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We develop a general framework, which combines exact diagonalization in small clusters with
a density matrix variational principle, to study frustrated magnets at finite temperature. This
thermodynamic hierarchical mean-field technique is used to determine the phase diagram and mag-
netization process of the three-dimensional spin-1/2 J1-J2 antiferromagnet on a stacked square
lattice. Its non-magnetic phase exhibits a thermal crossover from a quantum to a classical para-
magnet at a temperature T = T0 which can be extracted from thermodynamic measurements. At
low temperature an applied magnetic field stabilizes, through order-by-disorder, a variety of phases
with non-trivial spin textures and a magnetization plateau at half-saturation which continuously
disappears at T ∼ T0. Our results are relevant for frustrated vanadium oxides.

PACS numbers: 75.10.Jm, 75.10.Kt, 75.40.Cx, 75.60.Ej

Introduction.– Frustrated magnetic materials have
been focus of active condensed matter research in the
past two decades1. In these systems, competing interac-
tions and frustrated lattice topology often lead to fasci-
nating effects, e.g. magnetic monopoles2,3 in spin ice ma-
terials or magnetization plateaux in an applied magnetic
field4,5, and stabilize exotic quantum states of matter,
such as spin liquids6 or valence bond solids7. Under-
standing these paramagnetic phases, which do not break
any obvious global symmetry and thus are not necessar-
ily identified by an order parameter, is of fundamental
interest in material physics.

The theoretical description of frustration-driven phe-
nomena is extremely challenging, especially in spatial di-
mensions larger than one. For example, frustrating inter-
actions render large-scale quantum Monte-Carlo (QMC)
simulations impractical due to the “sign problem”8.
Various approaches were developed to tackle frustrated
magnets9. One class of methods proposes an expansion
around a magnetically-ordered state (spin-wave and se-
ries expansions), or in certain limiting cases, e.g. high
temperature. Another class focuses on ground state
(GS) properties of the system (coupled cluster and Lanc-
zos methods). Meanwhile it is both theoretically and
experimentally6 relevant to inquire: What are potential
signatures of magnetic frustration in the thermodynamic
properties of a given material? Clearly, quantum effects
due to a non-trivial GS will become apparent at tem-
peratures of the order of the characteristic energy scales
involved in the formation of that particular GS.

In the present work we address the above question.
We develop an unbiased and general framework aimed
at studying the interplay between quantum and thermal
fluctuations in frustrated magnets. Our method couples
the recently developed hierarchical mean-field (HMF)
theory10 and the well-known thermodynamic variational
principle11. A key idea is the realization that various
competing local orders can only be captured within an
exact diagonalization scheme, while transitions between
them will be correctly described only in an infinite sys-
tem. Hence, one starts by partitioning a lattice into rel-

atively small spin clusters (degrees of freedom) in ac-
cordance with point-group symmetries. These new de-
grees of freedom provide a language in which the original
model Hamiltonian is represented. Approximations are
introduced in the form of a variational principle applied
to the free energy in the new representation. Our ap-
proach relies on numerical as well as analytical efforts:
provided the cluster is chosen properly, even a simple
variational ansatz for the density matrix (DM) yields a
complete phase diagram of the system. Results can be
systematically improved by considering larger clusters or
more complicated trial DMs. Once the system DM is
known, any observable can be computed even inside non-
magnetic (paramagnetic) phases, in contrast to the usual
mean-field (MF) techniques which only yield instabilities
of the magnetically-ordered states.

We illustrate the thermodynamic HMF (THMF) for-
malism by studying the phase diagram at finite temper-
ature T and properties in an applied magnetic field of
the “stacked” J1-J2 model12–14 which describes a spin-
1/2 Heisenberg antiferromagnet on an orthorhombic lat-
tice with first (J1) and second (J2) neighbor interactions
in the ab-plane, and a nearest-neighbor (NN) exchange
(JC) along the c-axis. This model is a good approxi-
mation for layered vanadium oxide materials15–17, such
as Li2VO(Si,Ge)O4

18 and PbVO3
19. Previous works in-

dicate that at T = 0 the J1-J2-JC model exhibits a
quantum paramagnetic phase whose stability can be con-
trolled by changing JC . We show that this phase persists
even at finite T and introduce an important temperature
scale, T0, at which a crossover from quantum to classi-
cal paramagnetic behavior takes place. Numerical value
of T0 can be extracted from thermodynamic or magne-
tization measurements. Below T0, an interplay between
quantum fluctuations inside the paramagnetic region and
external field results in a variety of phases characterized
by non-trivial magnetic orders, and leads to a magneti-
zation plateau around half of the saturation field. Our
findings are directly relevant for the frustrated perovskite
PbVO3 which shows no magnetic order and is believed
to realize a J1-J2 quantum paramagnet19.
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The THMF method.– Let us consider a quantum spin
model defined on a lattice with N sites. Following the
HMF prescription10, we partition the lattice into N�

clusters of Nq sites each, so that N = N�Nq. It is as-
sumed that eigenstates of an isolated cluster are known.
Each cluster state |a〉 can be associated with a Schwinger
boson γ†

a, subject to a constraint
∑

a γ
†
aγa = 1. It is im-

portant to note that the version of THMF method de-
veloped below treats this constraint exactly, a condition
that is crucial for the method to be variational.
In terms of “cluster” degrees of freedom the original

Hamiltonian of the system can be written as:

H =
∑

i

(H0)abγ
†
iaγib +

∑

ij

(Vij)
a′b′

ab γ†
ia′γ

†
jb′γjbγia, (1)

with H0 and V being the cluster self-energy and inter-
cluster interaction, respectively. The subscript i labels
different clusters in the coarse-grained lattice and sum-
mation over doubly repeated indices is assumed. The
range and type of couplings in the second term are de-
termined by the original model. Each spin (and there-
fore each cluster) has νλ links of type-λ (λ = 1, 2, . . .)
with corresponding interactions Vλ. For instance, on a
square J1-J2 lattice there are ν1 = 2 NN and ν2 = 2
next-NN (NNN) links per site. The Hamiltonian (1)
operates on a Hilbert space spanned by the products

|{a}〉 =
∏

i γ
†
iai

|0〉, where |0〉 is the unphysical Schwinger
boson vacuum corresponding to all “empty” clusters.
The THMF theory is a variational approach with re-

spect to the free energy. Here we consider a simple trial

DM ρ0
[

HMF

]

= e−K/T /Z0 with K =
∑

i

(

HMF

)

ab
γ†
iaγib,

where the Boltzmann constant kB ≡ 1, and the MF
Hamiltonian HMF, whose matrix elements play the role
of variational parameters11, is self-consistently deter-
mined by minimizing the free energy F = E − TS =
Tr ρ0(H + T ln ρ0) = Tr ρ0(H −K)− T lnZ0. The parti-
tion function can be expressed in terms of the eigenvalues

En of HMF as Z0 = Z
N�

1 with Z1 =
∑

n e
−En/T . Then

the free energy becomes:

F

N�

= −T logZ1+tr1ω1

[

H0+
∑

λ

νλtr2(Vλ)12ω2−HMF

]

.

Here ω = e−HMF/T /Z1 is the single-cluster DM, “tr”
denotes a trace over single-cluster MF states, and

tr1tr2(Vλ)12ω1ω2 = (Vλ)
a′

1
a′

2

a1a2
ωa1a′

1
ωa2a′

2
.

A simple calculation yields the MF Hamiltonian11:

(HMF)a′a = (H0)a′a + 2
∑

λ

νλ(Vλ)
a′b1
ab2

ωb2b1 . (2)

Using its eigenstates Rn
a one can compute the DM ω:

ωab =
∑

n

e−En/TRn
a (R

n
b )

∗

/

∑

n

e−En/T (3)

and the free energy F/N = (1/2Nq)Trω(H0 − HMF) −
(T/Nq) lnZ1. In the limit T → 0 only the GS eigenpair

Figure 1. The J1-J2-JC lattice. Solid, dashed and dotted
lines denote J1, J2 and JC exchange interactions respectively.
Shaded cubes are clusters used in the THMF calculation.

(E0, R
0) contributes to the DM (3), i.e. ωab → R0

a(R
0
b )

∗,
and we recover the T = 0 HMF results10.
Expressions (2) and (3) define the THMF self-

consistent (in terms of ωab) scheme. Any local observable
〈O〉 can be computed as 〈O〉 = trωO.
J1-J2-JC model.– We now use the THMF method to

study the J1-J2-JC model12 (Fig. 1):

H =

(

J1
∑

〈ij〉

+J2
∑

〈〈ij〉〉

+JC
∑

〈ij〉z

)

SiSj − h
∑

i

Sz
i , (4)

where all couplings J1,2,C are positive, Si is a spin-1/2
operator at site i and h is an external magnetic field. This
model describes a three-dimensional (3D) analog of the
J1-J2 antiferromagnet20 defined on a cubic lattice with
intralayer NN (〈ij〉) and NNN (〈〈ij〉〉) interactions J1 and
J2 respectively, and an interlayer NN (〈ij〉z) exchange
JC . In the following we adopt the units J1 ≡ 1.
At h = T = 0, the coupling JC can be viewed as a

tuning parameter controlling quantum effects associated
with frustration. In particular, for JC > J0

C the quantum
paramagnetic phase of the J1-J2 model disappears and
the system exhibits a direct 1st order transition from
Néel to a columnar antiferromagnetic (AF) state. For
JC < J0

C there is an intermediate non-magnetic region
which appears for a finite range of J2 and vanishes at J0

C .
Thus the point [J2(J

0
C), J

0
C ] is a multicritical point where

three phase boundaries converge. There seems to be a
controversy regarding the order of phase transitions oc-
curring at these boundaries: spin-wave studies13 predict
one 2nd and two 1st order lines, while series expansions14

indicate that all phase boundaries are 1st order. Our
analysis supports the spin-wave scenario21.
We apply the THMF theory to compute the finite-

temperature phase diagram of Hamiltonian (4). While
the effect of thermal fluctuations on ordered phases is well
known, their role inside a quantum non-magnetic state is
unclear. Since this state does not break any continuous
symmetry, the system can only undergo a crossover from
a quantum to a standard classical paramagnet. We will
show how the corresponding temperature scale can be
deduced from experimentally accessible thermodynamic
quantities, such as specific heat or uniform susceptibil-



3

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

T

J2

JC

AF C

P

Figure 2. Phase diagram of the J1-J2-JC model at h = 0
(J1 = 1). There are three phases: (π, π, π)-Néel antiferromag-
net (AF), (0, π, π)-columnar AF (C), and paramagnet (P).

ity. We also study properties of the J1-J2-JC model in
an applied magnetic field. In the paramagnetic phase
the magnetization curve has a plateau, similar to that
of Ref. 22 obtained for the two-dimensional (2D) J1-J2
model at T = 0. We demonstrate that with increasing
field, a system exhibits a set of metamagnetic transitions
characterized by non-coplanar spin textures.
Application of the THMF technique starts by selecting

a proper degree of freedom. Since the J1-J2-JC lattice
has an orthorhombic unit cell with symmetry D2h

23, the
smallest cluster compatible with this symmetry is a cube,
shown in Fig. 1. Each cluster has 6 NN (4 in the ab-plane,
2 along the c-axis) and 4 NNN clusters in the ab-plane;
i.e. ν1 = ν2 = 2 and νC = 1 in (2). Next, we compute the
matrices H0 and V in Eqs. (1) and (2) using the method
of Ref. 10. Finally, ωab is determined self-consistently
using Eqs. (2) and (3).
Finite-T phase diagram.– The zero-field phase dia-

gram of the J1-J2-JC model (4) is presented in Fig. 2.
At T = 0 and JC < J0

C there exist three phases: AF with
the wavevector Q = (π, π, π), plaquette quantum para-
magnet (P), and columnar AF (C) with Q = (0, π, π) or
(π, 0, π). The magnetic phases are characterized by an
order parameter of the form Mi = 〈Si〉 = MQeiQxi. The
transition AF-P (P-C) is 2nd (1st) order for all values
of JC . This conclusion is consistent with the phase dia-
gram of the J1-J2 (JC = 0) model10 and agrees with the
spin-wave13 and coupled cluster12 analysis. For JC > J0

C

there is only a 1st order AF-C transition. The THMF
calculation yields J0

C(T = 0) ∼ 0.28− 0.30, in agreement
with previous works12–14. The real-space structure inside
the P-region is plaquette crystal-like with layers covered
with 2× 2 plaquettes, each being in its singlet GS. This
state is similar to the paramagnetic GS of the 2D J1-J2
model10 and is stabilized because for the P-phase JC is
quite small, so the system exhibits quasi-2D behavior.
With increasing T the ordered AF- and C-states are

suppressed via a 2nd order (classical) phase transition
at a Néel temperature TN (J2, JC), which is accompa-
nied by a jump in the magnetic specific heat Cv, see
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Figure 3. (a) Specific heat Cv for the phases in Fig. 2 at
JC = 0.1: AF (J2 = 0.1), P (J2 = 0.5) and C (J2 = 0.8). (b)
Uniform susceptibility χ0 for the paramagnetic phase (main
plot), and magnetic states (inset) with arrows indicating the
Néel temperature. Parameters are the same as in panel (a).

Fig. 3(a). Since the THMF method ignores long-range
fluctuations, TN remains finite even in the 2D limit
JC = 0, which constitutes a violation of the Mermin-
Wagner theorem24 common to MF theories. We note
that in the C-state along with the columnar magnetiza-
tion Mc one can introduce an Ising order parameter25,26

σ = 1/N
∑

x,y Sx,y

(

Sx+1,y − Sx,y+1

)

, with the summa-
tion extending over N sites of the original lattice and
(x, y) ≡ i. This Z2 order parameter is not subject to the
conditions of the Mermin-Wagner theorem and vanishes
at a non-zero temperature25 via a 2nd order phase tran-
sition. However, at the HMF level σ and Mc vanish at
the same Néel temperature.
Inside the P-phase, a crossover takes place from quan-

tum (at low T ) to classical (at high T ) behavior. Because
the paramagnetic GS is gapped, Cv exhibits a peak [Fig.
3(a)]. We argue that the position of this peak serves as an
estimate of the crossover temperature T0 at which ther-
mal fluctuations become comparable to the gap in the
GS. For instance, at J2 = 0.5 and JC = 0.1, T0 ∼ 0.3.
The gap in the P-state manifests itself in an activated
behavior of the uniform linear magnetic susceptibility
χ0(T ) = ∂Mz/∂h|h=0, presented in Fig. 3(b). Contrary
to the ordered AF- and C-states where χ0(T = 0) is fi-
nite and has a peak approximately at the corresponding
TN , for the P-phase χ0(T = 0) = 0 and shows a broad
maximum around T0. Since the P-phase has a plaquette
structure, it is natural to examine the behavior of various
plaquette “order-parameters”. We considered the func-
tions F4 = 1/N

∑

x,y Sx,y

[

(−1)xSx+1,y + (−1)ySx,y+1

]

and Q = 1/2N
∑

(P1234 + P−1
1234) introduced in Refs. 26

and 27, respectively. In the expression for Q the summa-
tion takes place over plaquettes in xy-planes and P1234 is
an operator of cyclic permutation of plaquette vertices.
Both functions remain finite and decay as ∼ 1/T at large
temperature. The crossover manifests itself through a
peak in dF4/dT and dQ/dT around T0. As any real-space
method, the THMF theory involves explicit translational
symmetry breaking (cf. Ref. 21), predicting a crossover
inside the paramagnetic phase. In an exact thermody-
namic limit solution this crossover may become a phase
transition because of melting of the plaquette crystal.
Now let us consider transitions between different

phases, which are triggered by tuning J2 while keeping
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Figure 4. (a) Magnetization process of the J1-J2-JC model
with J2 = 0.5, JC = 0.1, and Msat = 1/2. Main panel: Total
magnetization M versus applied field at T = 0 and schematic
spin profiles in the corresponding field ranges (the length of
the arrows is proportional to the magnitude of the spin ex-
pectation values). Inset: M at finite temperature T = 0.16
(solid line) and T = 0.3 (dotted line). (b) and (c) Tempera-
ture dependence of the specific heat and M at h = 2.5. The
2nd order phase transition happens at T ∼ T0.

T > 0 and JC fixed. The transition AF-P remains 2nd
order. On the other hand, the transition P-C is clearly
discontinuous at low T because symmetries of the two
phases are not related by the group-subgroup relation10.
At higher T (still not destroying the magnetic order),
the jump in the columnar magnetization vanishes and
the transition becomes continuous.
Finally we compare the critical temperature and expo-

nents obtained from the 8-spin cluster THMF with their
known values. For the unfrustrated 3D Heisenberg model
(J2 = 0 and JC = 1) the specific heat and order param-
eter exponents are αTHMF = 0 and βTHMF = 0.470(1),
and the Néel temperature is T THMF

N = 1.308. These val-
ues should be compared with the results of the Weiss
molecular field αW = 0, βW = 0.5, TW

N = 1.5, and

QMC28,29 βQMC = 0.36, TQMC
N = 0.946. Near the para-

magnetic phase, e.g. for J2 = 0.3 and JC = 0.1, we have
βTHMF = 0.474(2) and T THMF

N = 0.512. The THMF
exponents and TN can be improved by increasing the
cluster size and implementing a finite-size extrapolation.
Magnetic states in an applied field.– An exhaustive

spin-wave study of the magnetization process M(h) in-
side ordered phases of the J1-J2-JC model was performed

in Ref. 16. On the contrary, high-field properties of the
quantum paramagnetic state received much less atten-
tion, with efforts exclusively focused on the case JC = 0
(2D J1-J2 model). Particularly, in Ref. 22 a half-
saturation (M = 1/4) magnetization plateau character-
ized by a collinear spin ordering was proposed around the
maximally frustrated point J2 = 0.5.
Here we apply the THMF theory to study field-induced

metamagnetic transitions inside the non-magnetic region
(Fig. 2) of the J1-J2-JC model with J2 = 0.5 and
JC = 0.1. The main panel of Fig. 4(a) displays the T = 0
magnetization curve. For h below certain threshold value
hM , the magnetization vanishes due to the spectral gap.
For h > hM , the system exhibits a set of phases with non-
coplanar magnetic textures, shown in the figure. While
the spin orderings at small and large fields simply reflect
canted AF sublattices, the structures immediately before
and after the 1/2-plateau are non-trivial because the clas-
sical canting angle varies for different spins. The plateau
state has long-range order characterized by a collinear
magnetic structure with two spins per cluster antiparal-
lel to the field (cf. Ref. 22) and an Ising order parameter.
The plateau width [Fig. 4(a), inset] and threshold field

hM vanish at T ∼ T0 in agreement with the behavior of
Cv [Fig. 3(a)]. For a fixed field inside the plateau, the
magnetic order collapses via a 2nd order phase transition
at T ∼ T0. In Fig. 4(b) and (c) we show the temperature
dependence of Cv and M at h = 2.5. The non-monotonic
behavior of M(T ) is easy to understand by observing
that at T = 0 spins are “locked” in a specific pattern by
the interactions. Thermal fluctuations unlock the spins
allowing them to orient along the field, thus increasing
M(T ) before the transition. This highly non-trivial mag-
netization process is specific to the P-state in Fig. 2, and
we propose to use it in conjunction with the peak in Cv

as characteristic signatures of a quantum paramagnet.
Conclusion.– We developed and applied the THMF

method to address the interplay between quantum and
thermal fluctuations in the spin-1/2 J1-J2-JC antiferro-
magnet. Focusing on the non-magnetic region of the
model, which is unaccessible for other theoretical tech-
niques, we studied the crossover between a classical (due
to thermal effects) and a quantum paramagnet, and
demonstrated how the crossover temperature scale T0 can
be extracted from thermodynamic and high-field mea-
surements. At low temperature T < T0 quantum fluc-
tuations inside the paramagnetic state are manifested in
a variety of field-induced spin structures and a magne-
tization plateau at half-saturation. Our results can be
verified in experiments with vanadium oxides of the type
PbVO3. Assuming19 that J1 ∼ 70 − 100 K (and J2, JC
inside the paramagnetic phase), one gets T0 ∼ 20− 30 K
and hM ∼ 25− 35 T. The magnetization plateau should
become apparent for h ∼ 100− 200 T.
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21 The character of the Néel–paramagnetic phase transition

is a subtle issue. While this phase transition is continuous
in the present study, due to the real-space nature of the
THMF method (which involves explicit translational sym-
metry breaking), we cannot rule out the possibility of a
weakly first-order transition in the translationally invari-

ant J1-J2-JC model. A more complete discussion is pre-
sented in Ref. 10.

22 M. E. Zhitomirsky, A. Honecker, and O. A. Petrenko, Phys.
Rev. Lett. 85, 3269 (2000).

23 G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced

Effects in Semiconductors (Wiley, New York, 1974).
24 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
25 P. Chandra, P. Coleman, and A. I. Larkin, Phys. Rev. Lett.

64, 88 (1990).
26 R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E.

Krueger and J. Richter, Phys. Rev. B78, 214415 (2008).
27 J. P. Fouet, M. Mambrini, P. Sindzingre and C. Lhuillier,

Phys. Rev. B67, 054411 (2003).
28 C. Holm and W. Janke, Nucl. Phys. B30, 846 (1993).
29 P. Sengupta, A. W. Sandvik, and R. R. P. Singh, Phys.

Rev. B68, 094423 (2003).


