appears
evolving away from (π, π). Recent RIXS experiments [2]
have explored this high energy region further.

A phenomenological theory for the underdoped pseu-
dogap phase by Yang, Rice and Zhang (YRZ) [3] has
had considerable success in reproducing many electronic
quasi-particle properties [4], both in STM [5] and in
ARPES [6] experiments. Heretofore, a prediction of the
spin response based on this phenomenology has not been
developed. In part this is because YRZ was developed as
a phenomenological ansatz for the single particle Green’s
function (GF) [3] and it was unclear how to extend it
to the spin response, S(ω, k). In this letter we present
a derivation of YRZ from a microscopic model and then
use a consistent set of microscopics to calculate S(ω, k).
We show that this S(ω, k) reproduces key features of the
experiments just described, at all three energy scales, in
particular recent RIXS experiments [2]. We thus demon-
strate that the YRZ phenomenology can provide a con-
sistent description for a wide range of phenomena and
energies in the underdoped cuprates.

In doing so, this work entangles itself in the intensely
debated question of whether the magnetic response in the
cuprates arises from itinerant electrons or from localized
electrons [7, 8]. While we argue that the magnetic re-
sponse can be explained by itinerant electrons (the YRZ
quasiparticles), an important body of work [9, 10] as-
sociates this magnetic phenomena with spin and charge
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FIG. 1: a) The Fermi surface for hole doping, x = 0.12. Hole
pockets are marked in red (solid) while the lines of Luttinger
zeros are blue (dashed). Also marked is a nesting vector Q =
(0.5, 0.375) (in reciprocal lattice units), connecting the tip of
a pocket to the frontside of another pocket. Inset: At the tip
of the pocket there is a saddlepoint in the superconducting
quasi-particle dispersion and hence a van Hove singularity.
Energy contours are labelled in meV. The parameters used
here are t(x) = 70meV, t′(x) = −0.18t(x), t′′(x) = 0.12t(x),
∆0 = 0.34t(x) and ∆SC = 0.05t(x). b) The real parts of
χY RZ(ω,Q) and χ0(ω,Q) vs. ω. c) The imaginary parts.

density waves (i.e. stripes) which appear as incommensu-
rate quasi-elastic peaks in the magnetic response. While
we cannot decide this argument, we demonstrate that it is
possible at least for an itinerant picture to describe phe-
nomena such as the low energy hourglass that appears
naturally in the stripe picture.

YRZ Spin Response: The YRZ ansatz, as origi-
nally conceived, was for the single particle GF of the
underdoped cuprates. The associated Fermi surface is
truncated and composed of four nodal pockets (Fig. 1)
with area proportional to the doping, x. This GF is also
characterized by lines of Luttinger zeros which coincide
with the magnetic Brillouin zone (BZ) or Umklapp sur-
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face [12] (see Fig. 1). The ansatz was inspired by an
analysis of a system of weakly coupled Hubbard ladders
where a similar phenomenology was found [13].

To extend the YRZ ansatz to the spin response, we first
elucidate the connection between YRZ and the slave bo-
son (SB) treatment of the t-J Hamiltonian. SBs provide
a natural RPA-like form for the spin response and we in-
tend to adapt this to the assumptions of YRZ. In this way
we will arrive at a form for the spin response that takes
into account the same assumptions used in the YRZ form
of the single particle GF. We write the t−J Hamiltonian
as

H = −
∑
ijσ

tnnij c
†
iσcjσ −

∑
ijσ

tnnnij c†iσcjσ +
1

2

∑
ij

JHSi · Sj

≡ Hnn
t +Hnnn

t +HJH (1)

The Hamiltonian is divided into terms involving nearest
neighbour (NN) hopping, Hnn

t , next nearest neighbour
(NNN) hopping (and beyond), Hnnn

t , and a spin-spin in-
teraction, HJH . We now subject Hnn

t +HJH to the stan-
dard slave boson mean field theory (SBMFT) treatment
(leaving Hnnn

t to later). We thus factor the fermions,

c†iσ, into spinons, f†iσ and holons, bi via c†iσ = f†iσbi,
where the spinons and holons are subject to the con-
straint

∑
σ f
†
iσfiσ + b†i bi = 1. At this level the spinon GF

is [14]

Gfσ(ω,k) =
1

ω − ξ0(k)− ΣR(ω,k)
, (2)

where ΣR = |∆R(k)|2/(ω + ξ0(k)) and ∆R(k) =
∆0(x)(cos kx − cos ky). Here t(x) and ∆0(x) are dop-
ing dependent parameters. The single particle GF,
Gcσ, is given directly in terms of the spinon GF be-
cause we assume the bosons are nearly condensed, re-
placing the boson propagator 〈b†i (τ)bj(0)〉 by gt(x):
Gcσ(ω,k) = gt(x)Gfσ(ω,k) (in SBMFT gt(x) = x [14];
in the Gutzwiller approximation gt(x) = 2x/(1 + x) [3]).
This differs from the YRZ form in that the full dispersion
in the denominator is replaced by the dispersion due to
NN hopping.

Following a recent suggestion by P. A. Lee [11], we
bridge the gap between the SBMFT and YRZ, by re-
turning to the neglected NNN hopping, Hnnn

t . Treating
this term in mean field theory (MFT) moves the Lut-
tinger zeros off the magnetic Brillouin zone and so we
instead use an RPA like approximation (Fig. 2) leading
to

Gfσ(ω,k) =
1

ω − ξ0(k)− ξ′(k)− ΣR(ω,k)
. (3)

Here ξ′(k) = −4t′(x) cos kx cos ky − 2t′′(x)(cos 2kx +
cos 2ky) is the dispersion due to the NNN terms. The
spinon propagator in this form now gives the YRZ ansatz.
The key consequence of the non-MFT treatment of the

spinons holons 

ξ�(k) ξ�(k)ξ�(k)
n.n.n. hopping term 

FIG. 2: RPA form of the YRZ spinon propagator in terms of
SB propagators.

Hnnn
t and a central feature of our phenomenology is that

spinons and holons are bound together. This binding
distinguishes YRZ from the standard SBMFT approxi-
mation which produces an expanded Hilbert space with
independent spinons and holons. Lest this distinction be-
tween Hnnn

t and Hnn
t seem artificial, we derive in Ref.

15 a YRZ-like ansatz for Gfσ(ω, k) by treating Hnn
t and

Hnnn
t on the same footing, i.e. both as the glue binding

spinons to holons. This Gfσ(ω, k) differs only slightly in
the values of its various coefficients. Here however, we
make the distinction above to keep to the original YRZ
conventions of Ref. 3.

A second consequence is the absence of an anomalous
spinon propagator (or at least its coherent part), con-
sistent with an underlying assumption that spin corre-
lations are only short-ranged in the YRZ ansatz. This
form (Eqn. 3) applies in the normal phase and can be
generalized to the d-wave superconducting state, e.g. see
[4]. Note that YRZ gives a two-gap description of the
pseudogap phase with separate RVB (∆0) and pairing
∆SC gaps.

We now turn to the spin response: in SBMFT, neglect-
ing the effects of spinon–holon binding, this naturally
takes on an RPA-like form [14]:

S(ω,k) = − 3

π
Im

χ0(ω,k)

1− J(k)χ0(ω,k)
. (4)

Here χ0(ω,k) is the bare particle-hole bubble for the
spinons (including anomalous contributions) and J(k) =
J(cos kx + cos ky).

How now does our non-mean field treatment of Hnnn
t

alter this? Firstly we no longer include a contribution
to χ0 from the anomalous spinon GF. And to determine
how tnnn dresses the normal spinon Green’s functions,
we employ the same approximation that led to the YRZ
ansatz. This means the derivation of both Gfσ(ω, k) and
SY RZ(ω, k) are self-consistent. Namely we only allow
diagrams involving vertices where the boson lines of the
vertex are tied together. With this restriction, tnnn only
dresses the individual spinon propagators making up the
particle-hole bubble entering χ0. The YRZ spin response
is then

SY RZ(ω,k) = − 3

π
Im

χY RZ(ω,k)

1− J(k)χY RZ(ω,k)
, (5)

where χY RZ is simply a particle-hole bubble of YRZ
quasi-particles.
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In computing SY RZ(ω,k) we treat J as a fitting pa-
rameter for each doping, different from JH . We do not
expect the underlying mean field treatment to accurately
treat the renormalization of J which is inevitably dop-
ing dependent. In particular in the presence of strong
scattering connecting the magnetic Brillouin zone bound-
aries, we expect J to be strongly modified. This is not
merely a feature of YRZ but is generic to slave boson fla-
vored theories: in Ref. [14], J had to be sharply reduced
to produce an ordering transition at approximately the
correct doping.

Results: We begin with the lower energy (ω <
100meV) spin response in the underdoped cuprates which
has a universal hour glass shape [1, 16–18] as described in
the introduction, with strong incommensurate response
at low energies (i.e. ω ≈ 2∆SC) concentrated at four
points, (π, π ± δ) and (π ± δ, π).

FIG. 3: Constant energy slices of the spin response for x =
0.12 in the SC phase – the parameters used are the same as
listed in Fig. 1, with J = 140meV for our theory.

We see these general features in constant energy scans
of SY RZ(ω,k) as presented in Fig. 3 for the super-
conducting case. In this figure we have chosen pa-
rameters appropriate for the description of underdoped
La2−xSrxCuO4. At very low energies (0.05J) the primary
response is at (π, π ± δ) and (π ± δ, π) with δ = 0.16π.
As the energy increases there is a slight inward disper-
sion (δ decreases slightly) albeit in an uneven fashion
(there is a sudden movement inward at 0.125J) with the
response simultaneously becoming more isotropic (circu-
lar) about (π, π). This dispersion reverses at ω ∼ 0.2J
and begins to move outwards. In this energy range the

greatest response is found about (π ± δ′, π ± δ′). The
behavior is consistent with underdoped and optimally
doped La2−xSrxCuO4 [16–18]. It is also seen in stripe
stabilized La2−xBaxCuO4 [20] and YBCO [1, 19]. We
explicitly plot in Fig. 4a the k-point of maximal inten-
sity as a function of energy, comparing it with a number
of cuprates.

The response found at (π, π ± δ) and (π ± δ, π) at
0.05JmeV can be directly ascribed to transitions between
the fronts of the pockets and the tips of opposite pockets
(the vector Q in Fig. 1). In general the presence of the
pockets in the YRZ theory allows for low energy scat-
tering in a larger portion of the Brillouin zone than in
theories where the spinon Fermi surface consists of four
points coinciding with nodes of the SC order parameter
(see Figs. 1b and 1c for a comparison of χY RZ and χ0;
χ0 is the bare particle-hole bubble for the standard slave
boson description of the spin response [14]). Moreover in
the presence of a SC gap, the tips of the pockets see a
saddle point in dispersion with a corresponding van Hove
singularity further enhancing the low energy scattering.

-0.2 -0.1 0 0.1 0.2
(0.5+h,0.5) (r.l.u.)

0

0.2

0.4

0.6

0.8

1
E

/J

a)

0 0.1 0.2 0.3 0.4
E/J

0.3

0.4

0.5

0.6

0.7

0.8

In
te
gr
at
ed

In
te
ns
ity

sc
normal

b)

FIG. 4: a) Hourglass dispersion of the resonance near π, π.
The thick black line is the position of the maximum in-
tensity peak after integrating the numerical data over a
strip of width 2π/25 along the parallel direction, averaged
over sections of length 2π/33. Experimental data points
(appropriately rescaled) are taken from [1, 19]: ‘up’ tri-
angles, La1.90Sr0.10CuO4 [16]; circles, La1.875Ba0.125CuO4

[20]; ‘down’ triangles, La1.84Sr0.16CuO4 [18]; squares,
YBa2Cu3O6.5 [21] and diamonds, YBa2Cu3O6.6 [22]. b) k-
integrated spin response with and without a superconducting
gap.

In the normal state, low energy spectral weight is found
not just in directions parallel to the crystal axes but in
the nodal directions as well (see Fig. 5). This is a result
of the disappearance of the saddlepoint identified in Fig.
1 in the normal state. While parallel scattering still dom-
inates at low energies, the response is less concentrated
in such areas and weight does appear along the nodal
directions (at least in the LSCO family) [16, 17].

Underlying our calculations of the magnetic response
is the assumption that itinerant quasi-particles (even if
heavily dressed) can explain this response in the cuprates.
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FIG. 5: x = 0.12 and ω = 0.05J constant energy slices for the
SC phase (left) and the normal phase (right).

While there is evidence that at least part of the spin
response must be ascribed to localized spins [7, 20], there
is also evidence that impurities introduce local spins, e.g.
Zn doped into YBCO [23] and earlier studies. The full
cuprate magnetic response requires a mixture of the two.
However one experimental feature of the spin response
that points to itinerant quasi-particles is the depression
of the k-integrated spin response at ω < 2∆SC upon
decreasing T < Tc. This behavior is seen in both the
LSCO [16–18] and YBCO [24] families and we see it as
well in our calculations (Fig. 4b). We also see in Fig. 4b
that our calculated integrated intensity has a two peak
structure, with one peak at energies close to 0.05J and
one at energies at ≈ 0.12J . This doubling of peaks is seen
in near optimally doped LSCO [17, 18]. In underdoped
LSCO at least the lower energy peak has been observed
[16].

Turning to high energies, ω > 100meV, we find the
YRZ spin response is able to explain key features in the
spin response recently measured by RIXS. In Fig. 6
we plot the spin response for energies 100meV < ω <
300meV for two cuts in the Brillouin zone. We see two
features emanating from (0, 0). One disperses towards
(π, 0) as energy is increased (corresponding well with the
reported paramagnon-like excitation in the RIXS data of
[2] on a variety of cuprates). The other, with a consid-
erably greater spin velocity, evolves towards (π, π). This
dispersing paramagnon excitation naturally appears from
a two-band factorization of YRZ (an exact rewriting of
Eqn. 3) [4]:

Gfσ(ω,k) =
z+(k)

ω − ω+(k)
+

z−(k)

ω − ω−(k)
. (6)

The paramagnon results from a particle-hole excitation
from the lower band, ω−(k), to the upper band, ω+(k).
This feature is particularly robust as it only relies on the
factorization of YRZ into two effective bands. Note that
the low energy response is primarily due to intraband
transitions within the lower, ω−(k), band.

In conclusion we have shown that calculations of the
magnetic response based upon itinerant YRZ quasi-
particles satisfactorily reproduce key features of exper-
iments on the spin response of the underdoped cuprates
at both low and high energies.

FIG. 6: The spin response for energies from 100meV to
300meV, for cuts from (π, π) to (0, 0) to (π, 0) in the Bril-
louin zone (same choice of parameters as previously). Also
plotted are data points from [2]: circles, Nd1.2Ba1.8Cu3O6;
squares, YBa2Cu3O7; diamonds, Nd1.2Ba1.8Cu3O7; ‘up’ tri-
angles, YBa2Cu4O8; ‘down’ triangles, YBa2Cu3O6.6. Here
J = 140meV.
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