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We discuss possible pairing symmetries in the hexagonal pnictide superconductor SrPtAs. The
local lack of inversion symmetry of the two distinct conducting layers in the unit cell results in
a special spin-orbit coupling with a staggered structure. We classify the pairing symmetry by the
global crystal point group D3d, and suggest some candidates for the stable state using a tight-binding
model with an in-plane, density-density type pairing interaction. We may have some unconventional
states like s + f -wave and a mixture of chiral d-wave and chiral p-wave. The spin orbit coupling
is larger than the interlayer hopping, and the mixing between spin-singlet and triplet states can be
seen in spite of the fact that the system has a global inversion center.

PACS numbers: 74.20.Rp

The relation between crystal structure and pairing
symmetry plays an important role in unconventional
superconductivity.1 Pairing states can be categorized
with respect to the irreducible representations of the
point group of the crystal lattice and do not mix unless
they belong to the same representation. Since the Pauli
principle requires that the momentum part of singlet and
triplet states possess even and odd parity, respectively,
their mixing is prohibited in a system with inversion
symmetry. Superconductivity in non-centrosymmetric
systems, i.e., CePt3Si, opens however the possibility of
singlet-triplet mixing.2–4 It plays a key role to explain the
puzzling behavior of the observed nuclear spin-lattice re-
laxation rate T−1

1 .5 Microscopically, this mixing is caused
by an anti-symmetric spin-orbit coupling (SOC).

Recently, possible singlet-triplet mixing in centrosym-
metric systems with a local lack of inversion symmetry,
such as special crystal lattices or heterostructures, was
discussed.6,7 The recently-discovered hexagonal pnictide
superconductor SrPtAs8 (Tc = 2.4K) belongs to the for-
mer case of a special crystal structure. The unit cell pos-
sess a global inversion center and its point group is D3d.
There are two distinct honeycomb Pt-As layers within
the unit cell each of which has no inversion center. LDA
calculations revealed that these two layers are conduct-
ing with only a small inter-layer hopping, i.e., the system
is quasi-two-dimensional (quasi-2D). In addition, a large
splitting of the bands due to anti-symmetric spin-orbit
coupling (SOC) was seen. The consequences of this lo-
cal lack of inversion symmetry on magnetic properties
of the superconducting phase9 as well as on electronic
phenomena10 has previously been studied. In this work,
we aim at clarifying its role for the pairing symmetry.

Table I shows the classification of the pairing states
based on the global symmetry of the crystal D3d. We
assume intra-layer pairing due to the quasi-2D nature of
the system, and focus on on-site and nearest-neighbor-
site (nn-site) pairing interactions. It is intriguing that
in this table both even-parity spin-triplet and odd-parity
spin-singlet pairing appear. The reason is that we have

two distinct layers in the unit cell indicated by l = 1, 2,
and we can introduce an odd-parity factor (−1)l under
the global inversion operation. Multiplying this factor to
a certain pair wave function results in even-parity spin-
triplet or odd-parity spin-singlet states. Moreover, spin-
singlet and triplet states coexist in some irreducible rep-
resentations, namely A1g, Eg, A2u and Eu. Therefore,
mixing of spin-singlet and triplet states becomes possible
in these representations despite the parity conservation.

Since there is no experimental information on the pair-
ing symmetry at present, we discuss some potential can-
didates for the stable symmetry within a simple model.
We use a tight-binding description for electrons on the
Pt sites with a Hamiltonian consisting of two parts:
H = H0 + Hsc. The first part, H0, is the one-body
Hamiltonian introduced by Refs. 9 and 10 in order to
reproduce the LDA band structure of SrPtAs,

H0 =
∑

k,l,l′,s,b

ǫ
(b)
kll′c

(b)†
kls c

(b)
kl′s +

∑

k,l,s,b

αbλkl · σss′c
(b)†
kls c

(b)
kls′ ,

(1)
with

ǫ
(b)
kll′ = (ǫ

(b)
1k − µb)τ

0
ll′ +Re[ǫ

(b)
ck ]τ

1
ll′ + Im[ǫ

(b)∗
ck ]τ2ll′ ,

λkl = (−1)lλk = τ3llλk, (2)

where c
(b)
kls (c

(b)†
kls ) is the annihilation (creation) oper-

ator of an electron in the b-th band (b = 1, 2, 3)
with crystal momentum k, spin s in the l-th layer
(l = 1, 2). In the above equation, we introduced
σ̂0 (τ̂0) and σ̂i (τ̂ i), the unit and Pauli matrices act-
ing on the spin (layer) space. Including Pt nearest-
neighbor hopping within the plane, as well as nearest-
and next-nearest-neighbor hopping between the planes,

one finds ǫ
(b)
1k = t

(b)
1

∑

n cosk · Tn + t
(b)
c2 cos(ckz), and

ǫ
(b)
ck = t

(b)
c cos(kzc/2)[1 + exp(−ik · T3) + exp(ik · T2)]

with T1 = (0, a, 0), T2 = (
√
3a/2,−a/2, 0), and T3 =

(−
√
3a/2,−a/2, 0) the in-plane nearest-neighbor bond

vectors used in the tight-binding approach (a and c are
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TABLE I: (a) Spin-singlet, and (b) spin-triplet basis gap functions. This classification is based on D3d symmetry. The
index l = 1, 2 denotes two distinct layers. The definitions for functions of crystal momentum k are, ek ≡

∑
n cosk · Tn,

e+
k

≡

∑
n ωn cosk · Tn, ok ≡

∑
n sink · Tn, o

+
k

≡

∑
n ωn sink · Tn, e

−

k
= e+∗

k
,o−

k
= o+∗

k
, where Tn=1,2,3 is the bond vector

between nearest-neighbor sites, and ωn = exp[2nπi/3]. Note that we have even-parity spin-triplet part and odd-parity spin-
singlet part due to the odd-parity factor (−1)l.

Γ Parity (a) spin-singlet (b) spin-triplet

∆̂Γ,m
kl = iσ̂yψ

Γ,m
kl ∆̂Γ,m

kl = i[σ̂ · dΓ,m
kl ]σ̂y

A1g ψ
A1g

l = 1, ψ
A1g

kl = ek d
A1g

kl = (−1)lokẑ

A2g Even d
A2g

kl = (−1)lokx̂±

Eg ψ
Eg ,1
kl = e+

k
d
Eg,1
kl = (−1)lo+

k
ẑ

ψ
Eg ,2
kl = e−

k
d
Eg,2
kl = (−1)lo−

k
ẑ

A1u d
A1u

kl = okx̂±

A2u Odd ψA2u

l = (−1)l, ψA2u

kl = (−1)lek d
A2u

kl = okẑ

Eu ψEu,1
kl = (−1)le+

k
d
Eu,1
kl = o+

k
ẑ

ψEu,2
kl = (−1)le−

k
d
Eu,2
kl = o−

k
ẑ

in-plane and inter-layer lattice constants). An important
ingredient is the locally anti-symmetric SOC λkl, which
reads λk = ẑ

∑

n sink · Tn for each band. This term
is symmetric under global inversion, but anti-symmetric
under the local inversion operation in each layer. Due
to the Kramers degeneracy, there are only two branches
in the energy spectrum of the Hamiltonian (1) for each
band

ξ
(b)
k± = ǫ

(b)
1k − µb ±

√

|ǫ(b)ck |2 + |αbλk|2. (3)

We use tight-binding parameters from Ref. 9 which lead
to Fermi surfaces as shown in Fig. 1. With this param-
eters, the outermost band, labelled band 3, is the domi-
nant band with 74% of the total density of states (DOS)
due to its proximity to the van Hove singularity (vHS) at
the M points in the Brillouin zone (BZ). Note that the

ratio αb/t
(b)
c , which parametrizes the effect of the local

lack of inversion symmetry, is comparable or larger than
1. This large ratio plays an essential role for the mixing
between spin-singlet and spin-triplet state, as we will see
below.

For the pairing term Hsc in the total Hamiltonian we
assume intra-layer interactions including density-density
type attractive interaction, as well as inter-band pair
scatterings allowed by the kinematics. Using the basis
functions from Table I, Hsc is written in Fourier form as

Hsc =
∑

V bl;l′b′

s1s2;s3s4(k,k
′)c

(b)†
−kls1

c
(b)†
−kls2

c
(b′)
−k′l′s3

c
(b′)
k′l′s4

(4)

FIG. 1: Fermi surfaces at (a) kz = 0, and (b) kz = π/c.
Inner blue, middle red, and outer green lines show the Fermi
surfaces for band 1, band 2, and band 3, respectively. Note
that there are two branches in each band as suggested in Eq.
(3), but one of the branches in band 3 does not cross the
Fermi level at kz = 0.

with

V bl;l′b′

s1s2;s3s4(k,k
′) = −gbb′on

∑

Γ

ψ
(Γ)
l ψ

(Γ)∗
l′ (σ̂y)s1s2(σ̂y)s3s4

− gbb
′

nn

∑

Γ,m

ψ
(Γ,m)
kl ψ

(Γ,m)∗
k′l′ (σ̂y)s1s2(σ̂y)s3s4

− gbb
′

nn

∑

Γ,m

d
(Γ,m)
ikl d

(Γ,m)∗
jk′l′ (σ̂iσ̂y)s1s2(σ̂y σ̂j)s3s4 , (5)

where gbb
′

on and gbb
′

nn are the coupling constants for on-site
and nearest-neighbor channels. The pairing instability in
this model occurs in band 3 with its dominant contribu-
tion to the DOS. Smaller gaps then open on the other
two bands due to pair scattering.

We solve the linearized gap equation (the eigenvalue
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equation for Tc)

∆(b)
s1s2

(k) = −Tc
∑

k′,ωn

V bl;l′b′

s1s2;s3s4(k,k
′)

× [Ĝ(b′)(k′, iωn)∆̂
(b′)(k′)Ĝ(b′)(−k

′,−iωn)]
s3s4
l′k′ , (6)

where the sum runs over repeated indices, and

Ĝ(b)(k, iωn) =
{

σ̂0 ⊗ (iωnτ̂
0 + ǫ̂

(b)
k

) + αbλk · σ̂ ⊗ τ̂3
}−1

(7)

is the normal-state Matsubara Green’s function. All the
possible gap functions are listed as

∆̂
(b)Γ
kl = (8)



















































































∆̂
(b)
Γ (ψΓ

l + s
(b)
Γ ψΓ

kl + t
(b)
Γ d

Γ
kl · σ̂)iσ̂y Γ = A1g

∆
(b)
Γ d

Γ
kl · iσ̂σ̂y Γ = A2g

∑

m ∆
(b)
Γ,m

(

ψΓ,m
kl + t

(b)
Γ d

Γ,m
kl · σ̂

)

iσ̂y Γ = Eg

∆
(b)
Γ d

Γ
kl · iσ̂σ̂y Γ = A1u

∆
(b)
Γ (s̃

(b)
Γ ψΓ

l + s
(b)
Γ ψΓ

kl + d
Γ
kl · σ̂)iσ̂y Γ = A2u

∑

m ∆
(b)
Γ,m

(

s
(b)
Γ ψΓ,m

kl + d
Γ,m
kl · σ̂

)

iσ̂y Γ = Eu

where ∆
(b)
Γ and ∆

(b)
Γ,m=1,2 are the order parameters, and

s
(b)
Γ and t

(b)
Γ are the mixing ratios of subdominant spin-

singlet and triplet parts, respectively. We see in Γ = A1g

and A2u that there is a mixing between on-site and
nearest-neighbor-site pairings, besides the spin-singlet
and triplet mixing. We neglect the band dependence of
the intra-band couplings, namely, gon(nn) = g1,1on(nn) =

g2,2on(nn) = g3,3on(nn), and introduce repulsive inter-band in-

teractions g1,3on(nn) = g2,3on(nn) = −0.05, keeping g1,2on(nn) = 0.

This choice is motivated by the nesting-like structures
between band 2 and 3, and band 1 and 3, respectively.11

We can then calculate the state with the maximum eigen-
value Tmax

c at a point (gon, gnn) in the coupling constant
space.

Figure 2 shows the obtained phase diagram. The A1g

state is stabilized when the on-site attraction is dom-
inant, whereas the A2u state becomes stable in the pa-
rameter region where the nn-site attraction is comparable
to, or larger than the on-site coupling. From Table I and
Eq. (8), we see that both, the A1g and the A2u state,
have “s+f”-wave pairing symmetry, with the s-wave (f -
wave) component dominant while the f -wave (s-wave)
component with an odd-parity factor (−1)l is subdom-
inant. Therefore, the quasiparticle excitations are fully
gapped in the A1g state, whereas line nodes appear in
the A2u state. The A2u state invokes a full coherence
factor due to the s-wave component, and would show

FIG. 2: The phase diagram of the stable pairing states in the
coupling constant space (gon, gnn). The tight-binding param-
eters suggested by LDA calculation9,10 is used. The sequences

of dots show equal Tc lines at Tc/t
(2)
1 = 10−5, 10−4, 10−3 from

bottom to top.

both Hebel-Slichter peak and power-law type tempera-
ture dependence of T−1

1 like CePt3Si.
5 The gap structure

involves sign changes which give rise to zero-energy An-
dreev bound states at certain surfaces, e.g. for the normal
vector [010].12 Note that the relation of the bound state
and topology of the wave function has been discussed in
Refs. 13,14. This state belongs to the class AIII of the
topological classification15.

The locally anti-symmetric SOC introduces a mixing
between spin-singlet and triplet parts, which is propor-
tional to

∑

kl

ψΓ∗
kl

{

d
Γ
kl · αbλk

}

√

|ǫ(b)ck |2 + α2
bλ

2
k

(

1

ξ
(b)
k+

tanh
ξ
(b)
k+

2Tc
− 1

ξ
(b)
k−

tanh
ξ
(b)
k−

2Tc

)

.(9)

This suggests that the mixing is suppressed by a large
inter-layer hopping, as expected, since the system has
global inversion symmetry and the locally anti-symmetric
nature is smeared out when the three dimensionality
becomes strong. Such a behavior is also seen in the
magnetic susceptibility.9 In this system, however, the
inter-layer hopping has been estimated to be compara-
ble or smaller than the SOC9,10 and we hence expect
a finite value of mixing. Indeed, around the bound-
ary between the A1g and A2u phases in Fig. 2, we find
enhanced mixing ratios. Their magnitudes are almost

band-independent and typical values are (s
(b)
A1g

, t
(b)
A1g

) =

(−0.51, 0.12) in the A1g phase, and (s̃
(b)
A2u

, s
(b)
A2u

) =
(0.15,−0.18) in the A2u phase (definitions of the ratios
are given in Eq. (8)).

Figure 3 shows the phase diagram for a shifted chemi-
cal potential such that band 3 approaches the vHS. The
enhanced DOS naturally leads to reduced coupling con-
stants for the same Tc as compared to the previous sit-
uation. More remarkably, the Eg state shows up in the
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FIG. 3: The phase diagram of the stable paring state in the
coupling constant space (gon, gnn) in the DOS enhanced sit-
uation, where the Fermi level is located at the vHS point
of band 3. The sequences of dots show equal Tc lines at

Tc/t
(2)
1 = 10−5, 10−4, 10−3 from bottom to top.

region where the on-site coupling is repulsive. One of the
reasons for its stability is that the amplitude of the sin-

glet component |ψEg ,m

k,l | has peaks at the saddle points,
which is compatible with the Fermi surface structure.
This phase involves two degenerate basis states indicated
bym = 1, 2 in Eq. (8), and they make up a Kramers pair.
A fourth-order analysis of the Ginzburg-Landau theory

yields to degenelate states (∆
(b)
Eg ,1

,∆
(b)
Eg,2

) = (1, 0), (0, 1),

which both break time-reversal symmetry. We focus here

on the first configuration and set ∆
(b)
Eg ,2

= 0. Expand-

ing the spin-singlet component around the zone-central

axes kx = ky = 0 gives ψ
Eg ,1
k,l = (kx + iky)

2 with
dx2−y2+idxy-wave symmetry, or chiral d-wave symmetry.
Note that dx2−y2 and dxy components are degenerated in
the three-fold rotational symmetry. The same expansion

for the spin-triplet part yields d
Eg,1
kl = (−1)l(kx − iky)ẑ

with chiral p-wave symmetry like Sr2RuO4.
16 The chi-

ral d-wave part has Lz = +2, whereas the chiral p-
wave part Lz = −1 (Lz: z-component of the relative
angular momentum of the pair). These states can mix

with each other as indicated by Table I.21 The mixed
state is classified into class A in the scheme of the topo-
logical classification.15 Due to the chiral nature of the
pairing, this state has a non-zero value for the Chern
number defined by the vorticity of the quasiparticle wave
function in k space17,18 and supports chiral edge states
topologically.19,20

Our analysis provides insight into the basic trends of
the hexagonal superconductor SrPtAs whose electrons
experience a locally non-centrosymmetric environment.
The A1g state is stable in the electron-phonon coupling
limit where on-site attraction is dominant. On the other
hand, in the strongly-correlated limit with on-site re-
pulsion or strong nearest-neighbor attraction, the A2u

state is stabilized. In this state, line nodes coming from
the spin-triplet component cause a power-law behavior of
T−1
1 , whereas a Hebel-Slichter peak arises slightly below
Tc due to the coherence factor of the spin-singlet compo-
nent, in analogy with CePt3Si.

5 Such a behavior would
be a strong signal of the locally anti-symmetric SOC. As
mentioned, the nodal structure results in Andreev bound
states at a certain surface,12 which is related to the topol-
ogy of the bulk state.13,14 The Eg state is possible in
some particular cases like DOS enhanced situation ow-
ing to the vHS of the saddle points in the hexagonal BZ.
This state breaks time-reversal symmetry whose signal
could be detected by µSR measurement for spontaneous
magnetization around impurities and also the Kerr rota-
tion experiment, for examples. The state has chirality
which is characterized by the Chern number, and leads
to topologically-protected chiral edge states.19,20
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